研究生: |
朱明媛 Chu, Ming-Yuan |
---|---|
論文名稱: |
高級職業學校圖書館於校園位置與周圍設施對圖書館使用之關聯研究 The Association of Vocational Senior High School Library Location in Campus and Surrounding Facilities with Library Use |
指導教授: |
柯皓仁
Ke, Hao-Ren |
學位類別: |
碩士 Master |
系所名稱: |
圖書資訊學研究所 Graduate Institute of Library and Information Studies |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 高級職業學校 、高級中等學校圖書館現況資料庫 、關聯規則分析 、HotSpot演算法 |
英文關鍵詞: | vocational senior high school, database of high school library, association rules, HotSpot algorithm |
DOI URL: | http://doi.org/10.6345/THE.NTNU.GLIS.005.2018.A01 |
論文種類: | 學術論文 |
相關次數: | 點閱:129 下載:21 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探索我國高級職業學校(簡稱高職學校)圖書館於校園內所在位置周圍設施對於圖書館使用量的關聯。分析面向包含高職學校圖書館於校園內所在位置周圍設施型態之分佈、周圍設施與學校規模中的員生人數與招生狀況、圖書館資源配置程度中的圖書館平均服務員生人數、每人館藏擁有量與館藏成長量、以及圖書館使用量之平均圖書借閱量等研究變項之間的關聯。
研究對象為全國129所高職學校。研究變項包括了圖書館統計和各校圖書館所在位置周圍設施。圖書館統計資料係取自於高級中學圖書館現況資料庫之105學年度上下學期間各高職學校圖書館統計資料。各校圖書館所在位置周圍設施則是從各校網頁上公開之校區平面圖進行編碼分類。本研究的分析方法採兼具多維度、數值式與限制性的教育資料探勘之關聯規則分析,分析工具為資料探勘工具開放軟體Weka中的HotSpot演算法,透過將各校學校圖書館周圍的不同設施作為前提規則,再將學校規模、圖書館資源配置程度和圖書館使用量中的各個研究變項之高與低分群聚焦為結果規則,以關聯規則指標找出關聯程度較高的關聯規則來歸納研究結果。
研究結果歸納如下:(一)高職學校圖書館周圍最常見的設施依序為「通道區」、「專科教室」或「普科教室」,最少見的則為「校園生活區」或「其他設施」;(二)當圖書館鄰近「校園生活區」或「景觀休憩區」時,與員生人數低分群的關聯程度較高:而其他設施則是與員生人數高分群的關聯程度較高;(三)當圖書館周圍有「景觀休憩區」、「校園生活區」或「通道區」時,與招生狀況正常分群的關聯程度較高;而當周圍有「其他設施」、「普科教室」或「教職員行政區」時,則與招生狀況不順分群的關聯程度較高;(四)當圖書館周圍有「景觀休憩區」或「專科教室」時,與圖書館平均服務員生人數負擔低分群的關聯程度較高;當周圍有「普科教室」時,與圖書館平均服務員生人數負擔高分群的關聯程度較高;(五)當圖書館周圍有「動態活動區」、「景觀休憩區」或「其他設施」時,與每人館藏擁有量高分群的關聯程度較高;當周圍有「校園圍牆與邊界」、「校園生活區」或「普科教室」時,與每人館藏擁有量低分群的關聯程度較高;(六)當圖書館周圍有「校園出入口」、「通道區」、「行政服務區」或「教職員行政區」時,與館藏成長量高分群的關聯程度較高;當周圍有「普科教室」、「校園生活區」或「其他設施」時,與館藏成長量低分群的聯程度較高;(七)當圖書館周圍有「教職員行政區」、「動態活動區」、「景觀休憩區」或「專科教室」,與平均圖書借閱量高分群的關聯程度較高;當周圍有「校園生活區」、「其他設施」或「行政服務區」時,與平均圖書借閱量低分群的關聯程度較高;(八)除了員生人數之外,館藏成長量的多寡與圖書借閱量的高低有較高的關聯程度,值得後續研究注意。總結以上所述,當高職學校圖書館鄰近「動態活動區」、「景觀休憩區」或「專科教室」時,可能會與圖書館之擁有資源與使用量有正面的關聯;當圖書館鄰近「校園生活區」或「其他設施」時,則可能會有負面的關聯。
根據以上研究結果,本研究提出以下建議:(一)高職在規劃新館或調整校園設施時,可參酌使用本研究歸納之關聯規則;(二)建議高職學校圖書館儘量增加館藏量以提升圖書館使用量;(三)建議校方及館方多加利用學校圖書館統計來發現圖書館有待改善之處;(四)建議高級中學圖書館現況資料庫提供學校代碼並納入更多種類的圖書館統計數據,並且改善資料填報的正確性。
The purpose of this study was to explore the association between the locations of Taiwanese vocational senior high school libraries in campuses and library usage. The analysis included the following research variables: campus facilities surrounding every library and their distribution, school population, school enrollment, number of patrons served per library faculty, number of library holdings per capita, growth rate of library holdings, and average borrowing rate.
