研究生: |
黃婉慈 Huang, Wan-Tzu |
---|---|
論文名稱: |
使用大氣壓化學游離法結合液相層析串聯式質譜儀檢測玉米及黃豆中的中低極性農藥 An LC-APCI-MS/MS method for the analysis of moderately polar pesticides in corn and soybean |
指導教授: |
陳頌方
Chen, Sung-Fang |
口試委員: |
陳頌方
Chen, Sung-Fang 陳翰民 Chen, Han-Min 陳怡婷 Chen, Yi-Ting |
口試日期: | 2023/07/28 |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 中低極性農藥 、大氣壓化學游離法 、液相層析-串聯式質譜儀 、QuEChERS 、定量 |
英文關鍵詞: | Moderately polar pesticides, Atmospheric pressure chemical ionization, LC-MS/MS, QuEChERS, Quantification |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202301125 |
論文種類: | 學術論文 |
相關次數: | 點閱:103 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類在農業持續過度濫用農藥,各種農藥和有機污染物由於其生物累積性和高毒性,對環境與非目標生物體造成嚴重傷害,因此農藥殘留問題不容忽視。本實驗以液相層析串聯式質譜儀搭配大氣壓化學法進行游離 (LC-APCI-MS/MS),選擇衛福部公告方法適用於GC-EI-MS/MS檢測,危害度高且可使用APCI正電模式游離的12項農藥作為目標分析物,並將開發的方法運用在玉米及乾燥黃豆的農藥檢測。過程針對所選樣品優化QuEChERS前處理方法,移動相使用甲醇及水,皆添加0.2%甲酸及5 mM甲酸銨,選擇C18管柱作為固定相,成功以逆向層析梯度,在12 min內分離12項農藥,並以MRM掃描模式進行偵測與定量。基質匹配校正曲線線性範圍落在5 – 200 ng/mL,準確度介於87.48 – 116.82%,精密度在0.32 – 17.20%之間,偵測極限與定量極限的範圍分別為1 – 5 ng/mL與5 – 10 ng/mL,線性回歸 (R平方) 大於0.995。透過比較前添加與後添加農藥標準品,得到優化後的QuEChERS萃取法回收率為 80.36 – 119.86%。
Since humans are used to overusing pesticides in agriculture, pesticides and organic pollutants which are bioaccumulative and highly toxic cause serious damage to the environment and the metabolism of non-target organisms. Therefore, the problem of pesticide residues in agricultural products can not be ignored. In this study, liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry (LC-APCI-MS/MS) was applied to quantify the 12 pesticides which are originally analyzed by gas chromatography tandem mass spectrometry (GC-MS/MS) with electron ionization (EI), according to the regulation of the Taiwan Food and Drug Administration (TFDA). The developed method was further applied to the pesticide analysis in corn and soybean. In the process, the QuEChERS extraction method was optimized for the selected samples. The mobile phases were methanol and water with the addition of 0.2% formic acid and 5 mM ammonium formate. Twelve pesticides were successfully separated within 12 minutes using reverse phase chromatography. MRM MS analysis was applied for detection and quantification. The linear range of the matrix-matched calibration curves were 5 – 200 ng/mL. The accuracy was 87.48 – 117.20%, and the precision was 0.32 – 17.20%. The detection limit and quantification limit ranges were 1 – 5 ng/mL and 5 – 10 ng/mL respectively. The coefficient of determination (R squared) was greater than 0.995. By comparing pre-spiked and post-spiked pesticide standards, the recoveries of the optimized QuEChERS extraction method were 80.36 – 119.86%.
(1) Food and Agriculture Organization (FAO); World Health Organization (WHO). Pesticide Residues in Food — 1999 Evaluations. Part II - Toxicological. Joint FAO/WHO Meeting on Pesticide Residues. World Health Organization: Geneva, 2000.
(2) Handley, J. Pesticides - A brief history and analysis. Pitchcare Magazine 2019, (83), Chemicals & Fertilisers and Technical.
(3) Berg, H. v. d. Global Status of DDT and Its Alternatives for Use in Vector Control to Prevent Disease. Environmental Health Perspectives 2009, 117 (11), 1656-1663.
(4) Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G. P. S.; Handa, N.; Kohli, S. K.; Yadav, P.; Bali, A. S.; Parihar, R. D.; et al. Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences 2019, 1 (11), 1446.
