簡易檢索 / 詳目顯示

研究生: 吳淑貞
Shu-Chen Wu
論文名稱: 青鱂魚仔魚體表離子細胞的排氨參與鈉離子吸收機制
Ammonia-dependent Na+ uptake in mitochondria-rich cells of medaka (Oryzias latipes) larvae
指導教授: 林豊益
Li-Yih Lin
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 51
中文關鍵詞: 離子細胞富含粒線體細胞鈉氫交換蛋白鈉離子吸收青將魚掃瞄式離子選擇電極技術
英文關鍵詞: ionocyte, mitochondria-rich cell, Na+/H+ exchanger, Na+ uptake, Rhesus glycoprotein, ammonia, medaka, scanning ion-selective electrode technique
論文種類: 學術論文
相關次數: 點閱:365下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈉氫交換蛋白(Na+/H+ exchanger,NHE)主要分佈於富含粒線體細胞(MR細胞)頂膜,是淡水魚類鰓上皮執行Na+吸收的重要機制,過程中同時發生排酸現象。然而早期文獻從排氨量與Na+吸收量呈現相關的結果推論Na+吸收過程協同發生排氨,並認為此現象是因NHE執行Na+/NH4+的交換所致。然而近年來發現排氨主要以非離子態NH3經由Rh蛋白排除,否定了NHE執行Na+/NH4+交換的可能。因此,NHE如何在淡水環境中驅動Na+/H+交換,及排氨量與Na+吸收呈現相關的原因至今仍未明瞭。本研究以青鱂魚仔魚為模式動物,利用掃瞄式離子選擇電極技術(SIET)進行非侵入性量測,探討其體表細胞的Na+吸收機制與排H+、排NH4+間的關連性,並試圖推論NHE如何參與Na+吸收機制。結果發現,NHE抑制劑(100 uM EIPA)浸泡會顯著抑制仔魚排酸、排氨及Na+吸收,顯示NHE參與此三種離子的調節機制。低鈉水(<0.001 mM)馴養個體會增加體表Na+吸收與排NH4+,但降低了體表H+濃度;高氨水(5 mM NH4+)馴養也造成類似結果。而在測量環境中給予短時間高氨處理(5 mM NH4+)可同時抑制排NH4+與Na+吸收並增加體表H+累積濃度。以上結果顯示魚體排氨機制可能驅動NHE進行Na+吸收。從仔魚體表單一細胞離子流測量結果發現,Na+吸收與排NH4+主要發生在MR細胞。以H+電極測量後發現體表MR細胞有排酸(MRC+)和排鹼(MRC-)二型,高氨與與低鈉水馴養都會增加MRC-的比例。在測量環境中給予短時間高氨處理(5 mM NH4+),排鹼型MR細胞會轉變為排酸型,而同時抑制Na+吸收。顯示MRC-可能排除大量NH3造成細胞外H+被結合成NH4+而形成排鹼現象。此外,酸性水體(pH6)理論上不利於NHE的驅動,然而結果顯示短期酸處理促進Na+吸收與排NH4+。由此推論Rh蛋白在輔助NH3排放的過程中,會造成細胞膜內外H+梯度的增加進而有利推動NHE進行Na+吸收。

    The mechanisms of Na+ uptake and NH4+ excretion at gills of freshwater fish have been studied for decades but the detail remains unclear. To investigate the mechanisms, a scanning ion-selective electrode technique (SIET) was applied to detect the H+, Na+, and NH4+ activities and fluxes at the skin surface of newly-hatched medaka larvae. By probing the ionic fluxes at specific cells in the skin, MRCs were found to be the major sites for Na+ uptake and NH4+ excretion. However, H+ probing at MRCs revealed two groups of MRCs: acid-secreting MRCs (MRC+) and base-secreting (probably NH3) MRCs (MRC-). Treatment with EIPA (100 μM) respectively blocked H+ excretion, NH4+ excretion, and Na+ uptake by 22%, 35%, and 54 %, suggesting that the Na+/H+ exchanger (NHE) is involved in H+, Na+, and NH4+ transport. Low-Na+ water (< 0.001 mM) or high-NH4+ water (5 mM) acclimation caused more MRC- appearing in skin surface, and simultaneously increased Na+ uptake and NH4+ excretion but decreased or even reversed the H+ gradient at the skin and the H+ flux at MRCs. Raising the external NH4+ significantly blocked NH4+ excretion and Na+ uptake, but increased the H+ gradient at the skin. In contrast, raising the acidity of the water (pH 7 to pH 6) enhanced NH4+ excretion and Na+ uptake by MRCs while the H+ activity at the apical surface of MRCs was reduced. The correlation between NH4+ production and H+ consumption suggests that MRCs excrete non-ionic NH3 (base) by an acid-trapping mechanism. The present study suggests a Na+/NH4+ exchange pathway in apical membranes of MRCs, in which a coupled NHE and Rhesus (Rh) glycoprotein is involved, and the Rh glycoprotein may drive the NHE by generating H+ gradients across apical membranes of MRCs.