The valid objects of this study were 129 Taiwanese vocational senior high schools. The research variables were library statistics and the facilities surrounding every library. Library statistics were extracted from the Database of High School Libraries collected by Ministry of Education, and the reference period ran throughout the 2016/17 academic year. As for the facilities surrounding the libraries, they were determined and then categorized though the interpretation of campus facility maps. The maps were open information taken from the official website of each school. The method of analysis in this study was association rules mining of educational data mining with hybrid-dimensional, quantitative and constraint-based features. HotSpot algorithm in the open source data mining tool Weka was the analysis tool for this study. The surrounding facilities were set on the left-hand side, while other research variables were each clustered into high or low group before setting on the right-hand side. The research results were concluded by the indicators with strong associations.
The research results were concluded as fellows. First, the three most common campus facilities surrounding school libraries were "passageway", "subject-based classroom", and "regular classroom", while the two least common facilities were "campus living area" and "other facilities". Second, there were strong associations between the libraries located near "campus living area" or "campus landscape" and the low-scored group of school population, while the libraries near “other facilities” and the high-scored group of school population were strongly associated. Third, there were strong associations between libraries located near "campus landscape", "campus living area", or "passageway" and the high-scored group of enrollment, while the libraries near other facilities, “regular classroom”, or “teaching faculty office” and the low-scored group of enrollment were strongly associated. Fourth, there were strong associations between the libraries located near "campus landscape" or "subject-based classroom" and fewer patrons served per library faculty, while the libraries near "regular classroom" and more patrons served per library faculty was strongly associated. Fifth, there were strong associations between the libraries located near "physical activities facility", "campus landscape", or “other facilities” and a higher number of library holdings per capita, while the libraries near “campus boundary”, “campus living area” or “regular classroom” and a lower number of library holdings per capita were strongly associated. Sixth, there were strong associations between the libraries located near "campus entrance gate", "passageway", "administrative service area", or "teaching faculty office" and a higher growth rate of library holdings, while the libraries near “regular classroom”, “campus living area” or “other facilities” and a lower growth rate were strongly associated. Seventh, there were strong associations between the libraries located near "teaching faculty office", "physical activities facility", "campus landscape", or "subject-based classroom" and a higher average borrowing rate, while the libraries near “campus living area”, “other facilities”, or “administrative service area” and a lower average borrowing rate were strongly associated. Eighth, in addition to school population, there was a strong association between growth rate of library holdings and average borrowing rate, which was worthy of further research. To sum up, there could be positive associations between vocational high school libraries located near "physical activities facility", "campus landscape" or "subject-based classroom" and library resource or library usage while there could be negative associations when libraries were located near "campus living area" or "other facility".
The researcher's recommendations based upon this study include the following: First, the association rules concluded in this study could be considered when planning for new vocational senior high school library building or rearranging school facilities. Second, library holdings in vocational senior high school should be enhanced to improve library usage. Third, library statistics can be used to discover the inadequacies of a library. Fourth, the Database of High School Library should include school codes and more types of library statistics and to improve data accuracy.
