研究生: |
陳昭瑞 Chen, Chao-Jui |
---|---|
論文名稱: |
高中職學生社會影響、上網正向效果預期與網路成癮之相關研究 Social Influence, Positive Outcome Expectancy and Internet Addiction among Senior High School Students in Taiwan |
指導教授: |
林旻沛
Lin, Min-Pei |
學位類別: |
碩士 Master |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 上網正向效果預期 、社會影響 、高中職學生 、網路成癮 |
英文關鍵詞: | Internet addiction, positive outcome expectancy, senior high school/ technical school students, social influence |
DOI URL: | https://doi.org/10.6345/NTNU202201942 |
論文種類: | 學術論文 |
相關次數: | 點閱:263 下載:61 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
研究目的:本研究旨在檢視社會影響、上網正向效果預期與高中職學生網路成癮之關聯性,主要探究社會影響和上網正向效果預期對高中職學生網路成癮的預測情形,並進一步釐清社會影響與上網正向效果預期對網路成癮預測中之關係。
研究方法:本研究採橫斷研究法,並以高中與高職學生為研究對象,考量全國高中生與高職生人數比例後,以分層(高中、高職)叢集(以班為單位)方式進行立意性抽樣,共取得有效問卷1922份;研究工具包括「個人資料表」、「網路使用社會影響量表」、「上網正向效果預期量表」,以及「陳氏網路成癮量表」;本研究採用描述統計、皮爾森相關分析及結構方程模式等統計方法進行資料分析。
研究結果:(1)高中職學生平均每週上網時間為18.22小時(標準差為18.44小時),其中平均每週在非課業相關的上網時間為15.43小時(標準差為17.33小時);(2)上網正向效果預期總分及其三個分量表(成就自我、解壓增趣及人際聯繫)皆與網路成癮總分達顯著正相關,但獲取資訊分量表與網路成癮總分卻未達顯著相關;(3)社會影響可顯著且正向預測網路成癮;(4)上網正向效果預期能顯著且正向預測網路成癮;(5)上網正向效果預期能完全中介社會影響對網路成癮之預測關係。
研究結論:本研究檢驗了高中職學生的社會影響(社會因素)和上網正向效果預期(心理因素)對網路成癮之預測模式,並依此發現提出後續研究與實務處遇和應用上建議,以供研究者、教育相關工作者,以及輔導與諮商實務工作者參考。
Purpose: The study aimed to understand the relationship among social influence, positive outcome expectancy and internet addiction among senior high school students in Taiwan. Moreover, the study focus on clarifying the relationship that social influence and positive outcome expectancy predict Internet addiction.
Method: The study was constructed using cross-sectional study design. By both stratified and random cluster sampling, participants were recruited from senior high school and technical school in Taiwan. 1922 valid questionnaires were returned finally. The self-administered questionnaires included personal data, social influence scale, positive outcome expectancy scale, and internet addiction scale. Then, all valid data were analyzed with descriptive statistics, Pearson correlation, independent-sample t-test and SEM.
Results: (1) The average hours on internet per week were 18.22 hours (SD = 18.44 hours), in which 15.43 hours (SD = 17.33 hours) were for extracurricular activities;
(2) It showed positive correlation between internet addiction and positive outcome expectancy, while information-seeking subscale and internet addiction had no significant correlation; (3) Social influence significantly and positively predicted internet addiction; (4) Positive outcome expectancy significantly and positively predicted internet addiction; and (5) Positive outcome expectancy fully mediated the relationship that social influence predict internet addiction.
Conclusions: The study examined social influence (social factors) and positive outcome expectancy (psychological factors) on internet addiction prediction model. Based on the results, the study provides suggestions for schools and guidance counselors, as well as for future research.
