簡易檢索 / 詳目顯示

研究生: 劉芷怡
論文名稱: 具光子量子井之多通道窄頻濾波器
指導教授: 吳謙讓
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 32
中文關鍵詞: 光子量子井光子晶體轉移矩陣法
論文種類: 學術論文
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的,在於研究具缺陷光子量子井結構的多層多通道窄頻濾波器之特性。本文內容分為兩大部分作研討。
    第一,利用以光子量子井當作缺陷運用於光子晶體,可以發現當光子量子井的厚度增加時,共振頻率出現之個數也隨之增加。而光子量子井之週期數增加時,共振頻率將趨於固定。另外,調整光子量子井之材料(即變化光子量子井之折射率)時,共振頻率將隨之變化。
    第二,運用不同結構之光子量子井當作缺陷,可分裂共振頻率之鋒值數量。
    本研究內容利用轉移矩陣法作為研究方式。

    A theoretical analysis of resonant transmission in a multilayer multichannel narrowband transmission filter containing a defective photonic quantum-well (PQW) is presented in this thesis. There are two main issues to be studied.
    First, using PQW as a defect in a photonic crystal, we find that the number of resonant peaks will be increased as the thickness of PQW increases. The peak frequencies, however,
    will be nearly kept fixed at a certain number of periods in the PQW. Additionally, the peak frequencies can be shifted by changing the index contrast in the PQW.
    Second, we use the modified photonic quantum-well (MPQW) as a defect in the filter.We find the peak will be split and the number of splitting will be directly proportional to the
    multiplicity of the structure. We investigate the effects of defect thickness, barrier thickness,and the defect index on the transmittance spectra.
    The theoretical analysis in this thesis is made based on the transfer matrix method. The format of thesis is as follows: The Chapter 1 is to give a brief review of PCs. The Chapter 2 describes the theoretical method used in our calculation. Some topics under study are arranged in Chapters 3 and 4, respectively. The conclusion is summarized in Chapter 5.

    Abstract--------------------------------------------------i Acknowledgements-----------------------------------------ii Contents------------------------------------------------iii Chapter 1 Introduction------------------------------------1 1-1 Photonic Crystals-------------------------------------1 1-2 Motivation--------------------------------------------2 1-3 Thesis Overview---------------------------------------3 Chapter 2 Theoretical Method------------------------------4 2-1 Dynamical Matrix of a Medium--------------------------4 2-2 A Two-boundary Problem--------------------------------7 2-3 Matrix Formulation for Multilayer System--------------9 2-4 Transmittance and Reflectance------------------------10 Chapter 3 A Multichannel Narrowband Transmission Filter Containing PQW as a Defect---------------------12 3-1 Introduction-----------------------------------------12 3-2 Basic Equations--------------------------------------13 3-3 Numerical Results and Discussion---------------------15 3-4 Conclusion-------------------------------------------20 Chapter 4 Improved Tunable Multichannel Filter Containing Modified PQW-----------------------------------21 4-1 Introduction-----------------------------------------21 4-2 Basic Equations--------------------------------------22 4-3 Numerical Results and Discussion---------------------23 4-4 Conclusion-------------------------------------------27 Chapter 5 Conclusions------------------------------------28 References-----------------------------------------------29

