簡易檢索 / 詳目顯示

研究生: 鄭嘉
Cheng, Chia
論文名稱: 奈米碳材/陶瓷顆粒複合散熱材料應用於電子元件的開發與研究
Development and application of carbon nanomaterials/ceramic particles heat-dissipating materials for electronic components
指導教授: 楊啓榮
Yang, Chii-Rong
口試委員: 陳明志
Chern, Ming-Jyh
何正榮
Ho, Jeng-Rong
莊賀喬
Chuang, Ho-Chiao
曾釋鋒
Tseng, Shih-Feng
鄧敦平
Teng, Tun-Ping
楊啓榮
Yang, Chii-Rong
口試日期: 2024/07/24
學位類別: 博士
Doctor
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 176
中文關鍵詞: 熱界面材料散熱塗料奈米碳材大氣電漿界面活性劑熱輻射係數
英文關鍵詞: Atmospheric plasma, carbon nanomaterials, surfactant, infrared emissivity, thermal interface material, heat dissipation coatings
研究方法: 實驗設計法準實驗設計法紮根理論法觀察研究
DOI URL: http://doi.org/10.6345/NTNU202401504
論文種類: 學術論文
相關次數: 點閱:165下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著AI伺服器、5G通訊和高功率晶片的發展,其運作時所產生的廢熱越來越多,散熱方面的熱管理(Thermal management)問題已成為重要的議題。電子元件是透過熱傳導、熱對流和熱輻射三種方式進行散熱,在元件追求輕薄短小的趨勢下,無風扇的散熱系統已經逐漸受到重視,在沒有風扇的主動散熱狀況下,依靠熱傳導的熱界面材料和熱輻射的散熱塗料就變得非常重要。本研究主要是以CO2超臨界剝離法製備石墨烯薄片(Graphene flakes, GNFs),並利用大氣電漿改質技術對奈米碳材(GNFs、多壁奈米碳管(MWCNTs))和球型氮化鋁(AlN)、氧化鋁(Al2O3)顆粒等填充物進行改質,在填料表面嫁接上官能基,使填料與膠體基質之間結合的更緊密,進行熱界面材料(Thermal interface material, TIM)以及散熱塗料(Heat dissipation coating)的開發。
      熱界面材料的研究是利用大氣電漿改質後的奈米碳材和球型AlN顆粒,混摻至市售導熱膏(Base-TIM)製備出複合奈米碳材熱界面材料(HA-TIM)以提升導熱性能。此HA-TIM以不同比例之AlN、GNFs以及MWCNTs作為填充物,期望以複合材料的方式在導熱膠材內部建立協同效應,進而使所製備的HA-TIM能有更好的熱傳導效果。最後,將熱界面材料應用於散熱設備上,以模擬CPU運作時的散熱狀況。實驗結果顯示以1 wt% GNFs以及1 wt% MWCNTs添加於Base-TIM中所製備出的HA-TIM具最佳的散熱性能。在50 W、100 W和150 W的加熱功率下,HA-TIM的降溫溫度比Base-TIM的降溫溫度分別更低了1.1 ℃、3.2 ℃和6.3 ℃,證實奈米碳材與球型AlN陶瓷顆粒的添加能夠提升降溫效果,使HA-TIM能夠實際應用於電子產品的散熱系統中。
      奈米碳材散熱塗料的研究是以水性環氧樹脂作為高分子基質,製備出兼具低揮發性、環保且具高散熱性能需求的散熱塗料。此塗料是利用奈米碳材和Al2O3顆粒作為填充物,亦添加0.05 wt%磺基琥珀酸1,4-二己酯鈉鹽(SDSS)與1 wt%四丁基氯化銨(PDDA)兩種混合的界面活性劑作為石墨烯懸浮液的分散劑,以提升奈米碳材在水性環氧樹脂中的分散性,期望充份分散的填充物能發揮協同效應而產生優越的散熱性能。實驗結果顯示以30 wt% Al2O3、2 wt% GNFs以及2 wt% MWCNTs添加於水性環氧樹脂中所製備出的散熱塗料,其熱輻射係數可達到0.96。在10 W的加熱功率下,無添加界面活性劑的奈米碳材散熱塗料可使銅基板降溫11.9 ℃,而有界面活性劑的奈米碳材散熱塗料則可降溫17.8 ℃,證實添加界面活性劑的塗料,可提升5.9 ℃的散熱效果。實際應用於15 W LED的散熱測試,則可以達到21.3 ℃的散熱表現。證實本研究開發之奈米碳材散熱塗料,能有效地應用於電子元件的散熱領域。

    With the development of artificial intelligence (AI) servers, 5G communications, and high-power chips, the waste heat generated during their operation is increasing, making thermal management an important issue. Electronic components dissipate heat through three methods: conduction, convection, and radiation. As components strive to be lighter, thinner, and more compact, fanless cooling systems are gaining attention. In the absence of active cooling from fans, relying on thermal interface materials for heat conduction and heat dissipation coatings for heat radiation becomes crucial.