    Table of Contents----------------------------1 誌謝------------------------------------------2 摘要------------------------------------------3 Abstract-------------------------------------4 Introduction---------------------------------5 Materials and Methods------------------------12 Illustrations of Experimental Designs--------16 Results--------------------------------------19 Discussion-----------------------------------26 References-----------------------------------33 Figures--------------------------------------39

    Avella, M. and Bornancin, M. (1989). A new analysis of ammonia and sodium transport through the gills of the freshwater rainbow trout (Salmo gairdneri). J Exp Biol 142, 155-175.
    Biver, S., Belge, H., Bourgeois, S., Van Vooren, P., Nowik, M., Scohy, S., Houillier, P., Szpirer, J., Szpirer, C., Wagner, C. A. et al. (2008). A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456, 339-43.
    Boisen, A. M., Amstrup, J., Novak, I. and Grosell, M. (2003). Sodium and chloride transport in soft water and hard water acclimated zebrafish (Danio rerio). Biochim Biophys Acta 1618, 207-18.
    Braun, M. H., Steele, S. L., Ekker, M. and Perry, S. F. (2009). Nitrogen excretion in developing zebrafish (Danio rerio): a role for Rh proteins and urea transporters. Am J Physiol Renal Physiol 296, F994-F1005.
    Bury, N. R. and Wood, C. M. (1999). Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. Am J Physiol 277, R1385-91.
    Choe, K. P., Kato, A., Hirose, S., Plata, C., Sindic, A., Romero, M. F., Claiborne, J. B. and Evans, D. H. (2005). NHE3 in an ancestral vertebrate: primary sequence, distribution, localization, and function in gills. Am J Physiol Regul Integr Comp Physiol 289, R1520-34.
    Donini, A. and O'Donnell, M. J. (2005). Analysis of Na+, Cl-, K+, H+ and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquito Aedes aegypti: application of self-referencing ion-selective microelectrodes. J Exp Biol 208, 603-10.
    Esaki, M., Hoshijima, K., Kobayashi, S., Fukuda, H., Kawakami, K. and Hirose, S. (2007). Visualization in zebrafish larvae of Na+ uptake in mitochondria-rich cells whose differentiation is dependent on foxi3a. Am J Physiol Regul Integr Comp Physiol 292, R470-80.
    Evans, D. H., Piermarini, P. M. and Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85, 97-177.
    Fenwick, J. C., Wendelaar Bonga, S. E. and Flik, G. (1999). In vivo bafilomycin-sensitive Na+ uptake in young freshwater fish. J Exp Biol 202 Pt 24, 3659-66.
    Flynt, A. S., Thatcher, E. J., Burkewitz, K., Li, N., Liu, Y. and Patton, J. G. (2009). miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos. J Cell Biol 185, 115-27.
    Galvez, F., Reid, S. D., Hawkings, G. and Goss, G. G. (2002). Isolation and characterization of mitochondria-rich cell types from the gill of freshwater rainbow trout. Am J Physiol Regul Integr Comp Physiol 282, R658-68.
    Gross, E., Pushkin, A., Abuladze, N., Fedotoff, O. and Kurtz, I. (2002). Regulation of the sodium bicarbonate cotransporter kNBC1 function: role of Asp986, Asp988 and kNBC1-carbonic anhydrase II binding. J Physiol 544, 679-85.
    Hirata, T., Kaneko, T., Ono, T., Nakazato, T., Furukawa, N., Hasegawa, S., Wakabayashi, S., Shigekawa, M., Chang, M. H., Romero, M. F. et al. (2003). Mechanism of acid adaptation of a fish living in a pH 3.5 lake. Am J Physiol Regul Integr Comp Physiol 284, R1199-212.
    Horng, J. L., Lin, L. Y., Huang, C. J., Katoh, F., Kaneko, T. and Hwang, P. P. (2007). Knockdown of V-ATPase subunit A (atp6v1a) impairs acid secretion and ion balance in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 292, R2068-76.
