簡易檢索 / 詳目顯示

研究生: 薛惠文
Hsueh, Hui-Wen
論文名稱: 探討國中生使用問題導向學習法於人工智慧影像辨識機器人混成式學習之學習成效
Learning Effectiveness of Junior High School Students Using the Problem-Based Learning in a Blended Learning Environment of Artificial Intelligence Image Recognition Robot
指導教授: 許庭嘉
Hsu, Ting-Chia
口試委員: 許庭嘉
Hsu, Ting-Chia
顏榮泉
Yen, Jung-Chuan
蔡智孝
Tsai, Chih-Hsiao
口試日期: 2024/07/10
學位類別: 碩士
Master
系所名稱: 科技應用與人力資源發展學系
Department of Technology Application and Human Resource Development
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 130
中文關鍵詞: 運算思維人工智慧教育機器人混成式學習問題導向學習法
英文關鍵詞: Computational thinking, Artificial Intelligence, Educational Robots, Blended Learning, Problem-Based Learning
研究方法: 準實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401227
論文種類: 學術論文
相關次數: 點閱:117下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 運算思維是21世紀的人類不可或缺的能力,為了找出能有效提升運算思維的方式,本研究發展一套人工智慧影像辨識採購機器人教材,結合教育機器人、混成式學習和問題導向等有利於提升運算思維的要素,期望透過此課程提升學習者之運算思維。本研究採用準實驗研究法,旨在探討問題導向法對人工智慧影像辨識機器人混成式課程學習者之人工智慧學習成就、程式設計導向運算思維、機器人自我效能及學習行為的影響,課程皆實施於混成式學習環境中,透過實體講述對學習者進行課程重點摘要、補充及檢討,並於實作單元中以教學影片的方式讓學生進行學習。控制組使用傳統講述教學法,教師以實體方式與學生問答互動;實驗組則使用IGGIA問題導向學習法,搭配問答機器人進行系統性的問答,期望透過問題引導方式給予學習者更明確的學習方向,以解決混成式學習中常見數位分心的問題。研究結果顯示,透過問題導向學習法確實能有效減緩學習者數位分心的問題並有效提升其學習成就,且能夠使學習者展現出更多主動學習的行為,然而,在程式設計導向運算思維中控制組有較好的學習表現,自我效能中則沒有顯著差異。

    Computational thinking is an indispensable skill for individuals in the 21st century. In order to identify effective ways to enhance computational thinking, this research has developed a set of artificial intelligence (AI) image recognition robot materials that combine elements favorable for improving computational thinking, such as educational robots, blended learning, and problem-based learning. It is hoped that through this course, learners' computational thinking can be enhanced. This research employs a quasi-experimental method to investigate the impact of using a problem-based learning in blended learning with AI image recognition robots on learners' outcomes in AI learning, programming-oriented computational thinking, robot self-efficacy , and learning behaviors of learners. Both the control group and the experimental group are in a blended learning environment. The main points of the curriculum are summarized, supplemented, and reviewed for students through physical lectures, and learning is facilitated through instructional videos during practical units. The control group uses traditional lecture teaching, with teachers engaging in physical question-and-answer interactions with students. The experimental group utilizes the IGGIA problem-based learning, coupled with systematic question-and-answer sessions with a chatbot. It is expected that the problem-based learning provides learners with a clearer learning direction, addressing common digital distractions in blended learning. The research results indicate that the problem-based learning method can effectively alleviate learners' digital distraction and significantly improve their learning achievements. It also fosters more proactive learning behaviors among learners. However, in programming-oriented computational thinking, the control group showed better learning performance, and there was no significant difference in self-efficacy.