      This study primarily uses CO2 supercritical exfoliation to prepare graphene flakes (GNFs) and employs atmospheric plasma modification technology to treat carbon nanomaterials (GNFs and multi-walled carbon nanotubes (MWCNTs)) and spherical aluminum nitride (AlN) and aluminum oxide (Al2O3) particles. Functional groups are grafted onto the surface of these fillers to enhance the bond between the fillers and the colloidal matrix, developing thermal interface materials (TIM) and heat dissipation coatings.
      The research on thermal interface materials involves mixing atmospheric plasma-modified carbon nanomaterials and spherical AlN particles into commercial thermal interface material (Base-TIM) to create composite carbon nanomaterials interface materials (HA-TIM) to improve thermal conductivity. HA-TIM uses different proportions of AlN, GNFs, and MWCNTs as fillers, aiming to create a synergistic effect within the thermal interface materials through the composite materials, thereby enhancing the thermal conductivity of the HA-TIM. Finally, the thermal interface materials are applied to cooling equipment to simulate CPU heat dissipation. The experimental results show that HA-TIM with 1 wt% GNFs and 1 wt% MWCNTs added to Base-TIM exhibits the best cooling performance. At heating powers of 50 W, 100 W, and 150 W, the temperature drops of HA-TIM are lower than those of Base-TIM by 1.1 ℃, 3.2 ℃, and 6.3 ℃, respectively, confirming that the addition of carbon nanomaterials and AlN ceramic particles can enhance cooling effects, making HA-TIM practically applicable in the heat dissipation systems of electronic devices.
      The research on heat dissipation coatings uses water-based epoxy as the polymer matrix to create coatings with low volatility, environmental friendliness, and high heat dissipation performance. These coatings use atmospheric plasma-modified carbon nanomaterials and spherical Al2O3 particles as fillers, along with 0.05 wt% sodium dihexyl sulfosuccinate (SDSS) and 1 wt% poly dimethyl diallylammonium chloride (PDDA) as mixed surfactants to improve the dispersion of graphene in the water-based epoxy, hoping that well-dispersed fillers can produce a synergistic effect and superior heat dissipation performance. Experimental results show that heat dissipation coatings with 30 wt% Al2O3, 2 wt% GNFs, and 2 wt% MWCNTs added to water-based epoxy achieve an emissivity of 0.96. The heat dissipation coating reduced the thermal equilibrium temperature of the bare copper panel by 17.8 °C under a heating power of 10 W. The coating was applied in a heat dissipation test on a 15 W LED bulb, and the thermal equilibrium temperature was reduced by 21.3 °C. This confirms that the heat dissipation coatings developed in this study can be effectively applied in the field of electronic component heat dissipation.