中文書目
丁安強(2002)。消費者資訊蒐集與選擇評估行為--以高中職、專科學生選購電腦書籍為例(未出版之碩士論文)。國立中央大學資訊管理學系碩士在職專班,桃園市。
丁道谦(1983)。图书馆科学管理与建立统计制度。大学图书馆学报,1(4),13–16。
刁秀英(2006)。高職特教班教師利用教學資源中心融入教學需求之研究-以臺北市公立高職為例(未出版之碩士論文)。國立臺灣師範大學社會教育系在職進修碩士班,臺北市。
王文科、王智弘(2010)。教育研究法。臺北市:五南。
全國高級中等學校圖書館輔導團(2016)。辦理「全國高級中等學校圖書館輔導團工作計畫」。教育部國民與學前教育署全球資訊網。檢自:http://www.k12ea.gov.tw/ap/affair_view.aspx?sn=a0104caa-fb7d-4d0b-a80e-28d3b1c7fc15&sid=16
朱玉仿(2007)。技職教育改革文獻回顧與前瞻。研習資訊,24(3),127–134。
朱懿幰、賴苑玲(2012)。青少年讀者對埔里鎮立圖書館使用情形與滿意度研究。區域與社會發展研究,3,167–191。
吳美美(1996)。在新時空座標中的圖書館功能—談資訊素養教育。圖書館學與資訊科學,22(2),29–52。
吳淸山(2000)。學校行政。臺北:心理出版社股份有限公司。
吳清基(1995)。給技職教育一片美好的天空和尊嚴。技術及職業教育,22,2-50。
吳清基(2005)。以優質學校指標追求卓越、優質、精緻、創新教育之願景。在吳清基編,優質學校(頁6–17)。臺北市:臺北市教師研習中心。
林天佑(2005)。優質學校教育指標-學生學習、校園營造與資源統整。在吳清基編,優質學校(頁42–51)。臺北市:臺北市教師研習中心。
林光美(2013)。圖書館建築。臺北市:五南圖書。
林志成、盧文平(2017)。Foucault規訓理念在校園空間治理上之應用析論。學校行政,111,1-22。
林美和(1990)。高級中等學校圖書館的功能及其利用指導問題。中等教育雙月刊,41(3),9–13。
林頌堅(2000)。從網站工作記錄觀察大學圖書館網站使用情形。大學圖書館,4(2),2–22。
邱莉媛、江玉婷、黃乾綱(2014)。導入決策支援系統於大學圖書館。大學圖書館,18(2),141–165。doi:10.6146/univj.18-2.07
柯慧鈴(2006)。高職學生資訊需求與資訊尋求行為之研究(未出版之碩士論文)。國立中興大學圖書資訊學研究所,臺中市。
洪萬生(1982)。統計學。環球百科全書。台北市。
洪翠錨(2011)。國立臺灣大學圖書館多媒體服務中心使用情形與讀者滿意度調查研究。大學圖書館,15(2),171–194。
國立玉井高級工商職業學校(2011)。校園地圖。國立玉井高級工商職業學校。上網日期:2017年7月20日,檢自:http://www.ycvs.tn.edu.tw/sub/content/index.asp?Parser=1,5,394,54
國立溪湖高中圖書館(2010)。高級中等學校圖書館現況資料庫建置計畫。高級中等學校圖書館現況資料庫。檢自:http://163.23.175.5/LIB/AboutSite.aspx
張明輝(2007)。《 Jossey-Bass 教育領導論文集》 之評介。當代教育研究,15(3),145–152。
張芳菁(2013)。十二年國教,圖書館準備好了嗎?。全國高中職圖書館電子報。檢自:http://shslc.ltsh.ilc.edu.tw/epaper/epaper112/%E5%B0%88%E9%A1%8C%E7%A0%94%E7%A9%B6%E5%85%A8%E6%96%87.pdf
張俊彥、張蓉真(1998)。國小校園景觀對學童學習效益影響之研究。中國園藝,44(4),479–489。
張基成、王秋錳(2008)。台北市高職教師資訊科技融入教學之影響因素。教育實踐與研究,21(1),97–132。
教育部(2014)。十二年國民基本教育課程總綱要。
教育部(2015a)。高級中等學校組織設置及員額編制標準。
教育部(2015b)。圖書館法。
教育部(2016)。圖書館設立及營運標準。
教育部(2017a)。高級中學圖書館設立及營運基準。
教育部(2017b)。職業學校圖書館設立及營運基準。
教育部國民與學前教育署(2017)。教育部國民及學前教育署補助辦理校園社區化改造計畫之學校社區共讀站作業要點。
教育部統計處(2016a)。高級中等教育法。
教育部統計處(2016b)。高級中等教育統計為何不依學校類型劃歸?。統計處全球資訊網。檢自:http://depart.moe.edu.tw/ed4500/News_Content.aspx?n=780B4CFF8FB1916B&s=80BE300D446DE33D