    中文摘要 i 英文摘要 ii 目 錄 iv 表 次 vi 圖 次 vii 第一章 緒 論 1 第一節 研究背景與動機 1 第二節 研究目的與待答問題 5 第三節 研究範圍與限制 7 第四節 名詞解釋 8 第二章 文獻探討 11 第一節 人工智慧 11 第二節 教育機器人 13 第三節 混成式學習 15 第四節 問題導向學習法 17 第三章 研究設計與實施 21 第一節 課程與教材設計 21 第二節 研究架構與設計 37 第三節 研究步驟與實驗流程 38 第四節 研究對象 43 第五節 研究工具 44 第六節 資料處理與分析 48 第四章 研究結果 51 第一節 學習成就 51 第二節 程式設計導向運算思維 54 第三節 機器人自我效能 57 第四節 行為分析 61 第五章 研究結果與討論 73 第一節 學習成就討論 73 第二節 程式設計導向運算思維討論 75 第三節 機器人自我效能討論 77 第四節 行為分析討論 79 第六章 結論與建議 83 第一節 結論 83 第二節 研究限制與未來研究建議 85 參考文獻 89 一、中文部份 89 二、外文部份 89 附 錄 107 附錄一 學習成就測驗卷(控制組、實驗組前測) 109 附錄二 學習成就測驗卷(控制組後測) 116 附錄三 學習成就測驗卷(實驗組後測) 122 附錄四 程式設計導向運算思維量表 128 附錄五 機器人自我效能量表 130

    教育部(2019)。十二年國民基本教育課程綱要國民中學暨普通高級中學學校-科技領域:2018年9月20日。取自https://www.k12ea.gov.tw/files/class_schema/課綱/13-科技/13-2/十二年國民基本教育課程綱要技術型高級中等學校─科技領域.pdf
    教育部(2021)。全國各級學校因應疫情停課居家線上學習。取自https://www.edu.tw/News_Content.aspx?n = 9E7AC85F1954DDA8&s = 8BF1696CC31F4FE9
    教育部(2023)。教育部中小學數位教學指引2.0。取自https://pads.moe.edu.tw/pads_front/index.php?action = index
    Aaron, L. S., & Lipton, T. (2018). Digital distraction: Shedding light on the 21st-century college classroom. Journal of Educational Technology Systems, 46(3), 363-378. https://doi.org/10.1177/0047239517736876
    Aji, W. K., Ardin, H., & Arifin, M. A. (2020). Blended learning during pandemic corona virus: Teachers’ and students’ perceptions. IDEAS: Journal on English Language Teaching and Learning, Linguistics and Literature, 8(2), 632-646. https://doi.org/10.24256/ideas.v8i2.1696
    Alsalhi, N. R., Eltahir, M. E., & Al-Qatawneh, S. S. (2019). The effect of blended learning on the achievement of ninth grade students in science and their attitudes towards its use. Heliyon, 5(9), e02424.. https://doi.org/10.1016/j.heliyon.2019.e02424
    Amerstorfer, C. M., & Freiin von Münster-Kistner, C. (2021). Student perceptions of academic engagement and student-teacher relationships in problem-based learning. Frontiers in psychology, 12, 713057.https://doi.org/10.3389/fpsyg.2021.713057
    Amini, R., Setiawan, B., Fitria, Y., & Ningsih, Y. (2019). The difference of students learning outcomes using the project-based learning and problem-based learning model in terms of self-efficacy. Journal of Physics: Conference Series, 1387(1), 12082.https://doi.org/10.1088/1742-6596/1387/1/012082
    Andresen, S. L. (2002). John McCarthy: father of AI. IEEE Intelligent Systems, 17(5), 84-85. https://doi.org/10.1109/MIS.2002.1039837
    Anwar, S., Bascou, N. A., Menekse, M., & Kardgar, A. (2019). A systematic review of studies on educational robotics. Journal of Pre-College Engineering Education Research(J-PEER), 9(2), 19-42. https://doi.org/10.7771/2157-9288.1223
    Arís, N., & Orcos, L. (2019). Educational robotics in the stage of secondary education: Empirical study on motivation and STEM skills. Education Sciences, 9(2), 73. https://doi.org/10.3390/educsci9020073
    Arkorful, V., & Abaidoo, N. (2015). The role of e-learning, advantages and disadvantages of its adoption in higher education. International Journal of Instructional Technology and Distance Learning, 12(1), 29-42.