    第一章 緒論 1 1.1 前言 1 1.2 散熱原理介紹 5 1.3 散熱模組的形式與介紹 7 1.4 散熱塗料介紹與原理 11 1.5 碳材料介紹 15 1.5.1 奈米碳管 (Carbon nanotube) 16 1.5.2 石墨烯 (Graphene) 18 1.6 石墨烯製備方法介紹 21 1.6.1 微機械剝離法 23 1.6.2 機械剪切剝離法 25 1.6.3 超臨界流體剝離法 27 1.7 奈米材料的分散性 29 1.8 界面活性劑原理以及應用 30 1.9 研究動機與目的 32 1.10 論文架構 34 第二章 文獻回顧與理論探討 35 2.1 熱界面材料的種類介紹 36 2.1.1 液態金屬熱界面材料 36 2.1.2 鑽石粉熱界面材料 38 2.1.3 碳纖維熱界面材料 40 2.1.4 奈米碳管熱界面材料 43 2.1.5 石墨烯熱界面材料 45 2.2 石墨烯散熱薄膜介紹 48 2.2.1 化學氣相沉積石墨烯散熱薄膜 48 2.2.2 氧化還原石墨散熱烯膜 52 2.2.3 機械剝離石墨烯散熱薄片 54 2.2.4 石墨烯複合散熱薄片 59 2.2.5 石墨烯複合散熱塗料 63 2.3 石墨烯分散原理介紹 66 2.3.1 機械力分散法 67 2.3.2 化學改質分散法 69 2.3.3 界面活性劑分散法 73 2.4 石墨烯製備方式對於導熱性能之影響 75 2.5 複合材料之協同效應 78 2.6奈米碳材散熱塗料 81 第三章 複合熱界面材料應用於散熱系統之性能評估 93 3.1 實驗流程規劃 93 3.2 熱界面材料之相關熱傳理論 95 3.3 熱界面材料之填料選用 97 3.4 CO2超臨界輔助製備石墨烯薄片 100 3.5 大氣電漿改質技術 103 3.6 複合熱界面材料製作 106 3.7 熱界面材料降溫測試設備與方法 108 3.8 複合熱界面材料之實驗結果與討論 113 3.8.1 導熱填料之形貌分析 113 3.8.2 複合熱界面材料之黏度分析 114 3.8.3 複合熱界面材料之降溫性能測試 115 3.9 小結 123 第四章 奈米碳材散熱塗料之開發與應用 125 4.1 實驗程序流程規劃 125 4.2 奈米碳材散熱塗料之材料選用 127 4.3 奈米碳材散熱塗料的製備與性能量測裝置 129 4.3.1 調配奈米碳材分散劑 129 4.3.2 奈米碳材散熱塗料製作 130 4.3.3 奈米碳材散熱塗料性能量測 132 4.3.4 奈米碳材散熱塗料應用於LED之降溫測試 133 4.4 製程材料與檢測實驗設備 134 4.5 CO2超臨界輔助剝離石墨烯薄片之形貌量測 138 4.6 界面活性劑對於溶液表面張力及碳材分散性之影響 140 4.7 奈米碳材之沉降實驗 143 4.8 界面活性劑對於石墨烯表面改質的影響 145 4.9 散熱塗料之拉曼光譜檢測 147 4.10 散熱塗料之熱重分析 149 4.11 散熱塗料之降溫測試 150 4.11.1 添加分散劑對於散熱塗料之降溫影響 150 4.11.2 添加陶瓷顆粒對於散熱塗料之降溫影響 151 4.11.3 散熱塗料應用於LED之降溫測試 152 4.11.4 協同效應對於散熱塗料之降溫影響 153 4.12 散熱塗料之熱輻射係數量測 154 4.13 散熱塗料之性能比較 155 4.14 散熱塗料應用於CPU之實際降溫測試 157 4.15 小結 158 第五章 總結與未來展望 159 5.1 總結 159 5.2 未來展望 161 參考文獻 163 作者簡介與研究著作目錄 173

    1. Fortune Business InsightsTM, “Thermal Management System Market, 2023-2030”, Fortune Business InsightsTM, Thermal management system market size.
    2. Vantage Market Research, “Graphene nanoplatelets market – global industry assessment and forecast”, Vantage Market Research, Advance materials.
    3. http://www.hongyao1688.com/products_content-1154417.html
    4. Y. Mohammed, “What I Learned About Heatsinks Using Thermal Simulation”, Semiconductor engineering, May 26, 2016.
    5. https://tw.thermaltake.com/floe-rc-ultra-360-cpu-memory-aio-liquid-cooler.html
    6. https://www.arrow.com/en/research-and-events/articles/understanding-heat-sinks-functions-types-and-more
    7. https://resources.pcb.cadence.com/blog/overview-of-thermal-interface-materials-for-electronics
    8. https://coolinghouse.com/technologies/soldering-free-thermal-module/?lang=zh-hant
    9. https://www.tglobalcorp.com/tw/products-detail/tg-v838/
    10. http://szvantek.com/
    11. L. C. Cheng, X. Jiang, J. Wang, C. Chen, R. S. Liu, “Nano–bio effects: interaction of nanomaterials with cells”, Nanoscale, vol. 5, pp. 3547-3569, 2013.