教育部統計處(2017a)。各級學校基本資料 105 (2016-2017) 學年度。檢自:https://depart.moe.edu.tw/ED4500/News_Content.aspx?n=5A930C32CC6C3818&sms=91B3AAE8C6388B96&s=96B1633791CBD94E
教育部統計處(2017b)。大專校院圖書館統計。政府資料開放平臺。上網日期:2018年1月16日,檢自:https://data.gov.tw/dataset/6288
教育部統計處(2017c)。106學年各級學校名錄及異動一覽表[教育統計相關資料]。統計處。檢自:https://depart.moe.edu.tw/ED4500/News_Content.aspx?n=63F5AB3D02A8BBAC&sms=1FF9979D10DBF9F3&s=35BDB39E41C80E06
莊婉紋(2002)。改制後專科學校圖書館業務之衝擊與應變-以馬偕護專圖書館為例。馬偕護理專科學校學報,2,151–159。
陳木金、溫子欣(2008)。活化校園建築創造空間領導。教育研究月刊,174,60–73。
陳美玲(2007)。台東縣高中職圖書館使用現況之研究(未出版之碩士論文)。國立臺東大學教育研究所,臺東縣。
陳雪華(1992a)。圖書館統計工作之探討。臺北市立圖書館館訊,9(4),38–46。
陳雪華主持(1992b)。圖書館統計標準之研究:第一期報告(行政院國家科學委員會專題研究計畫成果報告)。臺北市,國立台灣大學圖書館系。
陳裕宏(2002)。高職師生對學校圖書館各項服務滿意度之研究(未出版之碩士論文)。國立臺北科技大學技術及職業教育研究所,臺北市。
游忠諺、謝建成(2017)。電子資源資料之書目計量研究-以癌症研究為例。技術學刊,32(1),61–89。
湯志民(2000)。體驗校園空間元素。人本教育札記,135,140–144。
湯志民(2001)。學校空間革新趨向之探析。在中華民國學校建築研究學會編,e世紀的校園新貌(頁3–63)。臺北市:中華民國學校建築研究學會。
湯志民(2006)。學校建築與校園規劃(第三版)。臺北市:五南圖書出版公司。
湯志民(2007)。優質學校校園營造的指標與其意涵。在吳清基等編,優質領航:校園營造篇(頁6–27)。臺北市:臺北市教師研習中心。
湯志民(2008)。空間領導:理念與策略。教育研究月刊,174,18–38。
湯志民(2010)。優質校園環境營造。在華東師範大學主辦,2010秋季校長會議,上海市。
湯志民(2011)。學校空間領導指標探析。教育研究月刊,209,68–84。
湯志民(2013)。空間領導:原則與理論基礎。教育行政研究,3(2),1–30。
湯志民、曾雅慧、劉冠廷、劉侑承(2011)。國民中小學創新學校經營校長空間領導之研究-以臺北市和新北市為例。在國立政治大學教育學院、中華民國學校建築研究學會編,2011學校建築研究:百年校園建築創新裝(頁9–47)。臺北市:中華民國學校建築研究學會。
黃添輝(2002)。高職教學資源中心建構與利用之研究(未出版之碩士論文)。國立臺灣師範大學社會研究學系在職進修碩士班,臺北市。
黃易進(2011)。新北市國中學生校園霸凌行為現況之研究(未出版之碩士論文)。淡江大學大學教育政策與領導研究所碩士在職專班,新北市。
楊千霆、謝宗昊、林知穎、劉宇瑄(2015)。國立臺灣大學圖書館網站好用性測試研究:以非圖書資訊學系學生觀點為例。大學圖書館,19(1),91–114。doi:10.6146/univj.19-1.05
臺北市立圖書館(2016)。本館出版品-研究報告。臺北市立圖書館全球資訊網。檢自:http://www.tpml.edu.tw/ct.asp?xItem=1138517&ctNode=62461&mp=104021
劉春銀(1994)。辦理圖書館統計工作之經驗談。在王振鵠教授七秩榮慶祝壽論文集編輯小組編,當代圖書館事業論集(頁598)。臺北市:中正書局。
蔡宗富(2004)。高職圖書館利用教育施行現況與成效之研究─以臺北市為例(未出版之碩士論文)。國立臺灣師範大學社會教育學系在職進修碩士班,臺北市。
賴泱州、楊東謀(2017)。地方政府機關之開放資料影響因素探討─以台中市政府為例。教育資料與圖書館學,54(2)。
賴麗香(2003)。以書目計量分析探討臺灣地區OPAC文獻特性。大學圖書館,7(2),134–163。
賴瓏彬(2005)。商業職業學校教學資源中心規劃之研究-以臺北市立士林高商為例(未出版之碩士論文)。國立臺灣師範大學社會教育學系在職進修碩士班,臺北市。