    Aslan, A. (2021). Problem-based learning in live online classes: Learning achievement, problem-solving skill, communication skill, and interaction. Computers & Education, 171, 104237. https://doi.org/10.1016/j.compedu.2021.104237
    Aslan, S. A., & Duruhan, K. (2021). The effect of virtual learning environments designed according to problem-based learning approach to students’ success, problem-solving skills, and motivations. Education and Information Technologies, 26(2), 2253-2283. https://doi.org/10.1007/s10639-020-10354-6
    Atmatzidou, S., & Demetriadis, S. (2017). A didactical model for educational robotics activities: A study on improving skills through strong or minimal guidance. Educational Robotics in the Makers Era 1. Springer International Publishing. https://doi.org/10.1007/978-3-319-55553-9_5
    Bandura, A. (2006). Guide for constructing self-efficacy scales. Self-efficacy beliefs of adolescents, 5(1), 307-337. Information Age Publishing.
    Banic, A., & Gamboa, R. (2019, March). Visual design problem-based learning in a virtual environment improves computational thinking and programming knowledge. 2019 IEEE Conference on Virtual Reality and 3D User Interfaces(VR). IEEE. https://doi.org/10.1109/VR.2019.8798013
    Bock, A., Kniha, K., Goloborodko, E., Lemos, M., Rittich, A. B., Möhlhenrich, S. C., Rafai, N., Hölzle, F., & Modabber, A. (2021). Effectiveness of face-to-face, blended and e-learning in teaching the application of local anaesthesia: a randomised study. BMC Medical Education, 21, 1-8. https://doi.org/10.1186/s12909-021-02569-z
    Bouilheres, F., Le, L. T. V. H., McDonald, S., Nkhoma, C., & Jandug-Montera, L. (2020). Defining student learning experience through blended learning. Education and Information Technologies, 25(4), 3049-3069. https://doi.org/10.1007/s10639-020-10100-y
    Bukumiric, Z., Ilic, A., Pajcin, M., Srebro, D., Milicevic, S., Spaic, D., Markovic, N., & Corac, A. (2022). Effects of problem-based learning modules within blended learning courses in medical statistics-A randomized controlled pilot study. PLOS One, 17(1), e0263015. https://doi.org/10.1371/journal.pone.0263015
    Carbonell, K. B., Dailey-Hebert, A., & Gijselaers, W. (2013). Unleashing the creative potential of faculty to create blended learning. The Internet and Higher Education, 18, 29-37. https://doi.org/10.1016/j.iheduc.2012.10.004
    Castro, E., Cecchi, F., Salvini, P., Valente, M., Buselli, E., Menichetti, L., Calvani, A., & Dario, P. (2018). Design and impact of a teacher training course, and attitude change concerning educational robotics. International Journal of Social Robotics, 10, 669-685. https://doi.org/10.1007/s12369-018-0475-6
    Castro, R. (2019). Blended learning in higher education: Trends and capabilities. Education and Information Technologies, 24(4), 2523-2546. https://doi.org/10.1007/s10639-019-09886-3
    Cao, G. M., & Tian, Q. F. (2020). Social media use and its effect on university student’s learning and academic performance in the UAE. Journal of Research onTechnology in Education, 54(1), 18-33. https://doi.org/10.1080/15391523.2020.1801538
    Chaidi, E., Kefalis, C., Papagerasimou, Y., & Drigas, A. (2021). Educational robotics in Primary Education. A case in Greece. Research, Society and Development, 10(9), 1-12. https://doi.org/10.33448/rsd-v10i9.16371
    Chang, Y.-H., Yan, Y.-C., & Lu, Y.-T. (2022). Effects of combining different collaborative learning strategies with problem-based learning in a flipped classroom on program language learning. Sustainability, 14(9). https://doi.org/10.3390/su14095282
    Chen, H., Park, H. W., & Breazeal, C. (2020). Teaching and learning with children: Impact of reciprocal peer learning with a social robot on children’s learning and emotive engagement. Computers & Education, 150, 103836. https://doi.org/10.1016/j.compedu.2020.103836