    12. B. Huang, “Carbon nanotubes and their polymeric composites: the applications in tissue engineering”, Biomanufacturing Reviews, vol. 5, pp. 3, 2020.
    13. T. Ando, “The electronic properties of graphene and carbon nanotubes”, NPG Asia Mater., vol. 1, pp. 17-21, 2009.
    14. T. J. Sisto, L. N. Zakharov, B. M. Whitea, R. Jasti, “Towards pi-extended cycloparaphenylenes as seeds for CNT growth: investigating strain relieving ring-openings and rearrangements”, Chem. Sci., vol. 7, pp. 3681-3688, 2016.
    15. M. Y. Khalid, A. Kamal, A. Otabil, O. Mamoun, K. Liao, “Graphene/epoxy nanocomposites for improved fracture toughness: A focused review on toughening mechanism”, Chem. Eng. J. Adv., vol. 16, pp. 100537, 2023.
    16. A. K. Geim, K. S. Novoselov, “The rise of graphene”, Nat. Mater., vol. 6, pp. 183-191, 2007.
    17. J. V. Lim, S. T. Bee, L. T. Sin, C. T. Ratnam, Z. A. A. Hamid, “A Review on the Synthesis, Properties, and Utilities of Functionalized Carbon Nanoparticles for Polymer Nanocomposites”, Polymers, vol. 13, pp. 3547, 2021.
    18. K. E. Kitko, Q. Zhang, “Graphene-based nanomaterials: from production to integration with modern tools in neuroscience”, vol. 13, pp. 1-17, 2019.
    19. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, S. Seal, “Graphene based materials: past, present and future”, Progress in Materials Science, Vol. 56, pp. 1178–1271, 2011.
    20. P. Blake, E. W. Hill, “Making graphene visible”, Appl. Phys. Lett., Vol. 91, pp. 063124–3, 2007.
    21. L. Liu, Z. Shen, M. Yi, X. Zhang, S. Ma, “A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces”, RSC Advances, Vol. 4 (69), pp. 36464, 2014.
    22. N. W. Pu, C. A. Wang, Y. Sung, Y. M. Liu, M. D. Ger., “Production of few-layer graphene by supercritical CO2 exfoliation of graphite”, Materials Letters, Vol. 63, pp. 1987-1989, 2009.
    23. H. S. Sim, T. A. Kim, K. H. Lee, M. Park, “Preparation of graphene nanosheets through repeated supercritical carbon dioxide process”, Materials Letters, Vol. 89, pp. 343–346, 2012.
    24. University of Waikato (2012). “Surfactants sciencelearn hub”. Abstract retrieved July 19, 2016, from http://sciencelearn.org.nz/Science-Stories/Where-Land-Meets-Sea/Sci-Media/Images/Surfactants
    25. L. Zhao, H. Liu, X. Chen, S. Chu, H. Liu, Z. Lin, Q. Li, G. Chud, H. Zhang, “Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving”, J. Mater. Chem. C, Vol. 6, pp. 10611–10617, 2018.
    26. W. Wang, S. Wei, X. Du, Z. Ding, Q. Zhu, Y. Qiao, X. Wang, J. Guo, “Fabrication of liquid metal/diamond hybrid thermal interface materials with high thermal conductivity and low flowability”, New Carbon Materials, vol. 34 pp. 1395-1411, 2023.
    27. J. Li, Z. Ye, P. Mo, Y. Pang, E. Gao, C. Zhang, G. Du, R. Sun, X. Zeng, “Compliance-tunable thermal interface materials based on vertically oriented carbon fiber arrays for high-performance thermal management”, Compos. Sci. Technol., vol. 234 pp. 109948, 2023.
    28. J. Lee, J. Kim, “Improvement of thermal conductivity and latent heat of cellulose film using surfactant and surface-treated CNT with stearic acid”, Compos. Pt. A-Appl. Sci. Manuf., vol. 156 pp. 106897, 2022.