    [1] J. W. Strutt, Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure”, Phil. Mag., S.5, Vol. 24, 145-159, 1887.
    [2] E. Yablomovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Phys. Rev. Lett, Vol. 58, 2059-2062, 1987.
    [3] S. John, “Strong location of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
    [4] J. D. Jounnaopoulos, R.D. Meade and J. N. Winn, Photonic Crystals-Molding the Flow of Light, 1995, http://ab-initio.mit.edu/book/.
    [5] Pochi Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
    [6] M. Born and E. Wolf, Principle of Optics, Cambridge, London, 1999.
    [7] R. Srivastava, K. B. Thapa, S. Pati, and S. P. Ojha, “Omni-direction reflection in one dimensional photonic crystal”, Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
    [8] R. Srivastava, S. Pati, and S. P. Ojha, “Enhancement of omnidirectional reflection in photonic crystal heterostructures”, Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
    [9] S. K. Awasthi, U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, “Design of a tunable polarizer using a one–dimensional nano sized photonic bandgap structure”, Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
    [10] S. Golmohammadi, Y. Rouhani, K. Abbasian, and A. Rostami, “Photonic bandgaps in quasiperiodic multilayer using Fourier transform of the refractive index profile”, Progress In Electromagnetics Research B, Vol. 18, 311-325, 2009.
    [11] R. Srivastava, K. B. Thapa, S. Pati, and S. P. Ojha, “Design of photonic band gap filter”, Progress In Electromagnetic Research, PIER 81, 225-235, 2008.
    [12] N. Kumar, and S. P. Ojha, “Photonic crystals as infrared broadband reflectors with different angles of incidence: a comparative study”, Progress In Electromagnetics Research, PIER 80, 431-445, 2008.
    [13] S. J. Orfanidis, Electromagnetic Waves and Antennas, Chapter 7, Rutger University, 2008, www.ece.rutgers.edu/~orfanidi/ewa
    [14] H.-T. Hsu, and C.-J. Wu, “Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect”, Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
    [15] Z.-Y. Wang, X.-M. Cheng, X.-Q. He, S.-L. Fan, and W.-Z. Yan, “Photonic crystal narrow filters with negative refractive index structural defects”, Progress In Electromagnetics Research, PIER 80, 421-430, 2008.
    [16] G. Boedecker, and C. Henkle, “All-frequency effective medium theory of a photonic crystal”, Optics Express, Vol. 13, 1590-1595, 2003.
    [17] J. A. Monsoriu, C. J. Zapata-Rodriguez, and E. Silvestre, “Cantor-like fractal photonic crystal waveguides”, Optics Communications, Vol. 252, 46-51, 2005.
    [18] H. Inouye, M. Arkawa, J. Y. Ye, T. Hattori, H. Nakatsuka, and K. Hirao, “Optical properties of a total-reflection-type one-dimensional photonic crystal”, IEEE J. Quantum Electronics, Vol. 38, 867-871, 2002.
    [19] G. J. Schneider, and G. H. Watson, “Nonlinear optical spectroscopy in one-dimensional photonic crystals”, Appl. Phys. Lett., Vol. 83, 5350-5352, 2003.
    [20] B. Shi, Z. M. Jiang, and X. Wang, “Defective photonic crystals with greatly enhanced second-harmonic generation”, Optics Letters, Vol. 26, 1194-1196, 2001.
    [21] D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman: ‘Photonic band structure without and with defect in one-dimensional photonic crystal’, J. Opt. Soc. Am. B: Optical Physics, Vol. 10, 314-321, 1993.
    [22] M. S. Saremi, and M.M. Mirsalehi, “Analysis of femtosecond optical pulse propagation in one-dimensional nonlinear photonic crystals using finite-difference time-domain method”, Optik, Vol. 116, 486-492, 2005.
    [23] C. S. Kee, S. S. Oh, H.Y. Park, S. Park, and H. Schift, “Photonic band gaps and defect modes of polymer photonic crystal slabs”, Appl. Phys. Lett., Vol. 86, 051101, 2005.
    [24] E. V. Schwoob, C. Weisbuch, H. Benisty, C. Cuisin, E. Derouin, and O. Drisse, “Compact wavelength monitoring by lateral outcoupling in wedged photonic crystal multimode waveguides”, Appl. Phys. Lett., Vol. 87, 101107, 2005.
    [25] Y. H. Li, H.T. Jiang, L. He, H. Q. Li, Y. W. Zhang, and H. Chena, “Multichanneled filter based on a branchy defect in microstrip photonic crystal”, Appl. Phys. Lett., Vol. 88, 081106, 2006.
    [26] Y. Jiang, C. Niu, and D. Liu, “Resonance tunneling through photonic quantum wells”, Phys. Rev. B, Vol. 59, 9981-9986, 1999.
    [27] J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures”, Appl. Phys. Lett., Vol. 73, 2084-2086, 1998.
    [28] S. Yano, Y. Segawa, and J.S. Bae, “Quantized state in a single quantum well structure of photonic crystals”, Phys. Rev. B, Vol. 63, 153316, 2001.
    [29] W. Yin, G. F. Zhang, Y. Z. Lai, Q. W. Yan, “The oscillation of the coherent light between photonic quantum wells with time-dependent coupling drive”, Opt. Commun., Vol. 225, 7-11, 2003.
    [30] C. S. Feng, L. M. Mei, L.Z. Cai, P. Li, and X.L. Yang, “Resonant modes in quantum well structure of photonic crystals with different lattice constants”, Solid State Commun., Vol. 135, 330-334, 2005.
    [31] J. Liu, J.Q. Sun, D.X. Huang, C.Q. Huang, and M. Wu, “Modulated photon bound states with graded-index photonic quantum well structure”, Acta Phys. Sin., Vol. 56, 2281–2285, 2007.
    [32] S. Haxha, W. Belhadj, F. Abdelmalek, and H. Bouchriha, “Analysis of wavelength demultiplexer based on photonic crystals”, IEE Proc., Optoelectron., Vol. 152, 193-198, 2005.
    [33] T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip”, Opt. Lett., Vol. 30, 2575-2577, 2005.
    [34] A. Belardini, A. Bosco, and G. Leah, “Femtosecond pulses chirping compensation by using one-dimensional compact multiple-defect photonic crystals”, Appl. Phys. Lett., Vol. 89, p. 031111, 2006.
    [35] F. Qiao, C. Zhang, and J. Wan, “Photonic quantum-well structures: multiple channeled filtering phenomena”, Appl. Phys. Lett., Vol. 77, 3698-3701, 2000.
    [36] P. Yeh, Optical Waves in Layered Media, John Wiley & Sons, Singapore, 1991.
    [37] J. Liu, J. Sun, C. Huang, W. Hu, and D. Huang, “Optimizing the spectral efficiency of photonic quantum well structures”, Optik, Vol. 120, 35-39, 2009.
    [38] J. Liu, J. Dun, C. Huang, W. Hu, and M. Chen, “Improvement of spectral efficiency based on spectral splitting in photonic quantum-well structure”, IET Opto., Vol. 2, No. 3, pp. 122-127, 2008.

    無法下載圖示 本全文未授權公開
    QR CODE