    Chen, R., Wang, M., & Lai, Y. (2020). Analysis of the role and robustness of artificial intelligence in commodity image recognition under deep learning neural network. PLOS One, 15(7), e0235783. https://doi.org/10.1371/journal.pone.0235783
    Cheng, Y. P., Lai, C. F., Chen, Y. T., Wang, W. S., Huang, Y. M., & Wu, T. T. (2023). Enhancing student's computational thinking skills with student-generated questions strategy in a game-based learning platform. Computers & Education, 200, 104794. https://doi.org/10.1016/j.compedu.2023.104794
    Choi, J.-S., Bae, S.-M., Shin, S.-J., Shin, B.-M., & Lee, H.-J. (2022). Effects of problem-based learning on the problem-solving ability and self-Efficacy of students majoring in dental hygiene. International Journal of Environmental Research and Public Health, 19(12), 7491. https://doi.org/10.3390/ijerph19127491
    Chou, P. N. (2020). Using ScratchJr to foster young children’s computational thinking competence: A case study in a third-grade computer class. Journal of Educational Computing Research, 58(3), 570-595. https://doi.org/10.1177/0735633119872908
    Chu, Y., Palmer, S., & Persky, A. M. (2018). Assessing metacognition in the classroom: student help-seeking behavior. Currents in Pharmacy teaching and Learning, 10(11), 1478-1487. https://doi.org/10.1016/j.cptl.2018.08.011
    Çınar, M., & Tüzün, H. (2021). Comparison of object‐oriented and robot programming activities: The effects of programming modality on student achievement, abstraction, problem solving, and motivation. Journal of Computer Assisted Learning, 37(2), 370-386. https://doi.org/10.1111/jcal.12495
    Darmawansah, D., Hwang, G. J., Chen, M. R. A., & Liang, J. C. (2023). Trends and research foci of robotics-based STEM education: a systematic review from diverse angles based on the technology-based learning model. International Journal of STEM Education, 10(1), 12. https://doi.org/10.1186/s40594-023-00400-3
    Deci, E. L., & Ryan, R. M. (2000). The" what" and" why" of goal pursuits: Human needs and the self-determination of behavior. Psychological inquiry, 11(4), 227-268. https://doi.org/10.1207/S15327965PLI1104_01
    Demirören, M., Turan, S., & Öztuna, D. (2016). Medical students’ self-efficacy in problem-based learning and its relationship with self-regulated learning. Medical Education Online, 21(1), 30049. https://doi.org/10.3402/meo.v21.30049
    Dong, S., Wang, P., & Abbas, K. (2021). A survey on deep learning and its applications. Computer Science Review, 40, 100379. https://doi.org/10.1016/j.cosrev.2021.100379
    Durak, H. Y., Yilmaz, F. G. K., & Yilmaz, R. (2019). Computational thinking, programming self-efficacy, problem solving and experiences in the programming process conducted with robotic activities. Contemporary Educational Technology, 10(2), 173-197. https://doi.org/10.30935/cet.554493
    Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J., & Eirug, A. (2021). Artificial Intelligence(AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002
    Fidan, M., & Tuncel, M. (2019). Integrating augmented reality into problem based learning: The effects on learning achievement and attitude in physics education. Computers & Education, 142, 103635. https://doi.org/10.1016/j.compedu.2019.103635
    Fitriani, A., Zubaidah, S., Susilo, H., & Al Muhdhar, M. H. I. (2020). The effects of integrated problem-based learning, predict, observe, explain on problem-solving skills and self-efficacy. Eurasian Journal of Educational Research, 20(85), 45-64. https://doi.org/10.14689/ejer.2020.85.3
    Flanigan, A. E., & Babchuk, W. A. (2022). Digital distraction in the classroom: exploring instructor perceptions and reactions. Teaching in Higher Education, 27(3), 352-370.