    29. Y. Li, T. Zhang, Y. Zhang, C. Zhao, N. Zheng, W. Yu, “A comprehensive experimental study regarding size dependence on thermal conductivity of graphene oxide nanosheet”, Compos. Pt. A-Appl. Sci. Manuf., vol. 130 pp. 105764, 2022.
    30. H. L. Li, S. N. X, H. L. Yu, Y. H. Xue, J. H. Yang, “A review of graphene graphene-based films for heat dissipation”, New Carbon Materials, vol. 36 pp. 897-910, 2021.
    31. Z. Gao, Y. Zhang, Y. Fu, M. M.F. Yuen, J. Liu, “Thermal chemical vapor deposition grown graphene heat spreader for thermal management of hot spots”, Carbon, vol. 61, pp. 342-348, 2013.
    32. X. Zhang, Y. Guo, Y. Liu, Z. Li, W. Fang, L. Peng, J. Zhou, Z. Xu, C. Gao, “Ultrathick and highly thermally conductive graphene films by selffusion”, Carbon, vol. 167, pp. 249-255, 2020.
    33. C. Teng, D. Xie, J. Wang, Z. Yang, G. Ren, Y. Zhu, “Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene”, Adv. Funct. Mater. vol. 27, 1700240, 2017.
    34. T. Wu a, Y. Xu, H. Wang, Z. Sun, L. Zou, “Efficient and inexpensive preparation of graphene laminated film with ultrahigh thermal conductivity”, Carbon, vol. 171, pp. 639-645, 2021.
    35. Y. Wang, X. Zhang, X. Ding, Y. Li, B. Wu, P. Zhang, X. Zeng, Q. Zhang, Y. Du, Y. Gong, K. Zheng, X. Tian, “Stitching graphene sheets with graphitic carbon nitride: constructing a highly thermally conductive rGO/g‑C3N4 film with excellent heating capability”, ACS Appl. Mater. Interfaces, vol. 13, pp. 6699-6709, 2021.
    36. Y. Zou, Y. Wang, H. Zhang, D. Wei, T. Jin, H. Wang, S. Liao, D. Jia, Y. Zhou, “Al2O3/reduced graphene oxide double-layer radiative coating for efficient heat dissipation”, Materials and Design, vol. 157, pp. 130-140, 2018.
    37. X. Li, J. Wang, Y. Tian, X. Jiang, X. Zhang, “Thermal enhancement by constructing ordered-orienting hybrid network with modified boron nitride, graphene and carbon nanotubes in epoxy composite coatings”, Progress in Organic Coatings, vol. 172, pp. 107078, 2022.
    38. M. C. Vu, N. T. Thieu, J. H. Lim, W. K. Choi, J. C. Won, Md. A. Islam, S. R. Kim, “Ultrathin thermally conductive yet electrically insulating exfoliated graphene fluoride film for high performance heat dissipation”, Carbon, vol. 157, pp. 741-749, 2020.
    39. S. W. Kim, T. Kim, Y. S. Kim, H. S. Choi, H. J. Lim, S. J. Yang and C. R. Park, “Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers”, Carbon, vol. 50, pp. 3-33, 2012.
    40. G. Hao, X. Li, S. Wang, S Wang, M. Ryu, J. Yang, “Surface modification of carbon nanotubes in silicone–polyurethane for improved mechanical and anticorrosion properties”, Coatings, vol. 13, pp. 634-650, 2023.
    41. M. A. Varela, J. I. Paredes, S. V. Rodil, R. Rozada, A. M. Alonso, J. M. D. Tascon, “A quantitative analysis of the dispersion behavior of reduced graphene oxide in solvents”, Carbon. vol. 75, pp. 390-400, 2014.
    42. L. Nayak, S. Mohanty, A. Ramadoss, “A green approach to water-based graphene ink with reverse coffee ring effect”, J. Mater. Sci. Mater. Electron. vol. 32, pp. 7431-7442, 2021.
    43. V. Shabafrooz, S. Bandla, J. C. Hanan, “Graphene dispersion in a surfactant-free, polar solvent”, J. Mater. Sci. vol. 53, pp. 559-572, 2018.