謝文全(2004)。教育行政學。臺北市:高等教育文化出版。
簡禎富、許嘉裕(2014)。資料挖礦與大數據分析。新北市:前程文化。
羅思嘉(2010)。圖書資訊服務與評估。國立成功大學圖書館館刊,19,1–7。
羅晉、楊東謀、王慧茹、項靖(2014)。政府開放資料的策略與挑戰:使用者觀點的分析。Electronic Commerce Studies,12(3),283–300。
英文書目
Afacan, Y. (2017). Sustainable Library Buildings: Green Design Needs and Interior Architecture Students’ Ideas for Special Collection Rooms. The Journal of Academic Librarianship, 43(5), 375–383.
Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining Association Rules Between Sets of Items in Large Databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (pp. 207–216). New York: ACM. doi:10.1145/170035.170072
Anderson, B. L. (1987). Overview of Candian Library Statistics. Ottawa, Canada: National Library of Canada.
Babbie, E. R. (2007). The practice of social research. Belmont, Calif.: Thomson Wadsworth.
Bailey, K. D. (1987). Methods of social research. New York: Free Press.
Berelson, B. R. (1954). Content analysis. In G. Lindzey (Ed.), Handbook of social psychology. Cambridge, Mass.: Addison-Wesley.
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. CERN Document Server. Retrieved from http://cds.cern.ch/record/2253780
Brin, S., Motwani, R., Ullman, J. D., & Tsur, S. (1997). Dynamic Itemset Counting and Implication Rules for Market Basket Data. In Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data (pp. 255–264). New York, NY: ACM. doi:10.1145/253260.253325
Cano, A., Luna, J. M., & Ventura, S. (2013). High performance evaluation of evolutionary-mined association rules on GPUs. The Journal of Supercomputing, 66(3), 1438-1461. doi:10.1007/s11227-013-0937-4
Carmona, C. J., Gonzalez, P., Jesus, M. J. d, & Herrera, F. (2010). NMEEF-SD: Non-dominated Multiobjective Evolutionary Algorithm for Extracting Fuzzy Rules in Subgroup Discovery. IEEE Transactions on Fuzzy Systems, 18(5), 958-970. doi:10.1109/TFUZZ.2010.2060200
Dewe, M. (2016). Planning public library buildings: concepts and issues for the librarian. London, UK: Routledge.