    Flanigan, A. E., Brady, A. C., Dai, Y., & Ray, E. (2023). Managing student digital distraction in the college classroom: A self-determination theory perspective. Educational Psychology Review, 35(2), 60. https://doi.org/10.1007/s10648-023-09780-y
    Flanigan, A. E., & Titsworth, S. (2020). The impact of digital distraction on lecture note taking and student learning. Instructional Science, 48(5), 495-524. https://doi.org/10.1007/s11251-020-09517-2
    Furman, J., & Seamans, R. (2019). AI and the Economy. Innovation Policy and the Economy, 19(1), 161-191. https://doi.org/10.1086/699936
    Goel, A. K., & Joyner, D. A. (2017). Using AI to teach AI: lessons from an online AI class. Ai Magazine, 38(2), 48-59. https://doi.org/10.1609/aimag.v38i2.2732
    Graham, C. R. (2006). The Handbook of Blended Learning: Global Perspectives, Local Designs.
    Hartt, M., Hosseini, H., & Mostafapour, M. (2020). Game on: Exploring the effectiveness of game-based learning. Planning Practice & Research, 35(5), 589-604. https://doi.org/10.1080/02697459.2020.1778859
    Houghton, J. (2023). Learning modules: problem-based learning, blended learning and flipping the classroom. The Law Teacher, 57(3), 271-294. https://doi.org/10.1080/03069400.2023.2208017
    Hrastinski, S. (2019). What do we mean by blended learning? TechTrends, 63(5), 564-569. https://doi.org/10.1007/s11528-019-00375-5
    Hsu, T.-C., Abelson, H., Lao, N., Tseng, Y.-H., & Lin, Y.-T. (2021). Behavioral-pattern exploration and development of an instructional tool for young children to learn AI. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100012
    Hsu, T.-C., Chang, S.-C., & Hung, Y.-T. (2018). How to learn and how to teach computational thinking: Suggestions based on a review of the literature. Computers & Education, 126, 296-310. https://doi.org/10.1016/j.compedu.2018.07.004
    Hsu, T.-C., Chang, C., & Liang, Y.-S. (2023). Sequential behaviour analysis of interdisciplinary activities in computational thinking and EFL language learning with game-based learning. IEEE Transactions on Learning Technologies, 16(2), 256-265. https://doi.org/10.1109/tlt.2023.3249749
    Hsu, T. C., & Chen, M. S. (2022). The engagement of students when learning to use a personal audio classifier to control robot cars in a computational thinking board game. Research and Practice in Technology Enhanced Learning, 17(1), 27. https://doi.org/10.1186/s41039-022-00202-1
    Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making. Business Horizons, 61(4), 577-586. https://doi.org/10.1016/j.bushor.2018.03.007
    Johnson, Z. D., Claus, C. J., Goldman, Z. W., & Sollitto, M. (2017). College student misbehaviors: An exploration of instructor perceptions. Communication Education, 66(1), 54-69. https://doi.org/10.1080/03634523.2016.1202995
    Karma, I., Darma, I. K., & Santiana, I. (2021). Blended learning is an educational innovation and solution during the COVID-19 pandemic. International Research Journal of Engineering, IT & Scientific Research. https://doi.org/10.2139/ssrn.3774907
    Kert, S. B., ErkoÇ, M. F., & Yeni, S. (2020). The effect of robotics on six graders’ academic achievement, computational thinking skills and conceptual knowledge levels. Thinking Skills and Creativity, 38, 100714. https://doi.org/10.1016/j.tsc.2020.100714
    Kılıç, S., Gökoğlu, S., & Öztürk, M. (2021). A valid and reliable scale for developing programming-oriented computational thinking. Journal of Educational Computing Research, 59(2), 257-286. https://doi.org/10.1177/0735633120964402
    Kwon, K., Ottenbreit-Leftwich, A. T., Brush, T. A., Jeon, M., & Yan, G. (2021). Integration of problem-based learning in elementary computer science education: effects on computational thinking and attitudes. Educational Technology Research and Development, 69(5), 2761-2787. https://doi.org/10.1007/s11423-021-10034-3
