研究生: |
吳淑貞 Shu-Chen Wu |
---|---|
論文名稱: |
青鱂魚仔魚體表離子細胞的排氨參與鈉離子吸收機制 Ammonia-dependent Na+ uptake in mitochondria-rich cells of medaka (Oryzias latipes) larvae |
指導教授: |
林豊益
Li-Yih Lin |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 離子細胞 、富含粒線體細胞 、鈉氫交換蛋白 、鈉離子吸收 、氨 、青將魚 、掃瞄式離子選擇電極技術 |
英文關鍵詞: | ionocyte, mitochondria-rich cell, Na+/H+ exchanger, Na+ uptake, Rhesus glycoprotein, ammonia, medaka, scanning ion-selective electrode technique |
論文種類: | 學術論文 |
相關次數: | 點閱:440 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈉氫交換蛋白(Na+/H+ exchanger,NHE)主要分佈於富含粒線體細胞(MR細胞)頂膜,是淡水魚類鰓上皮執行Na+吸收的重要機制,過程中同時發生排酸現象。然而早期文獻從排氨量與Na+吸收量呈現相關的結果推論Na+吸收過程協同發生排氨,並認為此現象是因NHE執行Na+/NH4+的交換所致。然而近年來發現排氨主要以非離子態NH3經由Rh蛋白排除,否定了NHE執行Na+/NH4+交換的可能。因此,NHE如何在淡水環境中驅動Na+/H+交換,及排氨量與Na+吸收呈現相關的原因至今仍未明瞭。本研究以青鱂魚仔魚為模式動物,利用掃瞄式離子選擇電極技術(SIET)進行非侵入性量測,探討其體表細胞的Na+吸收機制與排H+、排NH4+間的關連性,並試圖推論NHE如何參與Na+吸收機制。結果發現,NHE抑制劑(100 uM EIPA)浸泡會顯著抑制仔魚排酸、排氨及Na+吸收,顯示NHE參與此三種離子的調節機制。低鈉水(<0.001 mM)馴養個體會增加體表Na+吸收與排NH4+,但降低了體表H+濃度;高氨水(5 mM NH4+)馴養也造成類似結果。而在測量環境中給予短時間高氨處理(5 mM NH4+)可同時抑制排NH4+與Na+吸收並增加體表H+累積濃度。以上結果顯示魚體排氨機制可能驅動NHE進行Na+吸收。從仔魚體表單一細胞離子流測量結果發現,Na+吸收與排NH4+主要發生在MR細胞。以H+電極測量後發現體表MR細胞有排酸(MRC+)和排鹼(MRC-)二型,高氨與與低鈉水馴養都會增加MRC-的比例。在測量環境中給予短時間高氨處理(5 mM NH4+),排鹼型MR細胞會轉變為排酸型,而同時抑制Na+吸收。顯示MRC-可能排除大量NH3造成細胞外H+被結合成NH4+而形成排鹼現象。此外,酸性水體(pH6)理論上不利於NHE的驅動,然而結果顯示短期酸處理促進Na+吸收與排NH4+。由此推論Rh蛋白在輔助NH3排放的過程中,會造成細胞膜內外H+梯度的增加進而有利推動NHE進行Na+吸收。
The mechanisms of Na+ uptake and NH4+ excretion at gills of freshwater fish have been studied for decades but the detail remains unclear. To investigate the mechanisms, a scanning ion-selective electrode technique (SIET) was applied to detect the H+, Na+, and NH4+ activities and fluxes at the skin surface of newly-hatched medaka larvae. By probing the ionic fluxes at specific cells in the skin, MRCs were found to be the major sites for Na+ uptake and NH4+ excretion. However, H+ probing at MRCs revealed two groups of MRCs: acid-secreting MRCs (MRC+) and base-secreting (probably NH3) MRCs (MRC-). Treatment with EIPA (100 μM) respectively blocked H+ excretion, NH4+ excretion, and Na+ uptake by 22%, 35%, and 54 %, suggesting that the Na+/H+ exchanger (NHE) is involved in H+, Na+, and NH4+ transport. Low-Na+ water (< 0.001 mM) or high-NH4+ water (5 mM) acclimation caused more MRC- appearing in skin surface, and simultaneously increased Na+ uptake and NH4+ excretion but decreased or even reversed the H+ gradient at the skin and the H+ flux at MRCs. Raising the external NH4+ significantly blocked NH4+ excretion and Na+ uptake, but increased the H+ gradient at the skin. In contrast, raising the acidity of the water (pH 7 to pH 6) enhanced NH4+ excretion and Na+ uptake by MRCs while the H+ activity at the apical surface of MRCs was reduced. The correlation between NH4+ production and H+ consumption suggests that MRCs excrete non-ionic NH3 (base) by an acid-trapping mechanism. The present study suggests a Na+/NH4+ exchange pathway in apical membranes of MRCs, in which a coupled NHE and Rhesus (Rh) glycoprotein is involved, and the Rh glycoprotein may drive the NHE by generating H+ gradients across apical membranes of MRCs.