    Hung, C. Y., Tsui, K. N., Wilson, J. M., Nawata, C. M., Wood, C. M. and Wright, P. A. (2007). Rhesus glycoprotein gene expression in the mangrove killifish Kryptolebias marmoratus exposed to elevated environmental ammonia levels and air. J Exp Biol 210, 2419-29.
    Hwang, P. P. and Lee, T. H. (2007). New insights into fish ion regulation and mitochondrion-rich cells. Comp Biochem Physiol A Mol Integr Physiol 148, 479-97.
    Inokuchi, M., Hiroi, J., Watanabe, S., Lee, K. M. and Kaneko, T. (2008). Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities. Comp Biochem Physiol A Mol Integr Physiol 151, 151-8.
    Ivanis, G., Esbaugh, A. J. and Perry, S. F. (2008). Branchial expression and localization of SLC9A2 and SLC9A3 sodium/hydrogen exchangers and their possible role in acid-base regulation in freshwater rainbow trout (Oncorhynchus mykiss). J Exp Biol 211, 2467-77.
    Kerstetter, T. H. and Keeler, M. (1976). On the interaction of NH4+ and Na+ fluxes in the isolated trout gill. J Exp Biol 64, 517-527.
    Kerstetter, T. H., Kirschner, L. B. and Rafuse, D. D. (1970). On the mechanisms of sodium ion transport by the irrigated gills of rainbow trout (Salmo gairdneri). J Gen Physiol 56, 342-359.
    Khademi, S., O'Connell, J., 3rd, Remis, J., Robles-Colmenares, Y., Miercke, L. J. and Stroud, R. M. (2004). Mechanism of ammonia transport by Amt/MEP/Rh: structure of AmtB at 1.35 A. Science 305, 1587-94.
    Kirschner, L. B., Greenwald, L. and Kerstetter, T. H. (1973). Effect of amiloride on sodium transport across body surfaces of freshwater animals. Am J Physiol 224, 832-837.
    Krogh, A. (1939). Osmotic Regulation in Aquatic Animals. Cambridge: Cambridge University Press.
    Lin, L. Y., Horng, J. L., Kunkel, J. G. and Hwang, P. P. (2006). Proton pump-rich cell secretes acid in skin of zebrafish larvae. Am J Physiol Cell Physiol 290, C371-8.
    Maetz, J. (1973). Na+/NH4+, Na+/H+ exchanges and NH3 movement across the gill of Carassius Auratus. J Exp Biol 58, 255-275.
    Maetz, J. and Garcia Romeu, F. (1964). The mechanism of sodium and chloride uptake by the gills of a fresh-water fish, Carassius auratus: II. evidence for NH4+/Na+ and HCO3-/Cl- exchanges. J Gen Physiol 47, 1209-1227.
    McDonald, D. G. and Millsgan, C. L. (1988). Sodium transport in the brook trout, Salvelinus fontinalis: effects of prolonged low pH exposure in the presence and absence of aluminum. Can J Fish Aquat Sci 45, 1606-1613.
    Nakada, T., Hoshijima, K., Esaki, M., Nagayoshi, S., Kawakami, K. and Hirose, S. (2007a). Localization of ammonia transporter Rhcg1 in mitochondrion-rich cells of yolk sac, gill, and kidney of zebrafish and its ionic strength-dependent expression. Am J Physiol Regul Integr Comp Physiol 293, R1743-53.
    Nakada, T., Westhoff, C. M., Kato, A. and Hirose, S. (2007b). Ammonia secretion from fish gill depends on a set of Rh glycoproteins. FASEB J 21, 1067-74.
    Nawata, C. M., Hung, C. C., Tsui, T. K., Wilson, J. M., Wright, P. A. and Wood, C. M. (2007). Ammonia excretion in rainbow trout (Oncorhynchus mykiss): evidence for Rh glycoprotein and H+-ATPase involvement. Physiol Genomics 31, 463-74.
    Parks, S. K., Tresguerres, M. and Goss, G. G. (2007). Interactions between Na+ channels and Na+-HCO3- cotransporters in the freshwater fish gill MR cell: a model for transepithelial Na+ uptake. Am J Physiol Cell Physiol 292, C935-44.
    Parks, S. K., Tresguerres, M. and Goss, G. G. (2008). Theoretical considerations underlying Na+ uptake mechanisms in freshwater fishes. Comp Biochem Physiol C Toxicol Pharmacol 148, 411-8.
    Payan, P. (1978). A study of the Na+/NH4+ exchange across the gill of the perfused head of the trout (Salmo gairdneri). J Comp Physiol B 124, 181-188.