    Lanz, M., Pieters, R., & Ghabcheloo, R. (2019). Learning environment for robotics education and industry-academia collaboration. Procedia Manufacturing, 31, 79-84. https://doi.org/10.1016/j.promfg.2019.03.013
    Lele, A., & Lele, A. (2019). Artificial intelligence(AI). Disruptive Technologies for the Militaries and Security. https://doi.org/10.1007/978-981-13-3384-2_8
    Liao, C. W., Chen, C. H., & Shih, S. J. (2019). The interactivity of video and collaboration for learning achievement, intrinsic motivation, cognitive load, and behavior patterns in a digital game-based learning environment. Computers & Education, 133, 43-55. https://doi.org/10.1016/j.compedu.2019.01.013
    Liao, C. H., & Wu, J. Y. (2022). Deploying multimodal learning analytics models to explore the impact of digital distraction and peer learning on student performance. Computers & Education, 190, 104599. https://doi.org/10.1016/j.compedu.2022.104599
    Lin, Y. L., & Wang, W. T. (2023). Examining students’ perceived reasoning skills in wiki-based PBL internship courses. Australasian Journal of Educational Technology, 39(3), 58-74. https://doi.org/10.14742/ajet.7866
    Ma, H., Zhao, M., Wang, H., Wan, X., Cavanaugh, T. W., & Liu, J. (2021). Promoting pupils’ computational thinking skills and self-efficacy: A problem-solving instructional approach. Educational Technology Research and Development, 69(3), 1599-1616. https://doi.org/10.1007/s11423-021-10016-5
    Mahaye, N. E. (2020). The impact of COVID-19 pandemic on education: navigating forward the pedagogy of blended learning. Research Online, 5(1), 4-9.
    Marie, S. M. J. A. (2021). Improved pedagogical practices strengthens the performance of student teachers by a blended learning approach. Social Sciences & Humanities Open, 4(1), 100199. https://doi.org/10.1016/j.ssaho.2021.100199
    McCoy (2016). Digital Distractions in the Classroom Phase II: Student Classroom use of Digital Devices for non-Class Related Purposes. Journal of Media Education, 7(1), 5-32.
    Mercer, S., & Dörnyei, Z. (2020). Engaging language learners in contemporary classrooms. Cambridge University Press.
    Merritt, J., Lee, M. Y., Rillero, P., & Kinach, B. M. (2017). Problem-based learning in K-8 mathematics and science education: A literature review. Interdisciplinary Journal of Problem-Based Learning, 11(2), 5-17. https://doi.org/10.7771/1541-5015.1674
    Montuori, C., Pozzan, G., Padova, C., Ronconi, L., Vardanega, T., & Arfé, B. (2023). Combined unplugged and educational robotics training to promote computational thinking and cognitive abilities in preschoolers. Education Sciences, 13(9), 858. https://doi.org/10.3390/educsci13090858
    Mukhtar, K., Javed, K., Arooj, M., & Sethi, A. (2020). Advantages, Limitations and Recommendations for online learning during COVID-19 pandemic era. Pakistan Journal of Medical Sciences, 36(4), 27-31. https://doi.org/10.12669/pjms.36.COVID19-S4.2785
    Munakata, Y., Herd, S. A., Chatham, C. H., Depue, B. E., Banich, M. T., & O’Reilly, R. C. (2011). A unified framework for inhibitory control. Trends in cognitive sciences, 15(10), 453-459. https://doi.org/10.1016/j.tics.2011.07.011
    Nichols, J. A., Herbert Chan, H. W., & Baker, M. A. (2019). Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophysical Reviews, 11(1), 111-118. https://doi.org/10.1007/s12551-018-0449-9
    Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research and Development, 68, 463-484. https://doi.org/10.1007/s11423-019-09708-w
    Özmutlu, M., Atay, D., & Erdoğan, B. (2021). Collaboration and engagement based coding training to enhance children’s computational thinking self-efficacy. Thinking Skills and Creativity, 40, 100833. https://doi.org/10.1016/j.tsc.2021.100833
    Piaget, J., & Cook, M. (1952). The origins of intelligence in children. New York: International Universities Press , 8(5), 18-1952.
