簡易檢索 / 詳目顯示

研究生: 林于媫
論文名稱: 以理論計算的方式研究(1)NO在NixPt(4-x), xNi@Pt, (4-x)Pt@Ni (x = 0~4)的吸附與分解反應 (2)CH3CO、CH3CN與CH3CH2在M(111)、core/shell Cu/M(111)與Pt/M(111) (M = Ni or Rh)表面之吸附與C-C斷鍵反應
指導教授: 何嘉仁
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 122
中文關鍵詞: 理論計算NO雙金屬core/shellNi-PtC-C斷鍵
論文種類: 學術論文
相關次數: 點閱:177下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分:NO在NixPt(4-x), xNi@Pt, (4-x)Pt@Ni (x = 0~4 )的吸附與分解反應

    我們使用密度泛函理論來研究NO在三個雙金屬系統(1) NixPt(4-x)、(2) xNi@Pt、(3) (4-x)Pt@Ni (x = 0~4 )的吸附與分解反應,計算結果顯示,NO的吸附能大小在表層金屬原子組成相同時,都會依照xNi@Pt > NixPt(4-x) > (4-x)Pt@Ni的順序;而LDOS的分析結果顯示這也是d band center靠近Fermi level程度的大小順序,以及NO斷鍵的活化能大小順序則是跟吸附能呈相反順序,吸附能越大則活化能會越小,NO在4Ni@Pt這個表面可以得到最大的吸附能-2.97 eV,和最小的斷鍵能障1.20 eV;比起純Ni表面的吸附能-2.48 eV及活化能1.49 eV, 4Ni@Pt催化效果明顯增加;相反地,NO在4Pt@Ni這個表面有最小的吸附能-0.92 eV及最大的斷鍵能障3.34 eV,比起純Pt的吸附能-1.88 eV及斷鍵能障2.50 eV,催化NO斷鍵的效果下降;這些現象我們從LDOS的分析都得到合理的解釋。

    第二部分:CH3CO、CH3CN與CH3CH2在M(111)、core/shell Cu/M(111)與Pt/M(111) (M = Ni or Rh)表面之吸附與C-C斷鍵反應研究
    我們使用密度泛函理論來探討CH3CO、CH3CN與CH3CH2在M(111)、core/shell Cu/M(111)與Pt/M(111) (M = Ni or Rh)表面之C-C斷鍵反應,分成Ni-shell或Rh-shell兩個系統來討論,除了探討C-C斷鍵反應之外,對於三個分子的吸附能及吸附結構也有詳細的描述,結果顯示在兩個系統中三個分子的吸附能都是Pt/M > Cu/M > M (M = Ni or Rh ),此現象跟內層core金屬影響表層shell金屬的電子結構有很大關係;而CH3CO、CH3CN、CH3CH2在這三個分子本身的吸附能大小則是CH3CO > CH3CH2 > CH3CN,除了在Pt/Ni上CH3CN比CH3CH2還要穩定一些;三個分子比較之下,CH3CO是最容易斷鍵的分子,而CH3CH2是最困難的,我們發現這跟他們吸附到表面後C-C鍵的拉長多寡很有關係;而CH3CO的斷鍵活化能在兩個系統的順序都是Pt/M > M > Cu/M (M = Ni or Rh);CH3CN則是Ni > Cu/Ni > Pt/Ni 及 Rh > Pt/Rh > Cu/Rh;而CH3CH2是Ni > Cu/Ni > Pt/Ni 及 Pt/Rh > Cu/Rh > Rh;這些結果我們都提出了LDOS的分析來佐證,得到了合理的解釋。

    總目錄 總目錄 i 中文摘要 iii 英文摘要 v 第一章 緒論 1 第二章 理論與計算方法 3 §2-1 固態材料的電子結構理論 3 §2-1-1 密度泛函理論 3 § 2-1-2局部密度近似法 (Local Density Approximation, LDA) 6 § 2-1-3 廣義梯度近似法 (Generalized Gradient Approximation, GGA) 7 § 2-1-4空間週期性 (periodic boundary condition) 8 § 2-1-5布洛赫定理(Bloch Theorem) 9 § 2-1-6虛位勢 (pseudopotential) 11 § 2-1-7 VASP計算軟體 15 §2-2 擾動彈簧模型(Nudged Elastic Band; NEB) 16 §2-3 態密度(Density of state, DOS) 18 第三章 NO在NixPt(4-x), xNi@Pt, (4-x)Pt@Ni (x = 0~4 )的吸附與分解反應 19 §3-1 前言 19 §3-2 計算方法與模型建立 22 §3-3 結果與討論 34 §3-3-1 NO在表面的吸附結構及吸附能研究 