(5) Evenson, R. E.; Gollin, D. Assessing the Impact of the Green Revolution, 1960 to 2000. Science 2003, 300 (5620), 758-762.
(6) Hassaan, M. A.; El Nemr, A. Pesticides pollution: Classifications, human health impact, extraction and treatment techniques. The Egyptian Journal of Aquatic Research 2020, 46 (3), 207-220.
(7) Copping, L. G.; Menn, J. J. Biopesticides: a review of their action, applications and efficacy. Pest Management Science 2000, 56 (8), 651-676.
(8) Yadav, I.; Devi, N. Pesticides Classification and Its Impact on Human and Environment. 2017; pp 140-158.
(9) 國立臺灣大學昆蟲學系. 農用藥劑分類及作用機制檢索; 2023.
(10) Sharma, A.; Shukla, A.; Attri, K.; Kumar, M.; Kumar, P.; Suttee, A.; Singh, G.; Barnwal, R. P.; Singla, N. Global trends in pesticides: A looming threat and viable alternatives. Ecotoxicology and Environmental Safety 2020, 201, 110812.
(11) Khan, M.; Mahmood, H. Z.; Damalas, C. A. Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Protection 2015, 67, 184-190.
(12) El Nemr, A. Impact, Monitoring and Management of Environmental Pollution; 2010.
(13) Park, J.-A.; Abd El-Aty, A. M.; Zheng, W.; Kim, S.-K.; Cho, S.-H.; Choi, J.-m.; Hacımüftüo, A.; Jeong, J. H.; Wang, J.; Shim, J.-H.; et al. Simultaneous determination of clanobutin, dichlorvos, and naftazone in pork, beef, chicken, milk, and egg using liquid chromatography-tandem mass spectrometry. Food Chemistry 2018, 252, 40-48.
(14) Bakırcı, G. T.; Yaman Acay, D. B.; Bakırcı, F.; Ötleş, S. Pesticide residues in fruits and vegetables from the Aegean region, Turkey. Food Chemistry 2014, 160, 379-392.
(15) Gao, B.; Poma, G.; Malarvannan, G.; Dumitrascu, C.; Bastiaensen, M.; Wang, M.; Covaci, A. Development of an analytical method based on solid-phase extraction and LC-MS/MS for the monitoring of current-use pesticides and their metabolites in human urine. Journal of Environmental Sciences 2022, 111, 153-163.
(16) Nasreddine, L.; Parent-Massin, D. Food contamination by metals and pesticides in the European Union. Should we worry? Toxicology Letters 2002, 127 (1), 29-41.
(17) United Nations (UN). Globally harmonized system of classification and labelling of chemicals (GSH). Fourth revised edition ed.; New York and Geneva, 2011.
(18) World Health Organization (WHO). The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification; 2019.
(19) Golge, O.; Koluman, A.; Kabak, B. Validation of a Modified QuEChERS Method for the Determination of 167 Pesticides in Milk and Milk Products by LC-MS/MS. Food Analytical Methods 2018, 11 (4), 1122-1148.
(20) 中華民國衛生福利部食品藥物管理署. 食品中殘留農藥檢驗方法-多重殘留分析方法(五). 2023.
(21) Silvestre, C. I. C.; Santos, J. L. M.; Lima, J. L. F. C.; Zagatto, E. A. G. Liquid–liquid extraction in flow analysis: A critical review. Analytica Chimica Acta 2009, 652 (1), 54-65.
(22) Płotka-Wasylka, J.; Szczepańska, N.; de la Guardia, M.; Namieśnik, J. Miniaturized solid-phase extraction techniques. TrAC Trends in Analytical Chemistry 2015, 73, 19-38.
(23) Anastassiades, M.; Lehotay, S. J.; Štajnbaher, D.; Schenck, F. J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. Journal of AOAC INTERNATIONAL 2003, 86 (2), 412-431. (acccessed 7/15/2023).
(24) Tian, F.; Qiao, C.; Luo, J.; Guo, L.; Pang, T.; Pang, R.; Li, J.; Wang, C.; Wang, R.; Xie, H. Development of a fast multi-residue method for the determination of succinate dehydrogenase inhibitor fungicides in cereals, vegetables and fruits by modified QuEChERS and UHPLC-MS/MS. Journal of Chromatography B 2020, 1152, 122261.