中文部分
王智弘(2004):運用網路諮商以因應青少年網路問題行為。國立中正大學主辦「青少年網際網路使用相關問題與防治對策研討會」宣讀之論文(嘉義縣)。
王智弘(2013):善用網路不成癮-讓網路與現實生活緊密連結。師友月刊,548,24-28。
王澄華(2001):人格特質與網路人際互動對網路成癮之影響。天主教輔仁大學心理研究所碩士論文。
吳佳煇(2004):社會支持對網路成癮的影響。資訊社會研究期刊,4,173-189。
李景美、賴香如、李碧霞、張鳳琴(2000):台北縣市高職學生物質濫用之危險因子與保護因子研究。行政院衛生署專題研究成果報告(編號:DOH89-607TD-1115)。
周倩(1999):我國學生電腦網路沉迷現象之整合研究-子計畫二:網路沉迷現象的心理病理之教育傳播觀點研究。行政院國家科學委員會研究報告(編號:NSC87-2511-S-009-013-N)。
林以正、王澄華(2001):性別對網路人際互動與網路成癮之影響與中介效應。輔導季刊,4,1-10。
林旻沛(2011):性格與認知因素對大學生網路成癮之影響:一年追蹤研究。國立成功大學行為醫學研究所博士論文。
柯慧貞(2012):全國國中生的網路成癮盛行率及其相關心理社會模式之追蹤研究。行政院科技部研究報告(編號:NSC98-2511-S006-002-MY3)。
柯慧貞、林旻沛、丁建谷、廖聆岑、周鉦翔、余睿羚、傅安婷、賴雅純、鄭聖樺、張蘶鐘(2003):南區大專院校學生身心健康調查暨高危險群篩選。未發表之論文。
唐心北(2013):DSM-5中尚待進一步探討的物質相關及成癮障礙症。取自臺灣精神醫學會網站:https://goo.gl/8iHP2N,2017年6月11日。
翁翠吟(2012):同儕影響、網路遊戲正向預期在網路遊戲成癮中的角色。國立成功大學醫學院行為醫學研究所碩士論文。
財團法人資訊工業策進會(2016):2015年第4季我國網際網路用戶發展概況。取自財團法人資訊工業策進會網站:https://goo.gl/G1BEpK,2017年6月11日。
財團法人臺灣網路資訊中心(2015):歷年無線上網行為趨勢分析。取自財團法人臺灣網路資訊中心網站:https://goo.gl/AqMj78,2017年6月11日。
財團法人臺灣網路資訊中心(2016):2016年台灣寬頻網路使用調查報告。取自財團法人臺灣網路資訊中心網站:https://goo.gl/9Y4zPE,2017年6月11日。
張志宏(2006):臺灣南部大學生嚼檳榔行為之社會認知因素探討。國立成功大學行為醫學研究所碩士論文。
教育部(2015):104年學生網路使用情形調查報告【調查報告】。取自教育部網站:https://goo.gl/koJCXa,2017年6月11日。
許韶玲、施香如(2013):網路成癮是一種心理疾病嗎?從實證與論述文獻的脈絡檢視。教育心理學報,44(4),773-793。
郭憲文、李玫姿(2004):台灣地區在學國中、高中生藥物濫用之調查。行政院衛生署研究計畫成果報告(編號:DOH93-NNB-1009)。
陳淑惠、翁麗禎、蘇逸人、吳和懋、楊品鳳(2003):中文網路成癮量表之編製與心理計量特性研究。中華心理學刊,3,279-294。
陳瑛琪(2013):青少年網路成癮-現實與虛擬環境間的拉鋸戰。商管科技季刊,14(2)165-193。
陳筱茜、柯慧貞、李昆樺、林旻沛(2010):憂鬱、認知及社會影響對台灣南部大學生檳榔使用之解釋。中華心理衛生學刊,4,587-612。
盧永欽(2009):憂鬱程度與正向線上遊戲效果預期對臺灣男女大學生線上遊戲使用與網路成癮程度之預測。國立成功大學行為醫學研究所碩士論文。
韓佩凌、鄔佩麗、陳淑惠、張郁雯(2007):北部高中職學生網路沈迷模式之徑路分析研究。教育心理學報,38 (3),355 -373。
西文部分
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. London, England: Pearson college division.
American Psychiatric Association (2013). Diagnostic and statistical Manual of Mental Disorders-Text Revision (5th Edition). [Adobe Digital Editions version]. Retrieved from: https://goo.gl/YF0wkA
Bandura, A. (1969). Principles of Behavior Modification. New York, NY: Holt Rinehart & Winston.
Bandura, A. (1977). Social learning theory. Engle Wood Cliffs, NJ: Prentice-Hall.