34 §3-3-2 xNi@Pt,NixPt(4-x),(4-x)Pt@Ni (x=0~4)雙金屬表面的電子結構研究 38 §3-3-3 NO在xNi@Pt,NixPt(4-x),(4-x)Pt@Ni (x=0~4)雙金屬表面的斷鍵反應能障研究 42 §3-4 本章結論 48 第四章 CH3CO、CH3CN與CH3CH2在M(111)、core/shell Cu/M(111)與Pt/M(111) (M = Ni or Rh)表面之C-C斷鍵反應研究 51 §4-1 前言 51 §4-2 計算方法與模型 53 §4-3 CH3CO、CH3CN與CH3CH2在純Ni、core/shell Cu/Ni與Pt/Ni表面的吸附與C-C斷鍵反應的活化能分析 58 §4-3-1 CH3CO、CH3CN與CH3CH2在Ni、Cu/Ni與Pt/Ni表面的吸附能與吸附結構分析 58 §4-3-2 CH3CO、CH3CN與CH3CH2在Ni、Cu/Ni與Pt/Ni金屬表面上的C-C斷鍵反應研究 68 §4-3-3綜合比較及表面電子結構研究 77 §4-4 CH3CO、CH3CN與CH3CH2在Rh、Cu/Rh、Pt/Rh的吸附與C-C斷鍵的活化能分析 86 §4-4-1 CH3CO、CH3CN與CH3CH2在Rh、Cu/Rh、Pt/Rh的吸附能與吸附結構分析 86 §4-4-2 Ni與Rh系統表面電子結構研究與吸附能比較 96 §4-4-3 CH3CO、CH3CN與CH3CH2在Rh、Cu/Rh、Pt/Rh的C-C斷鍵反應活化能分析 101 §4-5本章結論 110 第五章 總結 113 參考文獻 115

    (1) Sachtler, W. H. M. Faraday Discuss. Chem. Soc. 1981, 72, 7.
    (2) Rordiguez, J. A. Surf. Sci. Rep. 1996, 24, 223.
    (3) Chen, J. G.; Menning, C. A.; Zellner, M. B. Surf. Sci. Rep. 2008, 63, 201.
    (4) Lam, Y. L.; Criado, J.; Boudart, M. Nouv. J. Chim. 1997, 1, 461
    (5) Schneider, U.; Busse, H.; Link, R.; Castro, G. R.; Wandelt, K. J. Vac. Sci. Technol. A, 1994, 12, 2069.
    (6) Liu, P.; Nørskov, J. K. Phys. Chem. Chem. Phys. 2001, 3, 3814.
    (7) González, S.; Sousa, C.; Illas F. J. Catal. 2006, 239, 431.
    (8) Choi, Y. M.; Compson, C.; Lin, M. C.; Liu, M. J. Alloys Compd. 2007, 427, 25.
    (9) Inderwildi, O. R.; Jenkins, S. J.; King, D. A. Sur. Sci. 2007, 601, L103.
    (10) González, S.; Loffreda, D.; Sautet, P.; Illas F. J. Phys. Chem. C 2007, 111, 11376.
    (11) Gladys, M. J.; Inderwildi, O. R.; Karakatsani, S.; Fiorin, V.; Held, G. J. Phys. Chem. C 2008, 112, 6422.
    (12) Fouda-Onana, F.; Savadogo, O. Electrochim. Acta 2009, 54, 1769.
    (13) Ham, H. C.; Hwang, G. S.; Han, J.S.; Nam, W.; Lim, T. H. J. Phys. Chem. C 2009, 113, 12943.
    (14) Zhang, J.; Jin, H.; Sullivan, M. B.; Lim, F. C. H.; Wu, P. Phys. Chem. Chem. Phys. 2009, 11, 1441.
    (15) Gan, L. Y.; Zhang, Y. X.; Zhao, Y. J. J. Phys. Chem. C 2010, 114, 996.
    (16) Staykov, A.;Kamachi, T.;Ishihara, T.;Yoshizawa, K. J. Phys. Chem. C 2008, 112, 19501.