(25) Varela-Martínez, D. A.; González-Sálamo, J.; González-Curbelo, M. Á.; Hernández-Borges, J. Chapter 14 - Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) Extraction. In Liquid-Phase Extraction, Poole, C. F. Ed.; Elsevier, 2020; pp 399-437.
(26) Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Analytical Chemistry 2003, 75 (13), 3019-3030.
(27) Bélanger, J. M. R.; Jocelyn Paré, J. R.; Sigouin, M. Chapter 2 High performance liquid chromatography (HPLC): Principles and applications. In Techniques and Instrumentation in Analytical Chemistry, Paré, J. R. J., Bélanger, J. M. R. Eds.; Vol. 18; Elsevier, 1997; pp 37-59.
(28) Kostiainen, R.; Kauppila, T. J. Effect of eluent on the ionization process in liquid chromatography–mass spectrometry. Journal of Chromatography A 2009, 1216 (4), 685-699.
(29) Hopfgartner, G.; Varesio, E.; Tschäppät, V.; Grivet, C.; Bourgogne, E.; Leuthold, L. A. Triple quadrupole linear ion trap mass spectrometer for the analysis of small molecules and macromolecules. Journal of Mass Spectrometry 2004, 39 (8), 845-855.
(30) Krems, M.; Zirbel, J.; Thomason, M.; DuBois, R. D. Channel electron multiplier and channelplate efficiencies for detecting positive ions. Review of Scientific Instruments 2005, 76 (9), 093305. (acccessed 7/16/2023).
(31) Betts, T. A.; Palkendo, J. A. Teaching Undergraduates LC–MS/MS Theory and Operation via Multiple Reaction Monitoring (MRM) Method Development. Journal of Chemical Education 2018, 95 (6), 1035-1039.
(32) Portolés, T.; Mol, J. G. J.; Sancho, J. V.; Hernández, F. Advantages of Atmospheric Pressure Chemical Ionization in Gas Chromatography Tandem Mass Spectrometry: Pyrethroid Insecticides as a Case Study. Analytical Chemistry 2012, 84 (22), 9802-9810.
(33) Rebane, R.; Kruve, A.; Liigand, P.; Liigand, J.; Herodes, K.; Leito, I. Establishing Atmospheric Pressure Chemical Ionization Efficiency Scale. Analytical Chemistry 2016, 88 (7), 3435-3439.
(34) Li, D.-X.; Gan, L.; Bronja, A.; Schmitz, O. J. Gas chromatography coupled to atmospheric pressure ionization mass spectrometry (GC-API-MS): Review. Analytica Chimica Acta 2015, 891, 43-61.
(35) Jiang, P.-T.; Wu, K.-L.; Wang, H.-T.; Chen, S.-F. The use of atmospheric-pressure chemical ionization for pesticide analysis using liquid chromatography mass spectrometry. Journal of Food and Drug Analysis 2022, 30 (1).
(36) Kirchner, M.; Húšková, R.; Matisová, E.; Mocák, J. Fast gas chromatography for pesticide residues analysis using analyte protectants. Journal of Chromatography A 2008, 1186 (1), 271-280.
(37) Abo-Amer, A. E. Characterization of a strain of Pseudomonas putida isolated from agricultural soil that degrades cadusafos (an organophosphorus pesticide). World Journal of Microbiology and Biotechnology 2012, 28 (3), 805-814.
(38) Mie, A.; Rudén, C.; Grandjean, P. Safety of Safety Evaluation of Pesticides: developmental neurotoxicity of chlorpyrifos and chlorpyrifos-methyl. Environmental Health 2018, 17 (1), 77.
(39) Okoroiwu, H. U.; Iwara, I. A. Dichlorvos toxicity: A public health perspective. Interdisciplinary Toxicology 2018, 11 (2), 129-137.
(40) Teng, M.; Zhu, W.; Wang, D.; Qi, S.; Wang, Y.; Yan, J.; Dong, K.; Zheng, M.; Wang, C. Metabolomics and transcriptomics reveal the toxicity of difenoconazole to the early life stages of zebrafish (Danio rerio). Aquatic Toxicology 2018, 194, 112-120.
(41) Frost, E. H.; Shutler, D.; Hillier, N. K. Effects of fluvalinate on honey bee learning, memory, responsiveness to sucrose, and survival. Journal of Experimental Biology 2013, 216 (15), 2931-2938. (acccessed 7/16/2023).
