簡易檢索 / 詳目顯示

研究生: 謝勝宇
Hsieh Sheng-Yu
論文名稱: 鉑釕合金奈米粒 子之形狀控制及其電化學反應分析
指導教授: 陳家俊
Chen, Chia-Chun
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 58
中文關鍵詞: 鉑釕
英文關鍵詞: PtRu
論文種類: 學術論文
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
奈米粒子的形狀控制在現今材料研究是相當重要的方向,在於奈米尺度下的形狀變化對於材料的光學、磁學、催化性質有明顯的影響。因此我們發展多元醇還原合成系統(polyol reduction)來控制PtRu合金奈米粒子的形狀。藉由Pt(acac)2及Ru(acac)3於高溫下與介面活性劑;oleic acid、oleylamine交互作用及反應,並利用改變還原劑濃度、反應溫度、反應時間等方式產生不同生長機制,進而得到PtRu dentrimer、multipod、cuboctahedron。最後探討在本系統中因各個實驗參數對於成核及成長速率的影響,進而造成奈米粒子上形貌的變化。
在催化反應中,催化劑的形狀結構對於反應活性的影響在近期文獻中已有許多研究發表。因此本實驗將PtRu dentrimer、multipod、cuboctahedron與Pt-JM、PtRu-JM在硫酸溶液系統進行氧氣還原及甲醇氧化反應測試,於氧氣還原反應中,dentrimer、multipod與cuboctahedron的specific activity皆比商用Pt-JM來的好,而對於甲醇氧化反應,dentrimer擁有比PtRu-JM更佳的onset potential。由以上實驗的結果瞭解形狀對於各種催化反應會有不同的催化效果。

In the recent study of nanomaterial, the shape control of nanoparticles has been a major subject because of the obvious effects in optics, magnetism and catalysis. In this work, we developed the polyol reduction for the shape control of PtRu nanoalloys. Pt(acac)2 and Ru(acac)3 were used as metallic precursors and reacted with surfactants including oleic acid and oleyl amine at high temperature. When the experimental parameters such as the concentration of reducing agent, reaction temperature and reaction time were adjusted, the PtRu nanoalloy with different shape including dentrimer, multipod and cuboctahedron were prepared. The mechanisms of PtRu nanoalloy with different shapes were discussed. Consequently, we considered that the interreaction between precursors and surfactants influenced on the nucleation and growth rate during the formation of PtRu nanoalloy.
To date, the effects of structure of PtRu nanoalloy in the catalytic reaction have been studied extensively. We used PtRu nanoalloy with different shapes (dentrimer, multipod and cuboctahedron) as catalyst and measured their catalytic activity in oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR). The measurements in ORR showed that the specific activity of dentrimer, multipod and cuboctahedron are higher than that of Pt-JM. Moreover, the results in MOR showed the onset potential of dentrimer is more negative than that of PtRu-JM. In summary, the catalytic activity-shape correlation was demonstrated clearly in our work.