Bandura, A. (1989). Human agency in social cognitive theory. The American psychologist, 44(9), 1175-1184.
Baron, R. M., & Kenny, D. A. (1986). The moderator-mediator variable distinctions in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality and Social Psychology, 51(6), 1173-1182. DOI: 10.1037/0022-3514.51.6.1173
Black, D. W., Belsare, G., & Schlosser, S. (1999). Clinical features, psychiatric comorbidity, and health-related quality of life in persons reporting compulsive computer use behavior. Journal of Clinical Psychiatry, 60, 839-844.
Chang, C. H., Ko, H. C., Wu, J. Y., & Cheng, C. P. (2007). Social cognitive determinants of betel quid chewing among college students in southern Taiwan: A revised attitudes social influence efficacy model. Addictive Behaviors, 32(10), 2345-2350. DOI: 10.1016/j.addbeh.2007.02.001
Christiansen, B. A., Smith, G. T., Roehling, P. V., & Goldman, M. S. (1989). Using alcohol expectancies to predict adolescent drinking behavior after one year. Journal of Consulting and Clinical Psychology, 57(1), 93-99.
Chun, J. S. (2015). Determinants of tobacco use among Korean female adolescents: Longitudinal test of the theory of triadic influence. Children and Youth Services Review, 50, 83-87.
Connors, G. J., O'Farrell, T. J., Cutter, H. S. G., & Thompson, D. L. (1986). Alcohol expectancies among male alcoholics, problem drinkers and no problem drinkers. Alcoholism, Clinical and Experimental Research, 10(6), 667-671. DOI: 10.1111/j.1530-0277.1986.tb05165.x
Eastin, M. S. (2005).Teen internet use: Relating social perceptions and cognitive models to behavior. Cyberpsychology & Behavior, 8(1), 62-75. DOI: 10.1089/cpb.2005.8.62
Epstein, J. A., Williams, C., & Botvin, G. J. (2002). How universal are social influences to drink and problem behaviors for alcohol use? A test comparing urban African-American and Caribbean-American adolescents. Addictive Behaviors, 27(1), 75-86.
Erikson, E. H. (1968). Identity: Youth and Crisis. New York, NY: W. W. Norton & Company.
Esen, B. K., & Gundogdu. M. (2010). The relationship between internet addiction, peer pressure and perceived social support among adolescents. The International Journal of Educational Researchers, 2(1), 29-36.
Flay, B.R., & Petraitus, J. (1994). The theory of triadic influence: A new theory of health behavior with implications for preventive interventions. Advances in Medical Sociology, 4, 19-44.
Goldberg, A. E. (1995). Constructions: A construction grammar approach to argument structure. Chicago, IL: University of Chicago Press.
Goldman, M. S., Brown, S. A., & Christiansen, B. A. (1987). Expectancy theory - thinking about drinking. New York, NY: Guilford Publications
Griffiths, M. (1995). Technological addictions. Clinical Psychology Forum, 76, 14-19.
Griffiths, M. (2000). Internet addiction - time to be taken seriously? Journal of Addiction Research & Therapy, 8(5) ,413-418. DOI:10.3109/ 1606635 0009005587
Gupta, R., & Derevensky, J. (1997). Familial and social influences on juvenile gambling behavior. Journal of Gambling Studies, 13(3), 179-192.
Heinz, A. J., Kassel J. D., Berbaum, M., & Mermelstein, R. (2010). Adolescents' expectancies for smoking to regulate affect predict smoking behavior and nicotine dependence over time. Drug Alcohol Depend, 111, 128-135. DOI: 10.1016/j.drugalcdep.2010.04.001
Holden, C. (2001). “Behavioral” addictions: Do they exist? Science, 294(5544), 980-982. DOI: 10.1126/science.294.5544.980
Hou, H., Jia, S., Hu, S., Fan, R., Sun, W., Sun, T., & Zhang, H. (2012). Reduced striatal dopamine transporters in people with internet addiction disorder. Journal of Biomedicine & Biotechnology, 2012, 854524-854529. DOI:10.1155/2012/854524
Hu, L.T., & Bentler, P. M. (1999). Cutoff criteria for fit indices in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55. DOI: 10.1080/10705519909540118
Khantzian, E. J. (1997). The self-medication hypothesis of substance use disorders: A reconsideration and recent applications. Harvard Review of Psychiatry, 4(5), 231-244.