    Plump, C. M., & LaRosa, J. (2017). Using Kahoot! in the classroom to create engagement and active learning: A game-based technology solution for eLearning novices. Management Teaching Review, 2(2), 151-158. https://doi.org/10.1177/2379298116689783
    Pozzi, M., Radhakrishnan, U., Rojo Agustí, A., Koumaditis, K., Chinello, F., Moreno, J. C., & Malvezzi, M. (2021). Exploiting VR and AR Technologies in Education and Training to Inclusive Robotics. Educational Robotics International Conference, 982, 115-126. Springer International Publishing.https://doi.org/10.1007/978-3-030-77022-8_11
    Prastiti, T. D. (2020). Problem-based learning on the learning perseverance of indonesian senior high school students in solving mathematical problems. Bolema: Boletim de Educação Matemática, 34(68), 1206-1220. https://doi.org/10.1590/1980-4415v34n68a17
    Pradhan, S., & Das, P. (2021). Influence of metacognition on academic achievement and learning style of undergraduate students in Tezpur University. European Journal of Educational Research, 10(1), 381-391. https://doi.org/10.12973/eu-jer.10.1.381
    Qu, J. R., & Fok, P. K. (2021). Cultivating students’ computational thinking through student-robot interactions in robotics education. International Journal of Technology and Design Education, 32, 1983-2002. https://doi.org/10.1007/s10798-021-09677-3
    Raspopovic, M., Cvetanovic, S., Medan, I., & Ljubojevic, D. (2017). The effects of integrating social learning environment with online learning. International Review of Research in Open and Distributed Learning, 18(1), 142-160. https://doi.org/10.19173/irrodl.v18i1.2645
    Ronsivalle, G. B., Boldi, A., Gusella, V., Inama, C., & Carta, S. (2019). How to implement educational robotics’ programs in Italian schools: A brief guideline according to an instructional design point of view. Technology, Knowledge and Learning, 24(2), 227-245. https://doi.org/10.1007/s10758-018-9389-5
    Schunk, D. H., & DiBenedetto, M. K. (2021). Self-efficacy and human motivation. In Advances in motivation science, 8, 153-179. https://doi.org/10.1016/bs.adms.2020.10.001
    Ssemugenyi, F. (2023). Teaching and learning methods compared: A pedagogical evaluation of problem-based learning(PBL) and lecture methods in developing learners’ cognitive abilities. Cogent Education, 10(1), 2187943. https://doi.org/10.1080/2331186X.2023.2187943
    Sukirman, S., Masduki, Y., Suyono, S., Hidayati, D., Kistoro, H. C. A., & Ru’iya, S. (2022). Effectiveness of blended learning in the new normal era. International Journal of Evaluaion & Research Education, 11(2), 628-638. https://doi.org/10.11591/ijere.v11i2.22017
    Su, J., Zhong, Y., & Ng, D. T. K. (2022). A meta-review of literature on educational approaches for teaching AI at the K-12 levels in the Asia-Pacific region. Computers and Education: Artificial Intelligence, 100065. https://doi.org/10.1016/j.caeai.2022.100065
    Sun, L., Hu, L., & Zhou, D. (2022). Single or combined? A study on programming to promote junior high school students’ computational thinking skills. Journal of Educational Computing Research, 60(2), 283-321.https://doi.org/10.1177/07356331211035182
    Sun, Y., Ni, L., Zhao, Y., Shen, X. L., & Wang, N. (2019). Understanding students’ engagement in MOOCs: An integration of self‐determination theory and theory of relationship quality. British Journal of Educational Technology, 50(6), 3156-3174. https://doi.org/10.1111/bjet.12724
    Tang, A. L., Tung, V. W. S., & Cheng, T. O. (2020). Dual roles of educational robotics in management education: Pedagogical means and learning outcomes. Education and Information Technologies, 25, 1271-1283. https://doi.org/10.1007/s10639-019-10015-3
    Tengler, K., Kastner-Hauler, O., & Sabitzer, B. (2021). A robotics-based learning environment supporting computational thinking skills—design and development. 2021 IEEE Frontiers in Education Conference(FIE). IEEE. https://doi.org/10.1109/FIE49875.2021.9637351
    Tsai, M.-J., Wang, C.-Y., Wu, A.-H., & Hsiao, C.-Y. (2021). The development and validation of the robotics learning self-efficacy scale(RLSES). Journal of Educational Computing Research, 59(6), 1056-1074. https://doi.org/10.1177/0735633121992594