總目錄 總目錄……………………………………………………………………I 圖目錄…………………………………………………………………..IV 表目錄…………………………………………………………………..VI 中文摘要………………………………………………………………VII 英文摘要……………………………………………………………...VIII 第一章:緒論…………………………………………………………….1 1.1 前言……………………………………………………………...…..2 1.2 奈米材料簡介………………………………………………….……4 1.3 奈米粒子的製備方法………………………………………….…10 1.4 金屬奈米粒子之性質…………………………….………………..12 第二章:奈米鉑釕合金合成及催化應用……………………………..14 2.1 文獻回顧…………………………………………………………..14 2.1.1 奈米鉑釕合金合成…………………………………………..14 2.1.2 催化應用.…………...………………………………………....16 2.2 研究動機.………………………………………………………….19 第三章:實驗部份.…………………………………………………….21 3.1 實驗裝置…………………………………………………………..21 3.2 實驗藥品…………………………………………………………22 3.3 分析儀器與其原理….. ………………………………………..…23 3.4 實驗步驟…………………………………………………………..24 3.4.1 不同的介面活性劑比例……………………………………..24 3.4.2 不同的介面活性劑濃度……………………………………...24 3.4.3 不同的還原劑濃度…………………………………………..25 3.4.4 不同的反應溫度. ……………………………………………..25 3.4.5 不同的反應系統………………………………………………25 3.5 電化學分析………………………………………………………26 3.5.1 前處理………………………………………………………..26 3.5.2 陰極電化學測試……………………………………………..27 3.5.3 陽極電化學測試……………………………………………..28 第四章:結果與討論…………………………………………………30 4.1 PtRu結構組成分析………………………………………………..30 4.2 介面活性劑比例的效應……………………………………...…31 4.3 介面活性劑濃度的效應………………………………………...36 4.4 還原劑濃度的效應……………………………………………...38 4.5 反應溫度的效應…………………………………………………40 4.6 不同的反應系統…………………………………………………..42 4.7 合成理論………………………………………………………....45 4.8 陰極觸媒之氧氣還原反應………………………………………...46 4.8.1 循環伏安法…………………………………………………….46 4.8.2 氧氣還原反應之極化曲線……………………………………..48 4.9 陽極觸媒之甲醇氧化反應….……………………………………..51 4.9.1 循環伏安法……………………………………………………51 4.9.2 甲醇氧化反應之極化曲線…………………………………..53 第五章 結論………………………………………………………….55 第六章 未來與展望…………………………………………………...57 參考文獻……………………………………………………………...58

1. A. P. Alivisatos Science 1996, 271, 933-937.
2. Srnova, I. S.; Vlckova, B.; Nano Lett. 2002, 2, 121-125.
3. Jin, R.; Cao, Y-W.; Mirkin, A.; Kelly, K. L.; Schatz, G. C.; Zheng, J.G. Science, 2001, 294, 1901-1903.
4. Dhas, N. A.; Cohen, H.; Gedanken, A., J. Phys. Chem. B 1997, 101, 6834-6838.
5. Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Maeda, Y.; Yamamoto, T.; Nagata, Y. Ultrasonics Sonochemistry 1996, 3, S249-S251.
6. Kenji, O.; Hiroshi, B.; Yasuaki, M. Chem. Mater. 1996, 8, 315-317.
7. Wiley B.; Herricks T.; Sun Y.; Xia Y. Nano Lett. 2004, 4, 1733-1739.
8. Bera, D.; Kuiry, S. C.; Patil, S.; Seal, S. Appl. Phys. Lett. 2003, 82, 3089-3091.
9. Okumura M.; Tsubota S.; Iwamoto M.; Haruta M. Chem. Lett. 1998, 27, 315-316.
10. Yu Y. Y.; Chang S. S.; Lee C. L.; Wang C. R. C. J. Phys. Chem. B 1997, 101, 6661-6664.
11. Zhang X.; Kwong Y. C. Chem. Mater. 2003, 15, 451-459.

12. Luo, L. B.; Yu, S. H.; Qian, H. S.; Zhou, T. J. Am. Chem. Soc. 2005, 127, 2822-2823.
13. Hoyer, P. Adv. Mater. 1994, 8, 857-859.
14. Stepanyuk, V.S.; Hergert, R.; Dederichs, P.H. Surface Science 1997, 377, 495-498.
15. Sun S.; Zeng H. J. Am. Chem. Soc. 2002, 124, 8204-8205.
16. Wu H.; Zhang R.; Liu X.; Lin D.; Pan W. Chem. Mater. 2007, 19, 3506-3511.
17. Jia F.; Zhang L.; Shang X.; Yang Y. Adv. Mater. 2008, 20, 1050-1054.
18. Langhammer C.; Yuan Z.; Zoric´ I.; Kasemo B. Nano Lett. 2006, 6, 833-838.
19. Li C.; Shuford K. L.; Chen M.; Lee E. J.; Cho S. O. ACS Nano 2008, 2, 1760-1769.
20. Wiley B.; Sun Y.; Xia Y. Acc. Chem. Res. 2007, 40, 1067-1076.
21. Zhen Yin, Huajun Zheng, Ding Ma, Xinhe Bao, J. Phys. Chem. C 2009, 113, 1001-1005.
22. Narayanan R.; El-Sayed M. A. Nano Lett. 2004, 4, 1343-1348.