    (17) Li, J.;Staykov, A.;Kamachi, T.;Ishihara, T.;Yoshizawa, K. J. Phys. Chem. C 2011, 115, 7392.
    (18) Gasteiger, H. A.; Marković, N.; Ross, P. N.; Cairns, E. J. J. Phys. Chem. 1994, 98, 617.
    (19) Baschuk, J. J.; Li, X. Int. J. Energy Res. 2001, 25, 695.
    (20) Shimodaira, Y.;Tanaka, T.;Miura, T.;Kudo, A;Kobayashi, H. J. Phys. Chem. C 2007, 111, 272
    (21) Zhang, C. J.;Baxter, R. J.;Hu, P. J. Chem. Phys. 2001, 115, 5272.
    (22) Wang, G. C.;Jiao, J.;Bu, X. H. J. Phys. Chem. C 2007, 111, 12335.
    (23) Fouda-Onana, F.;Savadogo, O. J. Electacta. 2009, 54, 1769
    (24) Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sørensen, R. Z.; Christensen, C. H.; Nørskov, J. K. Science 2008, 320, 1320
    (25) Skoplyak, O.; Barteau, M. A.; Chen, J. G. Surf. Sci. 2008, 602, 3578
    (26) Skoplyak, O.; Menning, C. A.; Barteau, M. A.; Chen, J. G. J. Chem. Phys. 2007, 127, 114707.
    (27) Xu, G.; Wu, Q.; Chen, Z.; Huang, Z. Phys. Rev. B. 2008, 78, 115420.
    (28) Helms, G. T.; Vitas, J. B.; Nikbakht, P. A. Water Air Soil Pollut. 1993, 67, 207.
    (29) Klingstedt, F.; Arve, K.; Eränen, K. Murzin, D. Y. Acc. Chem. Res. 2006, 39, 273.
    (30) Han, K. M.; Song, C. H.; Ahn, H. J.; Park, R. S.; Woo, J. H.; Lee, C. K.; Richter, A.; Burrows, J. P.; Kim, J. Y.; Hong, J. H. Atmos. Chem. Phys. 2009, 9, 1017.
    (31) IPCC Fourth Assessment Report (AR4) by Working Group 1 (WG1), Chapter 2 "Changes in Atmospheric Constituents and in Radiative Forcing", 2007.
    (32) Wu, S. Y.; Ho, J. J. Phys. Chem. Chem. Phys. 2010, 12, 13707.
    (33) Yen, M. Y; Ho, J. J. Chem. Phys. 2010, 373, 300.
    (34) Roy, S.; Hedge, M. S.; Madras, G. Apply Energy 2009, 86, 2283.
    (35) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
    (36) Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251.
    (37) Kresse, G.; Furthmuller, J. Comp. Mater. Sci.1996, 6, 15.
    (38) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 11169.
    (39) Perdew, J. P.; Chevary, J.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.
    (40) Blöchl, P. E. Phys. Rev. B 1994, 50, 17953.
    (41) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
    (42) White, J. A.; Bird, D. M. Phys. Rev B 1992, 46, 4954.
    (43) Mills, G.; Jónsson, H.; Schente, G. K. Surf. Sci. 1995, 324, 305.
    (44) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.
    (45) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.
    (46) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
    (47) Zhang, Y.; Yang, W. Phys. Rev. Lett. 1998, 80, 890.
    (48) Branger, V.; Pelosin, V.; Badawi, K.; Goudeau, P. Thin Solid Films. 1996, 275, 22
    (49) D.R. Lide, Editor, CRC Handbook of Chemistry and Physics (76th ed.). 1996, CRC Press, New York.
    (50) Denton, A. R.; Ashcroft, N. W. Phys. Rev. A 1992, 43, 3161
    (51) Doll, K.; Harrison, N. M. Chem. Phys. Lett. 2000, 317, 282
    (52) Boettger, J. C. Phys. Rev. B 1994, 44, 16798.
    (53) Häkkinen, H.; Manninen, M. Phys. Rev. B 1992, 46, 1725.
    (54) Zhang, J.; Jin, H.; Sullivan, M. B.; Lim, F. C. H.; Wu, P. Phys. Chem. Chem. Phys. 2009, 11, 1441.
    (55) Ulitsky, A.; Elber, R. J. Chem. Phys. 1990, 92, 1510.
    (56) G. Mills, Jónsson, H.; Schente, G. K. Surf. Sci. 1995, 324, 305.
    (57) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. J. Chem. Phys. 2000, 113, 9901.