Kim, S. H., Baik, S. H., Park, C. S., Kim, S. J., Choi, S. W., & Kim, S. E. (2011). Reduced striatal dopamine D2 receptors in people with internet addiction. Neuroreport, 22(8), 407-411. DOI: 10.1097/WNR.0b013e328346e16e
Ko, C. H., Yen, J. Y., Chen, S. H., Yang, M. J., Lin, H. C., & Yen, C. F. (2009). Proposed diagnostic criteria and the screening and diagnosing tool of internet addiction in college students. Comprehensive Psychiatry, 50(4), 378-384.
Koronczai, B., Urba´n,R., Kokonyei,G., Paksi, B., Papp, K. , Kun, B., Arnold, P., Ka´ llai, J., & Demetrovics, Z. (2011). Confirmation of the three-factor model of problematic internet use on off-line adolescent and adult samples. Cyberpsychology, Behavior, and Social Networking, 14(11), 657-664. DOI: 10.1089/cyber.2010.0345
Lau-Barraco, C., & Dunn, M. E. (2008). Evaluation of a single-session expectancy challenge intervention to reduce alcohol use among college students. Psychology of Addictive Behaviors, 22(2), 168-175. DOI: 10.1037/0893- 164X.22.2.168
Lee, N. K., Greely, J., & Oei, T. P. S. (1999). The relationship of positive and negative alcohol expectancies to patterns of consumption of alcohol in social drinkers. Addictive Behaviors, 24(3), 359-369.
Lee, Y. H., Ko, C. H., & Chou, C. (2015). Re-visiting internet addiction among Taiwanese students: A cross-sectional comparison of students’ expectations, online gaming, and online social interaction. Journal of Abnormal Child Psychology, 43(3), 589-599.
Li, S. M., Yu, S. R-L., Hu, H-C., & Huang, J-S. (2003). Areca quid chewing by Taiwanese adolescents: Application of the attitudes social self-efficacy (ASE) model. Addiction, 98(12), 1723-1729. DOI: 10.1111/j.1360-0443.2003.00543
Lin, M. P., Hu, W. H., Lin, Y. P., & Wu, Y. W. (2013). Internet use related cognitions scale: Development, confirmatory factor validation and psychometric properties. Paper presented at the 44th SPR (Society for Psychotherapy Research) International Annual Meeting, Brisbane, Australia.
Lin, M. P., Ko, H. C., & Wu, J. Y. (2008). The role of positive/negative outcome expectancy and refusal self-efficacy of Internet use on internet addiction among college students in Taiwan. Cyberpsychology, Behavior, and Social Networking, 11(4), 451-457. DOI: 10.1089/cpb.2007.0121
Luitgaarden, J. van de, Wiers, R. W. H. J., Knibbe, R. A., & Candel, M. J. J. M. (2007). Single-session expectancy challenge with young heavy drinkers on holiday. Addictive Behaviors, 32(12), 2865-2878.
Martens, M. P. (2005). The use of structural equation modeling in counseling psychology research. The Counseling Psychologist, 33(3), 269-298. DOI: 10.1177/0011000004272260
Masisito, S. A., Carey, K. B., & Bradizza, C. M. (1999). Social learning theory. New York, NY: Guilford Press.
McGeel, C. E., Joanne, T., Fairclough, S. J., Murphy, R. C., Porcellatol, L., Ussher, M., & Foweather, L. (2015). Influence of family and friend smoking on intentions to smoke and smoking-related attitudes and refusal self-efficacy among 9-10 year old children from deprived neighborhoods: A cross-sectional study. BMC Public Health, 15. DOI: 10.1186/s12889-015-1513-z
Monk, R. L., & Heim, D. (2013). Panoramic projection: Affording a wider view on contextual influences on alcohol-related cognitions. Experimental and Clinical Psychopharmacology, 21(1), 1-7. DOI:10.1037/a0030772
Noar, S. M., Crosby, R., Benac, C., Snow, G., & Troutman, A. (2011). Applying the attitude-social influence-efficacy model to condom use among African-American STD clinic patients: Implications for tailored health communication. AIDS & Behavior, 15(5), 1045-1057. DOI: 10.1007/s10461-009-9599-x
Park, H. S., Kim, S. H., Bang, S. A., Yoon, E. J., Cho, S. S., & Kim, S. E. (2010). Altered regional cerebral glucose metabolism in internet game overusers: A18Ffluorodeoxyglucose positron emission tomography study. CNS Spectrums, 15(3), 159-166.