Friedman, J. H., & Fisher, N. I. (1999). Bump hunting in high-dimensional data. Statistics and Computing, 9(2), 123-143. doi:10.1023/A:1008894516817
Gąsior, M., &Skowron, Ł. (2016). Methods for imputation of missing values and their influence on the results of segmentation research. Ekonometria, 54(4), 61-71. doi:10.1023/A:1008894516817
Hall, M. (2013). hotSpot. Waikato Environment for Knowledge Analysis (WEKA). Retrieved July 20, 2017, from http://weka.sourceforge.net/packageMetaData/hotSpot/index.html#
Han, J., Fu, Y., Wang, W., Chiang, J., Gong, W., Koperski, et al.. (1996). DBMiner: A System for Mining Knowledge in Large Relational Databases. In KDD (Vol. 96, pp. 250–255). Retrieved from https://ocs.aaai.org/Papers/KDD/1996/KDD96-041.pdf
Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques. San Francisco, CA: Morgan Kaufmann Publishers Inc.
Han, J., Pei, J., & Yin, Y. (2000). Mining Frequent Patterns Without Candidate Generation. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data (pp. 1–12). New York, NY: ACM. doi:10.1145/342009.335372
Herrera, F., Carmona, C. J., González, P., & Jesus, M. J. del. (2011). An overview on subgroup discovery: foundations and applications. Knowledge and Information Systems, 29(3), 495-525. doi:10.1007/s10115-010-0356-2
Imieliński, T., & Virmani, A. (1999). MSQL: A Query Language for Database Mining. Data Mining and Knowledge Discovery, 3(4), 373-408. doi:10.1023/A:1009816913055
ISO 2789 3rd edition 2003-2-15 “Information and documentati on – International library statistics”.Jesus, M. J. del, Gonzalez, P., Herrera, F., & Mesonero, M. (2007). Evolutionary Fuzzy Rule Induction Process for Subgroup Discovery: A Case Study in Marketing. IEEE Transactions on Fuzzy Systems, 15(4), 578-592. doi:10.1109/TFUZZ.2006.890662
John Sumsin. (2001). Library Statistics to Enjoy-Measuring Success! IFLA Journal, 7(4), 211-214.
Kohavi, R. (2000). Origin of “diapers and beer.” Retrieved from http://www.kdnuggets.com/news/2000/n14/8i.htm
Kumar, V., & Chadha, A. (2012). Mining association rules in student’s assessment data. International Journal of Computer Science Issues, 9(5), 211–216.
Langhnoja, S. G., Barot, M. P., & Mehta, D. B. (2013). Web usage mining using association rule mining on clustered data for pattern discovery. International Journal of Data Mining Techniques and Applications, 2(01). Retrieved from http://www.academia.edu/download/31758600/JUN_13_IJDMTA_004.pdf
Latimer, K., & Niegaard, H. (2007). IFLA Library Building Guidelines: Developments & Reflections. Walter de Gruyter.
Leighton, P. D., & Weber, D. C. (1999). Planning academic and research library buildings. Chicago, IL : American Library Association.
Lent, B., Swami, A., & Widom, J. (1997). Clustering association rules. In Proceedings 13th International Conference on Data Engineering (pp. 220-231). doi:10.1109/ICDE.1997.581756
Liu, H., & Motoda, H. (1998). Feature Selection for Knowledge Discovery and Data Mining. Retrieved from http://dx.doi.org/10.1007/978-1-4615-5689-3
Liu, M.-S. (2010). A refined and integrated Kano model and the implementation of quality function deployment-research on the library of a vocational and technical school in southern Taiwan. International Journal of Organizational Innovation (Online), 2(3), 305.
Machine Learning Group at the University of Waikato. (2016). Weka 3 - Data Mining with Open Source Machine Learning Software in Java. Retrieved July 20, 2017, from http://www.cs.waikato.ac.nz/ml/weka/
Meo, R., Psaila, G., & Ceri, S. (1996). A new SQL-like operator for mining association rules. In VLDB (Vol. 96, pp. 122–133). Retrieved from http://vladestivill-castro.net/teaching/kdd.d/readings.d/meo96new.pdf
Microsoft Corporation. (2017). OLE DB for Data Mining. Microsoft. Retrieved from https://docs.microsoft.com/en-us/sql/analysis-services/data-mining-programming-ole-db
Mitchell, T. M. (1997). Machine learning. New York, NY: McGraw-Hill Book Company.