    Undorf, M., Livneh, I., & Ackerman, R. (2021). Metacognitive control processes in question answering: Help seeking and withholding answers. Metacognition and Learning, 16(2), 431-458. https://doi.org/10.1007/s11409-021-09259-7
    UNESCO. (2020). COVID-19 educational disruption and response. https://www.unesco.org/en/covid-19/education-response
    Wijnen, M., Loyens, S. M., Wijnia, L., Smeets, G., Kroeze, M. J., & Van der Molen, H. T. (2018). Is problem-based learning associated with students’ motivation? A quantitative and qualitative study. Learning Environments Research, 21, 173-193. https://doi.org/10.1007/s10984-017-9246-9
    Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
    Woltering, V., Herrler, A., Spitzer, K., & Spreckelsen, C. (2009). Blended learning positively affects students’ satisfaction and the role of the tutor in the problem-based learning process: results of a mixed-method evaluation. Advances in Health Sciences Education, 14(5), 725-738. https://doi.org/10.1007/s10459-009-9154-6
    Wood, D. F. (2003). Problem based learning. https://doi.org/10.1136/bmj.326.7384.328
    Wu, J. U. (2017). The indirect relationship of media multitasking self-efficacy on learning performance within the personal learning environment: Implications from the mechanism of perceived attention problems and self-regulation strategies. Computers & Education, 106, 56-72. https://doi.org/10.1016/j.compedu.2016.10.010
    Yang, K., Liu, X., & Chen, G. (2020). The influence of robots on students’ computational thinking: A literature review. International Journal of Information and Education Technology, 10(8), 627-631. https://doi.org/10.18178/ijiet.2020.10.8.1435
    Yang, M., Kumar, P., Bhola, J., & Shabaz, M. (2021). Development of image recognition software based on artificial intelligence algorithm for the efficient sorting of apple fruit. International Journal of System Assurance Engineering and Management, 13, 322-330. https://doi.org/10.1007/s13198-021-01415-1
    Yang, F. C. O., Lai, H. M., & Wang, Y. W. (2023). Effect of augmented reality-based virtual educational robotics on programming students’ enjoyment of learning, computational thinking skills, and academic achievement. Computers & Education, 195, 104721. https://doi.org/10.1016/j.compedu.2022.104721
    Yang, T. C., & Lin, Z. S. (2024). Enhancing elementary school students' computational thinking and programming learning with graphic organizers. Computers & Education, 209, 104962. https://doi.org/10.1016/j.compedu.2023.104962
    Yew, E. H., & Goh, K. (2016). Problem-based learning: An overview of its process and impact on learning. Health Professions Education, 2(2), 75-79. https://doi.org/10.1016/j.hpe.2016.01.004
    Yilmaz Ince, E., & Koc, M. (2021). The consequences of robotics programming education on computational thinking skills: An intervention of the Young Engineer's Workshop(YEW). Computer Applications in Engineering Education, 29(1), 191-208. https://doi.org/10.1002/cae.22321
    Zabala, G., Morán, R., & Teragni, M. (2021). Mendieta, One Robot Per School: Multi-user Robot for Technology Education. Educational Robotics International Conference. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-77022-8_5
    Zamroni, E., Lasan, B. B., & Hidayah, N. (2020). Blended learning based on problem based learning to improve critical thinking ability of prospective counselors. Journal of Physics: Conference Series 1539(1), 12039. IOP Publishing..https://doi.org/10.1088/1742-6596/1539/1/012039
    Zhang, S., & Cui, C. (2021). Implementing blended learning in K-12 programming course: Lesson design and student feedback. In 2021 IEEE Integrated STEM Education Conference(ISEC). IEEE. https://doi.org/10.1109/ISEC52395.2021.9764091
    Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., Lyons, T., Manyika, J., Niebles, J. C., & Sellitto, M. (2021). The AI index 2021 Annual Report. Human-Centered AI Institute, Stanford University, Stanford. https://doi.org/10.48550/arXiv.2103.06312

    下載圖示
    QR CODE