(42) Stara, A.; Kubec, J.; Zuskova, E.; Buric, M.; Faggio, C.; Kouba, A.; Velisek, J. Effects of S-metolachlor and its degradation product metolachlor OA on marbled crayfish (Procambarus virginalis). Chemosphere 2019, 224, 616-625.
(43) Nunes, O. C.; Lopes, A. R.; Manaia, C. M. Microbial degradation of the herbicide molinate by defined cultures and in the environment. Applied Microbiology and Biotechnology 2013, 97 (24), 10275-10291.
(44) Dar, M. A.; Baba, Z. A.; Kaushik, G. A review on phorate persistence, toxicity and remediation by bacterial communities. Pedosphere 2022, 32 (1), 171-183.
(45) Korkmaz, V.; Güngördü, A.; Ozmen, M. Comparative evaluation of toxicological effects and recovery patterns in zebrafish (Danio rerio) after exposure to phosalone-based and cypermethrin-based pesticides. Ecotoxicology and Environmental Safety 2018, 160, 265-272.
(46) Fan, Y.; Lai, K.; Rasco, B. A.; Huang, Y. Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy. Food Control 2014, 37, 153-157.
(47) Valadas, J.; Mocelin, R.; Sachett, A.; Marcon, M.; Zanette, R. A.; Dallegrave, E.; Herrmann, A. P.; Piato, A. Propiconazole induces abnormal behavior and oxidative stress in zebrafish. Environmental Science and Pollution Research 2019, 26 (27), 27808-27815.
(48) Yao, H.; Yu, J.; Zhou, Y.; Xiang, Q.; Xu, C. The embryonic developmental effect of sedaxane on zebrafish (Danio rerio). Chemosphere 2018, 197, 299-305.
(49) Rutkowska, E.; Łozowicka, B.; Kaczyński, P. Three approaches to minimize matrix effects in residue analysis of multiclass pesticides in dried complex matrices using gas chromatography tandem mass spectrometry. Food Chemistry 2019, 279, 20-29.
(50) Tanaka, N.; Kobayashi, H.; Ishizuka, N.; Minakuchi, H.; Nakanishi, K.; Hosoya, K.; Ikegami, T. Monolithic silica columns for high-efficiency chromatographic separations. Journal of Chromatography A 2002, 965 (1), 35-49.
(51) Núñez, O.; Nakanishi, K.; Tanaka, N. Preparation of monolithic silica columns for high-performance liquid chromatography. Journal of Chromatography A 2008, 1191 (1), 231-252.
(52) Dams, R.; Benijts, T.; Günther, W.; Lambert, W.; Leenheer, A. D. Influence of the eluent composition on the ionization efficiency for morphine of pneumatically assisted electrospray, atmospheric-pressure chemical ionization and sonic spray. Rapid Communications in Mass Spectrometry 2002, 16 (11), 1072-1077.
(53) Rauha, J. P.; Vuorela, H.; Kostiainen, R. Effect of eluent on the ionization efficiency of flavonoids by ion spray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization mass spectrometry. International Journal of Mass Spectrometry 2001, 36.
(54) Leinonen, A.; Kuuranne, T.; Kostiainen, R. Liquid chromatography/mass spectrometry in anabolic steroid analysis—optimization and comparison of three ionization techniques: electrospray ionization, atmospheric pressure chemical ionization and atmospheric pressure photoionization. Journal of Mass Spectrometry 2002, 37 (7), 693-698.
(55) Hanold, K. A.; Fischer, S. M.; Cormia, P. H.; Miller, C. E.; Syage, J. A. Atmospheric Pressure Photoionization. 1. General Properties for LC/MS. Analytical Chemistry 2004, 76 (10), 2842-2851.
(56) Wen, Y.; Su, L. M.; Qin, W. C.; Fu, L.; He, J.; Zhao, Y. H. Linear and non-linear relationships between soil sorption and hydrophobicity: Model, validation and influencing factors. Chemosphere 2012, 86 (6), 634-640.
(57) Song, Q.; Wang, Y.; Tang, S.; Meng, X.; Wang, F.; Hu, D.; Zhang, Y. Enantioselective Analysis and Degradation Studies of Four Stereoisomers of Difenoconazole in Citrus by Chiral Liquid Chromatography–Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry 2021, 69 (1), 501-510.
(58) Dalmia, A.; Cudjoe, E.; Jalali, J.; Qin, F. A LC-MS/MS method with electrospray ionization and atmospheric pressure chemical ionization source for analysis of pesticides in hemp. Journal of Cannabis Research 2021, 3 (1), 50.