    Randall, D. J., Burggren, W. W. and French, K. (2002). Eckert Animal Physiology: Mechanisms and Adaptations. 5th edition. Freeman, NY, USA., 588-620.
    Randall, D. J., Wilson, J. M., Peng, K. W., Kok, T. W., Kuah, S. S., Chew, S. F., Lam, T. J. and Ip, Y. K. (1999). The mudskipper, Periophthalmodon schlosseri, actively transports NH4+ against a concentration gradient. Am J Physiol 277, R1562-7.
    Reid, S. D., Hawkings, G. S., Galvez, F. and Goss, G. G. (2003). Localization and characterization of phenamil-sensitive Na+ influx in isolated rainbow trout gill epithelial cells. J Exp Biol 206, 551-9.
    Romeu, F. G., Salibian, A. and Pezzani-Hernandez, S. (1969). The nature of the in vivo sodium and chloride uptake mechanisms through the epithelium of the Chilean frog Calyptocephalella gayi (Dum. et Bibr., 1841): exchanges of hydrogen against sodium and of bicarbonate against chloride. J Gen Physiol 53, 816-835.
    Salama, A., Morgan, I. J. and Wood, C. M. (1999). The linkage between Na+ uptake and ammonia excretion in rainbow trout: kinetic analysis, the effects of (NH4)2SO4 and NH4HCO3 infusion and the influence of gill boundary layer pH. J Exp Biol 202 (Pt 6), 697-709.
    Schoffeniels, E. (1955). Influence du pH sur le transport actif de sodium a travers la peau de grenouille. Archs Int Physiol Biochim 63, 513-530.
    Shaw, J. (1960). The absorption of sodium ions by the crayfish Astacus pallipes lereboullet: III. the effect of other cations in the external solution. J Exp Biol 37, 548-556.
    Shih, T. H., Horng, J. L., Hwang, P. P. and Lin, L. Y. (2008). Ammonia excretion by the skin of zebrafish (Danio rerio) larvae. Am J Physiol Cell Physiol 295, C1625-32.
    Smith, P. J., Hammar, K., Porterfield, D. M., Sanger, R. H. and Trimarchi, J. R. (1999). Self-referencing, non-invasive, ion selective electrode for single cell detection of trans-plasma membrane calcium flux. Microsc Res Tech 46, 398-417.
    Tsui, T. K., Hung, C. Y., Nawata, C. M., Wilson, J. M., Wright, P. A. and Wood, C. M. (2009). Ammonia transport in cultured gill epithelium of freshwater rainbow trout: the importance of Rhesus glycoproteins and the presence of an apical Na+/NH4+ exchange complex. J Exp Biol 212, 878-92.
    Wilkie, M. P. (1997). Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol A Mol Integr Physiol 118, 39-50.
    Wilkie, M. P. (2002). Ammonia excretion and urea handling by fish gills: present understanding and future research challenges. J Exp Zool 293, 284-301.
    Wilkie, M. P. and Wood, C. M. (1994). The effects of extremely alkaline water (pH 9.5) on rainbow trout gill function and morphology. J Fish Biol 45, 87-98.
    Wilson, J. M., Laurent, P., Tufts, B. L., Benos, D. J., Donowitz, M., Vogl, A. W. and Randall, D. J. (2000). NaCl uptake by the branchial epithelium in freshwater teleost fish: an immunological approach to ion-transport protein localization. J Exp Biol 203, 2279-96.
    Wilson, R. W., Wright, P. M., Munger, S. and Wood, C. M. (1994). Ammonia excretion in freshwater rainbow trout (Oncorhynchus mykiss) and the importance of gill boundary layer acidification: lack of evidence for Na+/NH4+ exchange. J Exp Biol 191, 37-58.
    Winkler, F. K. (2006). Amt/MEP/Rh proteins conduct ammonia. Pflugers Arch 451, 701-7.
    Wright, P. A., Randall, D. J. and Perry, S. F. (1989). Fish gill water boundary layer: a site of linkage between carbon dioxide and ammonia excretion. J Comp Physiol B 158, 627-635.
    Wright, P. A. and Wood, C. M. (1985). An analysis of branchial ammonia excretion in the freshwater rainbow trout: effects of environmental pH change and sodium uptake blockade. J Exp Biol 114, 329-353.
    Yan, J. J., Chou, M. Y., Kaneko, T. and Hwang, P. P. (2007). Gene expression of Na+/H+ exchanger in zebrafish H+ -ATPase-rich cells during acclimation to low-Na+ and acidic environments. Am J Physiol Cell Physiol 293, C1814-23.

    下載圖示
    QR CODE