Avella, M. and Bornancin, M. (1989). A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142, 155-175.
Biver, S., Belge, H., Bourgeois, S., Van Vooren, P., Nowik, M., Scohy, S., Houillier, P., Szpirer, J., Szpirer, C., Wagner, C. A. et al. (2008). A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456, 339-43.
Boisen, A. M., Amstrup, J., Novak, I. and Grosell, M. (2003). Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim Biophys Acta 1618, 207-18.
Braun, M. H., Steele, S. L., Ekker, M. and Perry, S. F. (2009). Nitrogen excretion in developing zebrafish (Danio rerio): a role for Rh proteins and urea transporters. Am J Physiol Renal Physiol 296, F994-F1005.
Bury, N. R. and Wood, C. M. (1999). Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. Am J Physiol 277, R1385-91.
Choe, K. P., Kato, A., Hirose, S., Plata, C., Sindic, A., Romero, M. F., Claiborne, J. B. and Evans, D. H. (2005). NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills. Am J Physiol Regul Integr Comp Physiol 289, R1520-34.
Donini, A. and O'Donnell, M. J. (2005). Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 208, 603-10.
Esaki, M., Hoshijima, K., Kobayashi, S., Fukuda, H., Kawakami, K. and Hirose, S. (2007). Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol Regul Integr Comp Physiol 292, R470-80.
Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
Fenwick, J. C., Wendelaar Bonga, S. E. and Flik, G. (1999). In vivo bafilomycin-sensitive Na+ uptake in young freshwater fish. J Exp Biol 202 Pt 24, 3659-66.
Flynt, A. S., Thatcher, E. J., Burkewitz, K., Li, N., Liu, Y. and Patton, J. G. (2009). miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. J Cell Biol 185, 115-27.
Galvez, F., Reid, S. D., Hawkings, G. and Goss, G. G. (2002). Isolation and characterization of mitochondria-rich cell types from the gill of freshwater rainbow trout. Am J Physiol Regul Integr Comp Physiol 282, R658-68.
Gross, E., Pushkin, A., Abuladze, N., Fedotoff, O. and Kurtz, I. (2002). Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding. J Physiol 544, 679-85.
Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Wakabayashi, S., Shigekawa, M., Chang, M. H., Romero, M. F. et al. (2003). Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284, R1199-212.
Horng, J. L., Lin, L. Y., Huang, C. J., Katoh, F., Kaneko, T. and Hwang, P. P. (2007). Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292, R2068-76.
Hung, C. Y., Tsui, K. N., Wilson, J. M., Nawata, C. M., Wood, C. M. and Wright, P. A. (2007). Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air. J Exp Biol 210, 2419-29.
Hwang, P. P. and Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-97.
Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K. M. and Kaneko, T. (2008). Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp Biochem Physiol A Mol Integr Physiol 151, 151-8.
Ivanis, G., Esbaugh, A. J. and Perry, S. F. (2008). Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211, 2467-77.
Kerstetter, T. H. and Keeler, M. (1976). On the interaction of NH4+ and Na+ fluxes in the isolated trout gill. J Exp Biol 64, 517-527.
Kerstetter, T. H., Kirschner, L. B. and Rafuse, D. D. (1970). On the mechanisms of sodium ion transport by the irrigated gills of rainbow trout (Salmo gairdneri). J Gen Physiol 56, 342-359.
Khademi, S., O'Connell, J., 3rd, Remis, J., Robles-Colmenares, Y., Miercke, L. J. and Stroud, R. M. (2004). Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305, 1587-94.
Kirschner, L. B., Greenwald, L. and Kerstetter, T. H. (1973). Effect of amiloride on sodium transport across body surfaces of freshwater animals. Am J Physiol 224, 832-837.
Krogh, A. (1939). Osmotic Regulation in Aquatic Animals. Cambridge: Cambridge University Press.
Lin, L. Y., Horng, J. L., Kunkel, J. G. and Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290, C371-8.
Maetz, J. (1973). Na+/NH4+, Na+/H+ exchanges and NH3 movement across the gill of Carassius Auratus. J Exp Biol 58, 255-275.
Maetz, J. and Garcia Romeu, F. (1964). The mechanism of sodium and chloride uptake by the gills of a fresh-water fish, Carassius auratus: II. evidence for NH4+/Na+ and HCO3-/Cl- exchanges. J Gen Physiol 47, 1209-1227.