(59) Tong, Z.; Chu, Y.; Wen, H.; Li, B.; Dong, X.; Sun, M.; Meng, D.; Wang, M.; Gao, T.; Duan, J. Stereoselective bioactivity, toxicity and degradation of novel fungicide sedaxane with four enantiomers under rice-wheat rotation mode. Ecotoxicology and Environmental Safety 2022, 241, 113784.
(60) Tian, F.; Qiao, C.; Wang, C.; Luo, J.; Guo, L.; Pang, T.; Li, J.; Wang, R.; Pang, R.; Xie, H. Development and validation of a method for the analysis of trifludimoxazin, picarbutrazox and pyraziflumid residues in cereals, vegetables and fruits using ultra-performance liquid chromatography/tandem mass spectrometry. Microchemical Journal 2021, 168, 106477.
(61) Shin, J. m.; Choi, S.-J.; Park, Y. h.; Kwak, B.; Moon, S. H.; Yoon, Y. T.; Jo, S. A.; Yi, H.; Kim, S. j.; Park, S. K.; et al. Comparison of QuEChERS and Liquid–Liquid extraction methods for the simultaneous analysis of pesticide residues using LC-MS/MS. Food Control 2022, 141, 109202.
(62) Hrynko, I.; Łozowicka, B.; Kaczyński, P. Development of precise micro analytical tool to identify potential insecticide hazards to bees in guttation fluid using LC–ESI–MS/MS. Chemosphere 2021, 263, 128143.
(63) Socas-Rodríguez, B.; Asensio-Ramos, M.; Hernández-Borges, J.; Herrera-Herrera, A. V.; Rodríguez-Delgado, M. Á. Chromatographic analysis of natural and synthetic estrogens in milk and dairy products. TrAC Trends in Analytical Chemistry 2013, 44, 58-77.
(64) Blasco, C.; Fernández, M.; Pena, A.; Lino, C.; Silveira, M. I.; Font, G.; Picó, Y. Assessment of Pesticide Residues in Honey Samples from Portugal and Spain. Journal of Agricultural and Food Chemistry 2003, 51 (27), 8132-8138.
(65) Ghini, S.; Fernández, M.; Picó, Y.; Marín, R.; Fini, F.; Mañes, J.; Girotti, S. Occurrence and Distribution of Pesticides in the Province of Bologna, Italy, Using Honeybees as Bioindicators. Archives of Environmental Contamination and Toxicology 2004, 47 (4), 479-488.
(66) Caldas, S. S.; Bolzan, C. M.; Cerqueira, M. B.; Tomasini, D.; Furlong, E. B.; Fagundes, C.; Primel, E. G. Evaluation of a Modified QuEChERS Extraction of Multiple Classes of Pesticides from a Rice Paddy Soil by LC-APCI-MS/MS. Journal of Agricultural and Food Chemistry 2011, 59 (22), 11918-11926.
(67) Tomasini, D.; Sampaio, M. R. F.; Caldas, S. S.; Buffon, J. G.; Duarte, F. A.; Primel, E. G. Simultaneous determination of pesticides and 5-hydroxymethylfurfural in honey by the modified QuEChERS method and liquid chromatography coupled to tandem mass spectrometry. Talanta 2012, 99, 380-386.
(68) Chen, L.; Song, F.; Liu, Z.; Zheng, Z.; Xing, J.; Liu, S. Study of the ESI and APCI interfaces for the UPLC–MS/MS analysis of pesticides in traditional Chinese herbal medicine. Analytical and Bioanalytical Chemistry 2014, 406 (5), 1481-1491.
(69) De O. Silva, R.; De Menezes, M. G. G.; De Castro, R. C.; De A. Nobre, C.; Milhome, M. A. L.; Do Nascimento, R. F. Efficiency of ESI and APCI ionization sources in LC-MS/MS systems for analysis of 22 pesticide residues in food matrix. Food Chemistry 2019, 297, 124934.
(70) Talari, K.; Ganji, S. K.; Kommu, M.; Tiruveedula, R. R.; Upadhyayula, V. Quantitative determination of targeted and untargeted pesticide residues in coconut milk by liquid chromatography – Atmospheric pressure chemical ionization – high energy collisional dissociation tandem high-resolution mass spectrometry. Journal of Chromatography A 2021, 1659, 462649.