    (58) Brown, W. A.; King, D. A. J. Phys. Chem. B, 2000, 104, 2578.
    (59) Zeng, Z.-H.; Silva, J. L. F. D.; Li, W.-X. Phys. Chem. Chem. Phys. 2010, 12, 2459.
    (60) Inderwildi, O. R.; Jenkins, S. J.; King, D. A. Surf. Sci. 2007, 601, L103.
    (61) González, S.; Sousa, C.; Illas, F. J. Catal. 2006, 239, 431.
    (62) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Co. 1979.
    (63) Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nøskov, J. K. J. Mol. Catal. A: Chem. 1997, 115, 421.
    (64) Hammer, B.; Nøskov, J. K. Sur. Sci. 1995, 343, 211.
    (65) Hammer, B.; Nørskov, J. K. Adv. Catal. 2000, 45, 71.
    (66) Hammer, B.; Morikawa, Y.; Nørskov, J. K. Phys. Rev. Lett. 1996, 76, 2141.
    (67) Hammer, B.; Nielsen, O. H.; Nørskov, J. K. Catal. Lett. 1997, 46, 31.
    (68) Lin, X. M.; Sorensen, C. M.; Klabunde, K. J.; Hadjipanayis, G. C. Langmuir 1998, 14, 7140.
    (69) Sun, S.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science, 2000, 287, 1989.
    (70) Pathmanoharan, C.; Philipse, A. P. J. Colloid. Interface Sci. 1998, 205, 340.
    (71) Szabo, D. V.; Vollath, D. Adv. Mater 1999, 11, 1313.
    (72) Zhou, W. L.; Carpenter, E. E.; Lin, J.; Kumbhar, A.; Sims, J.; O’Connor, C. J. Eur. Phys. J. D. 2001, 16, 289.
    (73) Gaudry, M.; Lerm’e, J.; Cottancin, E.; Pellarin, M.; Prevelx, B.; Me’linon, P. Eur. Phys. J. D. 2001, 16, 201
    (74) Zeigarnik, A. V.; Valdés-Pérez, R. E.; Myatkovskaya, O. N. J. Phys. Chem. B 2000, 104, 10578.
    (75) Ramirez-Caballero, G. E. ; Balbuena, P. B. J. Phys. Chem. Lett. 2010, 1, 724.
    (76) Carino, E. V.; Crooks, R. M. Langmuir. 2011, 27, 4227
    (77) Mayrhofer, K. J. J.; Juhart, V.; Hartl, K.; Hanzlik, M. ; Arenz, M. Angew. Chem. 2009, 48, 3529.
    (78) Zhang, Z. ; Nenoff, T. M. ; Leung, K. ; Ferreira, S. R. ; Huang, J. Y. ; Berry, D. T. ; Provencio, P. P. ; Stumpf, R. J. Phys. Chem. C 2010, 114, 14309
    (79) Son, S. U. ; Jang, Y. ; Park, J. ; Na, H. B. ; Park, H. M. ; Yun, H. J. ; Lee, J. ; Hyeon, T. J. Am. Chem. Soc. 2004, 126, 5026.
    (80) Mani, P. ; Srivastava, R. ; Strasser, P. J. Phys. Chem. C 2008, 112, 2770.
    (81) Chen, Y. ; Yang, F. ; Dai, Y. ; Wang, W. ; Chen, S. J. Phys. Chem. C 2008, 112, 1645
    (82) Alayoglu, E ; Eichhorn, B. J. Am. Chem. Soc. 2008, 130, 17479.
    (83) Nilekar, A. U. ; Alayoglu, S.; Eichhorn, B. ; Mavrikakis, M. J. Am. Chem. Soc. 2010, 132, 7418.
    (84) Bader, R. F. W.; Beddall, P. M. J. Chem. Phys. 1972, 56, 3320.
    (85) Bader, R. F. W. Atoms in Molecules-A Quantum Theory; Oxford University Press: Oxford, UK, 1990.
    (86) Henkelman, G.; Arnaldsson, A.; Jónsson, H. Comp. Mater. Sci. 2006, 36, 354.
    (87) Sanville, E.; Kenny, S. D.; Smith, R.; Henkelman, G. J. Comp. Chem. 2007, 28, 899.
    (88) Tang, W.; Sanville, E.; Henkelman, G. J. Phys.: Condens. Matter 2009, 21, 084204.

    下載圖示
    QR CODE