Petraitis, J., Flay, B. R., & Miller, T. Q. (1995). Reviewing theories of adolescent substance use: Organizing pieces in the puzzle. Psychological Bulletin, 117(1), 67-86.
Schmits, E., Mathys, C., & Quertemont, E. (2015). A longitudinal study of cannabis use initiation among high school students: Effects of social anxiety, expectancies, peers and alcohol. Journal of Adolescence, 41, 43-52. DOI: 10.1016/j.adolescence.2015.02.009
Şenormancı, Ö., Şenormancı, G., Güçlü, O., & Konkan, R. (2014). Attachment and family functioning in patients with internet addiction. General Hospital Psychiatry, 36(2), 203-207. DOI: 10.1016/j.genhosppsych.2013.10.012
Shapira, N. A., Goldsmith, T. D., Keck, P. E. J. R., Khosla, U. M., & McElroy, S. L. (2000). Psychiatric features of individuals with problematic internet use. Journal of Affective Disorders, 57, 267-272.
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychological Methods, 7(4), 422-445.
St-Pierre, R. A., Temcheff, C. E., Gupta, R., Derevensky, J., & Paskus, T. S. (2014). Predicting gambling problems from gambling outcome expectancies in college student athletes. Journal of Gambling Studies, 30(1), 47-60. DOI:10.1007/s10899-012-9355-4
Tsai, C. C., & Lin, S. S. J. (2003). Analysis of attitudes toward computer networks and internet addiction of Taiwanese adolescents. Cyberpsychology, Behavior, and Social Networking, 4, 373-376.
Twinomujuni, C., Nuwaha, F., Babirye, J. N. (2015). Understanding the low level of cervical cancer screening in Masaka Uganda using the ASE model: A community-based survey. PLOS ONE, 10(6). DOI: 10.1371/journal.pone.0128498
Vries, H. D., Dijkstra, M., & Kuhlman, P. (1988). Self-efficacy: The third factor besides attitude and subjective norm as predictor of behavioral intentions. Health Education Research, 3, 273-282. DOI: 10.1093/her/3.3.273
Wood, M. D., Read, J. P., Palfai, T. P., & Stevenson, J. F. (2001). Social influence processes and college student drinking the meditational role of alcohol outcome expectancies. Journal of Studies on Alcohol, 62(1), 32-43.
Wu, J. Y., Ko, H. C., Wong, T. Y., Wu, L. A., & Oei, T. P. ( 2016). Positive outcome expectancy mediates the relationship between peer influence and Internet gaming addiction among adolescents in Taiwan. Cyberpsychology, Behavior, and Social Networking, 19(1), 49-55. DOI: 10.1089/cyber.2015.0345
Yen, J.Y., Yen, C. F., Chen, C. C., Chen, S. H., & Ko, C. H. (2007). Family factors of internet addiction and substance use experience in Taiwanese adolescents. Cyberpsychology & Behavior, 10(3), 323-329. DOI:10.1089/cpb.2006.9948
Yi, S., Stewart, M., Collins, P., & Stewart, S. H. (2015). The activation of reward versus relief gambling outcome expectancies in regular gamblers: Relations to gambling motives. Journal of Gambling Studies, 31(4), 1515-1530. DOI: 10.1007/s10899-014-9474-1
Young, K. S., & Rodgers, R. C. (1998). The relationship between depression and internet addiction. Cyberpsychology, Behavior, and Social Networking, 1(1), 25-28.
Young, K. S. (1998). Internet addiction: The emergence of a new clinical disorder. Cyberpsychology, Behavior, and Social Networking, 1(3), 237-244.
Yu, R. L., & Ko, H. C. (2006). Cognitive determinants of MDMA use among college students in southern Taiwan. Addictive Behaviors, 31(12), 2199-2211. DOI: 10.1016/j.addbeh.2006.02.017