    44. J. H. Hildebrand, J. M. Prausnitz, R. L. Scott, “Regular and related solutions: The solubility of gases”, liquids, and solids 1st edn. Van Nostrand Reinhold Company, New York, 1970.
    45. R. Narayan, S. O. Kim, “Surfactant mediated liquid phase exfoliation of graphene”, Nano Converg. vol. 2, pp. 20, 2015.
    46. Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat. Nanotechnol. vol. 3, pp. 563-568, 2008.
    47. J. Liu, J. Fu, Y. Yang, C. Gu, “Study on dispersion, mechanical and microstructure properties of cement paste incorporating graphene sheets”, Constr Build Mater. vol. 199, pp. 1-11, 2019.
    48. C. Yeon, S. J. Yun, K. S. Lee, J. W. Lim, “High-yield graphene exfoliation using sodium dodecyl sulfate accompanied by alcohols as surface-tension-reducing agents in aqueous solution”, Carbon. vol. 83, pp. 136-143, 2015.
    49. H. Ma, S. Li, H. Zhang, Y. Wei, L. Jiang, “Fabrication of polydopamine-based layer-by-layer nanocomposites for combined pH-sensitive chemotherapy and photothermal therapy”, Colloid Surf. A-Physicochem. Eng. Asp. vol. 561, pp. 332-340, 2019.
    50. M. Poorsargol, M. Alimohammadian, B. Sohrabi, M. Dehestani, “Dispersion of graphene using surfactant mixtures: Experimental and molecular dynamics simulation studies”, Appl. Surf. Sci. vol. 464, pp. 440-450, 2019.
    51. K. P. So, J. C. Jeong, J. G. Park, H. K. Park, Y. H. Choi, D. H. Noh, D. H. Keum, H. Y. Jeong, C. Biswas, C. H. Hong, Y. H. Lee, “SiC formation on carbon nanotube surface for improving wettability with aluminum”, Compos. Sci. Technol. vol. 74, pp. 6-13, 2013.
    52. R. Narayan, S. O. Kim, “Surfactant mediated liquid phase exfoliation of graphene”, Nano Convergence, Vol. 2, pp. 1, 2015.
    53. W. Yu, H. Xie, L. Chen, Z. Zhu, J. Zhao and Z. Zhang, “Graphene based silicone thermal greases”, Physics Letters A, 378, pp. 207-211 ,2014.
    54. W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia and L. Chen, ”Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina”, International Journal of Thermal Sciences, vol. 91, pp. 76-82 ,2015.
    55. W. Yu, H. Xie, L. Chen, M. Wang and W. Wang, “Synergistic thermal conductivity enhancement of PC/ABS composites containing alumina/magnesia/graphene nanoplatelets”, Polymer Compostes, vol. 10, pp. 1-7, 2017.
    56. A. Roos, T. Chibuye, B. Karlsson, “Properties of oxidized copper surfaces for solar applications I”, Sol. Energy Mater. Sol. Cells. vol. 7, pp. 453-465, 1983.
    57. C. N. Suryawanshi, C. T. Lin, “Radiative cooling: Lattice quantization and surface emissivity in thin coatings”, ACS Appl. Mater. Interfaces. vol. 1, pp. 1334-1338, 2009.
    58. T. J. Hsiao, T. Eyassu, K. Henderson, T. Kim and C. T. Lin, “Monolayer graphene dispersion and radiative cooling for high power LED”, Nanotechnology, vol. 24, pp. 395-401, 2013.
    59. T. Eyassu, T. J. Hsiao, K. Henderson, T. Kim, C. T. Lin, “Molecular Cooling Fan: Factors for Optimization of Heat Dissipation Devices and Applications”, Ind. Eng. Chem. Res. vol. 53, pp. 19550-19558, 2014.
    60. Y. Ren, H. Wang, B. Xing, W. Qu, Z. Li, J. Ren, J. Zhang, J. Zhao, “Preparation and performance evaluation of graphene-based waterborne thermal conductive coatings”, Surf. Coat. Technol. vol. 478, pp. 130422, 2024.
    61. X. Wan, X. Xia, Y. Chen, D. Lin, Y. Zhou, R. Xiong, “Bioinspired thermal conductive cellulose nanofibers/boron nitride coating enabled by Co-exfoliation and interfacial engineering”, Polymers vol. 16, pp. 805-817, 2024.