McDonald, D. G. and Millsgan, C. L. (1988). Sodium transport in the brook trout, Salvelinus fontinalis: effects of prolonged low pH exposure in the presence and absence of aluminum. Can J Fish Aquat Sci 45, 1606-1613.
Nakada, T., Hoshijima, K., Esaki, M., Nagayoshi, S., Kawakami, K. and Hirose, S. (2007a). Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol 293, R1743-53.
Nakada, T., Westhoff, C. M., Kato, A. and Hirose, S. (2007b). Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21, 1067-74.
Nawata, C. M., Hung, C. C., Tsui, T. K., Wilson, J. M., Wright, P. A. and Wood, C. M. (2007). Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31, 463-74.
Parks, S. K., Tresguerres, M. and Goss, G. G. (2007). Interactions between Na+ channels and Na+-HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na+ uptake. Am J Physiol Cell Physiol 292, C935-44.
Parks, S. K., Tresguerres, M. and Goss, G. G. (2008). Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol C Toxicol Pharmacol 148, 411-8.
Payan, P. (1978). A study of the Na+/NH4+ exchange across the gill of the perfused head of the trout (Salmo gairdneri). J Comp Physiol B 124, 181-188.
Randall, D. J., Burggren, W. W. and French, K. (2002). Eckert Animal Physiology: Mechanisms and Adaptations. 5th edition. Freeman, NY, USA., 588-620.
Randall, D. J., Wilson, J. M., Peng, K. W., Kok, T. W., Kuah, S. S., Chew, S. F., Lam, T. J. and Ip, Y. K. (1999). The mudskipper, Periophthalmodon schlosseri, actively transports NH4+ against a concentration gradient. Am J Physiol 277, R1562-7.
Reid, S. D., Hawkings, G. S., Galvez, F. and Goss, G. G. (2003). Localization and characterization of phenamil-sensitive Na+ influx in isolated rainbow trout gill epithelial cells. J Exp Biol 206, 551-9.
Romeu, F. G., Salibian, A. and Pezzani-Hernandez, S. (1969). The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium of the Chilean frog Calyptocephalella gayi (Dum. et Bibr., 1841): exchanges of hydrogen against sodium and of bicarbonate against chloride. J Gen Physiol 53, 816-835.
Salama, A., Morgan, I. J. and Wood, C. M. (1999). The linkage between Na+ uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH. J Exp Biol 202 (Pt 6), 697-709.
Schoffeniels, E. (1955). Influence du pH sur le transport actif de sodium a travers la peau de grenouille. Archs Int Physiol Biochim 63, 513-530.
Shaw, J. (1960). The absorption of sodium ions by the crayfish Astacus pallipes lereboullet: III. the effect of other cations in the external solution. J Exp Biol 37, 548-556.
Shih, T. H., Horng, J. L., Hwang, P. P. and Lin, L. Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295, C1625-32.
Smith, P. J., Hammar, K., Porterfield, D. M., Sanger, R. H. and Trimarchi, J. R. (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Tech 46, 398-417.
Tsui, T. K., Hung, C. Y., Nawata, C. M., Wilson, J. M., Wright, P. A. and Wood, C. M. (2009). Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical Na+/NH4+ exchange complex. J Exp Biol 212, 878-92.
Wilkie, M. P. (1997). Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol A Mol Integr Physiol 118, 39-50.
Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293, 284-301.
Wilkie, M. P. and Wood, C. M. (1994). The effects of extremely alkaline water (pH 9.5) on rainbow trout gill function and morphology. J Fish Biol 45, 87-98.
Wilson, J. M., Laurent, P., Tufts, B. L., Benos, D. J., Donowitz, M., Vogl, A. W. and Randall, D. J. (2000). NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J Exp Biol 203, 2279-96.
Wilson, R. W., Wright, P. M., Munger, S. and Wood, C. M. (1994). Ammonia excretion in freshwater rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for Na+/NH4+ exchange. J Exp Biol 191, 37-58.
Winkler, F. K. (2006). Amt/MEP/Rh proteins conduct ammonia. Pflugers Arch 451, 701-7.
Wright, P. A., Randall, D. J. and Perry, S. F. (1989). Fish gill water boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J Comp Physiol B 158, 627-635.
Wright, P. A. and Wood, C. M. (1985). An analysis of branchial ammonia excretion in the freshwater rainbow trout: effects of environmental pH change and sodium uptake blockade. J Exp Biol 114, 329-353.
Yan, J. J., Chou, M. Y., Kaneko, T. and Hwang, P. P. (2007). Gene expression of Na+/H+ exchanger in zebrafish H+ -ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293, C1814-23.