Ng, R., Lakshmanan, L. V. S., Han, J., & Mah, T. (1999). Exploratory Mining via Constrained Frequent Set Queries. In Proceedings of the 1999 ACM SIGMOD International Conference on Management of Data (pp. 556–558). New York, NY: ACM. doi:10.1145/304182.304575
Niegaard, H. (2007). Site & Location. In K. Latimer & H. Niegaard (Eds.), IFLA Library Building Guidelines: Developments and Reflections (pp. 229-235). De Gruyter Saur.
Park, J. S., Chen, M.-S., & Yu, P. S. (1995). An Effective Hash-based Algorithm for Mining Association Rules. In Proceedings of the 1995 ACM SIGMOD International Conference on Management of Data (pp. 175–186). New York, NY: ACM. doi:10.1145/223784.223813
Piatetsky, G. (2016). Where Analytics, Data Mining, Data Science were applied in 2016. KDnuggets. Retrieved July 17, 2017, from http://www.kdnuggets.com/2016/12/poll-analytics-data-mining-data-science-applied-2016.html
Piatetsky-Shapiro, G. (1991). Discovery, analysis and presentation of strong Rules. Knowledge Discovery in Databases, 229-248.
Poitras, E. G., Lajoie, S. P., Doleck, T., & Jarrell, A. (2016). Subgroup Discovery with User Interaction Data: An Empirically Guided Approach to Improving Intelligent Tutoring Systems. Journal of Educational Technology & Society, 19(2), 204-214.
Quinlan, J. R. (1993). C4.5: programs for machine learning. San Mateo, Calif.: Morgan Kaufmann Publishers.
Romero, C., & Ventura, S. (2007). Educational data mining: A survey from 1995 to 2005. Expert Systems with Applications, 33(1), 135-146. doi:10.1016/j.eswa.2006.04.005
Sannwald, W. W. (2015). Checklist of Library Building Design Considerations. American Library Association.
Savasere, A., Omiecinski, E. R., & Navathe, S. B. (1995). An Efficient Algorithm for Mining Association Rules in Large Databases (Technical Report). Georgia Institute of Technology. Retrieved from https://smartech.gatech.edu/handle/1853/6678
Scheuer, O., & McLaren, D. B. M. (2012). Educational Data Mining. In P. D. N. M. Seel (Ed.), Encyclopedia of the Sciences of Learning (pp. 1075-1079). Springer US.
Schlimmer, J. C. (1987). Concept acquisition through representational adjustment (Doctoral dissertation). Department of Information and Computer Science, University of California, Irvine, CA.
Schlipf, F. (2014). Remodeling and Expanding Carnegie-Era Library Buildings. Library Trends, 62(3), 556.
Silverstein, C., Brin, S., & Motwani, R. (1998). Beyond Market Baskets: Generalizing Association Rules to Dependence Rules. Data Mining and Knowledge Discovery, 2(1), 39-68.
Srikant, R., & Agrawal,R. (1996). Mining Quantitative Association Rules in Large Relational Tables. In Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data (pp. 1-12). New York, NY, USA: ACM.
Tanner, C. K., & Lackney, J. A. (2006). Educational facilities planning: Leadership, architecture, and management. Boston: Allyn and Bacon.
Thomas, M. J. K. (2000). School library media services and the integration of the vocational education and academic curricula in three Florida high schools: a comparative case study (Unpublished doctoral Thesis). Florida State University.
Wheeler, J. L. (1958). The effective Location of Public Library Building. University of Illinois Library School Occational Papers, 52, 1-49.
Wang, Z., Li, H., & Gu, P. (2017). Role of campus landscape culture in improving students’artistic appreciation. Agro Food Industry Hi-Tech, 28(3), 1377-1380.
Young, P. R. (1989). U.S. Library Statistics. Library Administration & Management, 3(4), 170-75.