    62. A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials”, Nat. Mater. vol. 10, pp. 569-581, 2011.
    63. C. R. Yang, C. D. Chen, C. Cheng, W. H. Shi, P. H. Chen, T. P. Teng, “Synergistic effect of hybrid fillers/ polydimethylsiloxane composites on enhancing thermal conductivity”, Case Stud. Therm. Eng., vol. 28, pp. 101591, 2021.
    64. W. Yu, H. Xie, L. Yin, J. Zhao, L. Xia, L. Chen, “Exceptionally high thermal conductivity of thermal grease: Synergistic effects of graphene and alumina”, Int. J. Therm. Sci., vol. 91, pp. 76-82, 2015.
    65. D. Maoa, J. Chena, L. Rena, K. Zhangd, M. M.F. Yuenc, X. Zenga, R. Suna, J. B. Xuc, C. P. Wong, “Spherical coreshell Al@Al2O3 filled epoxy resin composites as high performance thermal interface materials”, Compos. Pt. A-Appl. Sci. Manuf., vol. 123, pp. 260-269, 2019.
    66. Z. Lin, A. Mcnamara, Y. Liu, K. Moon, C. P. Wong, “Exfoliated hexagonal boron nitride-based polymer nanocomposite with enhanced thermal conductivity for electronic encapsulation”, Compos. Sci. Technol., vol. 90, pp. 123-128, 2014.
    67. Y. Tuersun , W. Lin , X. Huang , W. Qiu , P. Luo , M. Huang , S. Chu, “Fabrication and pilot-production of ultrahigh thermal conductivity vertical graphite-silicone pads with very low cost”, Carbon vol. 194, pp. 72-80, 2022.
    68. P. J. Su, D. Lin, S. Lin, X. Z. Xu, R. J. Lin, L. Y. Hung, Y. P. Wang, “High thermal graphite TIM solution applied to fan-out platform”, IEEE 72nd, pp. 1224–1227, 2022.
    69. B. Sponagle, D. Groulx, M. A. White, “Experimental evaluation of a latent heat storage module with a heat spreader for thermal management of a tablet computer”, Appl. Sci. vol. 11, pp. 3983–4003, 2021.
    70. J. Gao, Q. Yan, X. Tan, L. Lv, J. Ying, X. Zhang, M. Yang, S. Du, Q. Wei, C. Xue, H. Li, J. Yu, C. Lin, W. Dai, N. Jiang, “Surface modification using polydopamine-coated liquid metal nanocapsules for improving performance of graphene paper-based thermal interface materials”, Nanomaterials vol. 11, pp. 1236–1246, 2021.
    71. Z. Lin, H. Liu, Q. Li, H. Liu, S. Chu, Y. Yang, G. Chu, “High thermal conductivity liquid metal pad for heat dissipation in electronic devices”, Appl. Phys. A-Mater. Sci. Process. vol. 124, pp. 368–373, 2018.
    72. L. Zhao, H. Liu, X. Chen, S. Chu, H. Liu, Z. Lin, Q. Li, G. Chu, H. Zhang, “Liquid metal nano/micro-channels as thermal interface materials for efficient energy saving”, J. Mater. Chem. C. vol. 6, pp. 10611–10617, 2018.
    73. L. Zhao, S. Chu, X. Chen, G. Chu, “Efficient heat conducting liquid metal/CNT pads with thermal interface materials”, Bull. Mater. Sci. vol. 42, pp. 192–197, 2019.
    74. P. H. Chen, C. L. Lin, Y. K. Liu, T. Y. Chung, C. Y. Liu, “Diamond Heat Spreader Layer for High-Power Thin-GaN Light-Emitting Diodes”, IEEE Photonics Technol. Lett. vol. 20, pp. 845–847, 2008.
    75. S. Kim, J. Y. Jeong, S. H. Han, J. H. Kim, K. T. Kwon, M. K. Hwang, I. T. Kim, G. S. Cho, “Effect of thermal dissipation by adding graphene materials to surface coating of LED lighting module”, J. Nanosci. Nanotechnol. vol. 13, pp. 3554–3558, 2013.

    無法下載圖示 電子全文延後公開
    2029/08/12
    QR CODE