23. Tian N.; Zhou Z. Y.; Sun S. G.; Ding Y.; Wang Z. L. Science 2007, 316, 732-735.
24. Subhramannia M.; Ramaiyan K.; Pillai V. K. Langmuir 2008, 24, 3576-3583.
25. Zhang Y.; Grass M. E.; Habas S. E.; Tao F.; Zhang T.; Yang P.; Somorjai G. A. J. Phys. Chem. C 2007, 111, 12243-12253.
26. Antolini E.; Cardellini, F. J. Alloys Compd. 2001, 315, 118-122.
27. Takasu, Y.; Fujiwara, T.; Murakami, Y.; Sasaki, K.; Oguri, M.; Asaki, T.; Sugimoto, W. J. Electrochem. Soc. 2000, 147, 4421-4427.
28. Steigerwalt, E. S.; Deluga, G. A.; Lukehart, C. M. J. Phys. Chem. B 2002, 106, 760-766.
29. Watanabe M.; Uchida M.; Motoo S. J. Electrochem. Chem. 1987, 229, 395.
30. Swathirajan S.; Youssef M.; Mikhail J. Electrochem. Soc. 1991, 138, 1321-1326.
31. Hamnett A.; Kennedy B. J.; Wagner F. E. J. Catalysis 1990, 124, 30-40.
32. Kenedy, B.; Smith, A. J. Electroanal. Chem. 1990, 293, 103-110.

33. He Z.; Chen J.; Liu D.; Tang H.; Deng W.; Kuang Y. Materials Chemistry and Physics 2004, 85, 396-401.
34. Sun S.; Fre´de´ric Jaouen; Dodelet J. P. Adv. Mater. 2008, 20, 1-5.
35. Baturina O. A.; Aubuchon S. R.; Wynne K. J. Chem. Mater. 2006, 18, 1498-1504.
36. Steigerwalt E. S.; Deluga G. A.; Cliffel D. E.; Lukehart C. M. J. Phys. Chem. B 2001, 105, 8097-8101.
37. Klaiber T. J. Power Sources 1996, 61, 61-69.
38. Liu Z.; Ling X. Y.; Su X.; Lee J. Y. J. Phys. Chem. B 2004, 108, 8234-8240.
39. Mani P.; Srivastava R.; Strasser P. J. Phys. Chem. C 2008, 112, 2770-2778.
40. Park J. Y.; Zhang Y.; Grass M.; Zhang T.; Somorjai G. A. Nano Letters 2008, 8, 673-677.
41. Schrinner M.; Ballauff M.; Talmon Y.; Kauffmann Y.; Thun J.; Möller M.; Breu J. Science 2009, 332, 617-620
42. Burstein, G. T.; Barnett, C. J.; Kucernak, A. R.; Williams, K. R. Catal. Today 1997, 38, 425-437

43. Wang C.; Daimon H.; Onodera T.; Koda T.; Sun S. Angew. Chem. Int. Ed. 2008, 47, 3588-3591
45. Frelink T.; Visscher W.; van Veen J.A.R. J. Electroanal. Chem. 1995, 382, 65-72
46. Zhang Y.; Zhu J.; Song X.; Zhong X.; Zhang Y. J. Phys. Chem. C 2008, 112, 5322-5327.
47. Zhang H. T.; Ding J.; Chow G. M. Langmuir 2008, 24, 375-378.
48. Shevchenko E. V.; Talapin D. V.; Schnablegger H.; Kornowski A.; Festin O.; Svedlindh P.; Haase M.; Weller H. J. Am. Chem. Soc. 2003, 125, 9090-9101
49. Silvert P. Y.; Ronaldo H. U.; Kamar T. E. J. Mater. Chem. 1997, 7, 293-299
50. Xiong Y.; Cai H.; Wiley B. J., Wang J.; Kim M. J.; Xia Y. J. Am. Chem. Soc. 2007, 129, 3665-3675
51. Chen M.; Kim J.; Liu J. P.; Fan H.; Sun S. J. Am. Chem. Soc. 2006, 128, 7132-7133

無法下載圖示 本全文未授權公開
QR CODE