研究生: |
李孟珊 Meng-Shan Li |
---|---|
論文名稱: |
統計分布對於科學概念學習影響之探討 -以馬克士威速率分布為例 An investigation on the effectiveness of teaching scientific concepts via statistical distribution -Using Maxwell distribution as an example |
指導教授: |
譚克平
Tam, Hak-Ping |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 185 |
中文關鍵詞: | 統計分布 、分布特徵 、資料處理 、馬克士威速率分布 |
英文關鍵詞: | statistical distribution, distribution characteristics, data handling, Maxwell distribution |
論文種類: | 學術論文 |
相關次數: | 點閱:101 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在於探討統計分布概念的理解是否影響學生學習以分布為基礎的科學概念,因此研究者提出「以統計分布為基礎的資料處理教學模式」(Distribution-Data Handling teaching model, DDH teaching model),並探究該模式是否有助於學生瞭解此類科學概念。本研究以馬克士威速率分布(Maxwell distribution)的概念為例,研究對象為高中3年級的資優學生,已具有氣體動力論的先備知識。採準實驗研究設計,控制組接受直述模式教學,實驗組接受DDH模式教學,兩組學生皆於課程實施前、後進行統計分布概念與馬克士威速率分布概念的前測、後測,並以態度問卷與半結構式晤談瞭解學生的想法。
研究發現:(1) 統計分布的概念會與以分布為基礎的科學概念彼此對應,學生愈能掌握統計分布的整體特徵,對於馬克士威速率分布概念的學習成效愈佳,愈能以整體的角度來分析氣體運動速率分布,且較能完整詮釋溫度與分子量兩變因對於速率分布函數的影響。(2) 只聚焦於單一或是少數分布特徵的學生,較無法掌握整體的運動速率分布情形,在條件改變時,僅留意部分數值發生的變化,而非掌握了速率分布的整體變化。(3) 透過資料處理與統計分布結合的方式,學生能建構出大量氣體分子的整體速率分布概念,且更能體會各個統計量的內涵,對於速率分布能有全面性的瞭解。
Maxwell speed distribution is a difficult topic to many senior high school students. This study proposed that a better understanding can be gained if students are taught statistical distribution before the formal introduction of this topic. Towards this purpose, teaching materials on Maxwell distribution were designed according to the Distribution Data Handling teaching model that was developed for this study with emphasis from the perspective of statistical distribution. A teaching experiment was then conducted to test out the effectiveness of this approach according to the quasi-experimental design. The participants were from two grade twelve classes for gifted students in a senior high school located in Taipei city. The effectiveness of the instruction and materials were evaluated by analyzing students’ responses to the statistical distribution concept test, Maxwell distribution concept test, an attitude questionnaire, as well as data from class videos and semi-structured interviews.
Several results were observed from this study. First, since there is a correspondence between the statistical concept of distribution to those scientific concepts that are based on distribution, students with better grasped of the features of distribution performed better after instruction. They could better relate to the molecular speed distribution from a global and integrated perspective. They could better comprehend the effect of temperature and molecular weight on the Maxwell distribution. Second, for students who tended to focus only on a single or part of the features of a distribution, they were observed not being able to comprehend the Maxwell distribution holistically. When some the surrounding conditions were changed, they tended to focus on changes of a few data points and not on all of the data. Third, after formal introduction to statistical distribution and hands-on experiences with handling data, students could better understand Maxwell distribution holistically as well as the underlying meaning of quantities in relation to the speed distribution.
一、中文部分
李小燕、馮卓宏、邱俊才(2010)。Matlab在大學物理教學中的應用。實驗技術與管理,27(11),124-126。
宋立平(2010)。類比教學法講解麥克斯韋速率分布率。大學物理,2,11-12。
林清山、張春興(1984)。教育心理學。臺北市:東華書局。
邱顯博(2002)。國二、國三學生的擴散作用概念與概念改變之研究。未出版之碩士論文,國立臺灣師範大學科學教育研究所,臺北市。
教育部(2003)。國民中小學九年一貫課程綱要數學領域。臺北市:教育部。
教育部(2008)。普通高級中學課程綱要。臺北市:教育部。
宿剛、鄭敏章、叢令梅(2008)。Matlab在大學物理課程教學中的應用。浙江海洋學院學報,27(2),241-245。
彭芳麟(2005)。伽爾頓板實驗的計算機模擬。大學物理,1,1-10。
趙君培(2009)。國三學生對分佈特徵與分佈概念了解情形之研究。未出版之碩士論文,國立臺灣師範大學科學教育研究所,臺北市。
劉杰(2009)。數字化技術與大學物理教學。讀與寫雜誌,6(10),198。
蔡福興、游光昭、蕭顯勝(2008)。從新學習觀點發掘數位遊戲式學習之價值。課程與教學季刊,11(4),237-278。
蘇安(2009)。Matlab輔助熱學課程教學探索。河池學院學報,29(2),100-102。
蘇國樑(1994)。國小兒童統計概念分析之研究(I)-資料分佈概念分析(NSC83-0111-S-180-002-N)。臺北市:行政院國家科學委員會。
藍海江、潘曉明、丁紅、賴家勝(2009)。MATLAB在基礎物理教學中的應用。柳州師專學報,24(2),119-127。
譚克平(2011)。以統計大概念的觀點重整臺灣中小學統計課程綱要以及評量架構之開發(NSC98-2511-S-003-012-M)。臺北市:行政院國家科學委員會。
二、英文部分
Ausubel, D. P. (1963). The psychology of meaningful verbal learning: An introduction to school learning. New York, NY: Grune & Stratton.
Bakker, A. (2004). Design research in statistics education: On symbolizing and computer tools. Utrecht, The Netherlands: CD-Beta Press.
Bakker, A., & Gravemeijer, K. (2004). Learning to reason about distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 147-168). Dordrecht, The Netherlands: Kluwer Academic.
Ben-Zvi, D. (2002). Seventh grade students' sense making of data and data representations. Paper presented at the Sixth International Conference on Teaching Statistics. Voorburg, The Netherlands.
Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students' construction of global views of data and data representations. Educational Studies in Mathematics, 45, 35-65.
Bransford, J. D., & Schwartz, D. (1999). Rethinking transfer: A simple proposal with multiple implications. Review of Research in Education, 24, 61-100.
Bross, A. J. (2008). An evaluation of meaningful learning in a high school chemistry
course. Unpublished Ed.D., CITE/Language Arts, United States -- Pennsylvania.
Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121-152.
Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129-186). Minneapolis, MN: University of Minnesota Press.
Ciancetta, M. A. (2007). Statistics students reasoning when comparing distributions of data. Unpublished Ph.D., Portland State University, United States -- Oregon.
Cobb, P. (1999). Individual and collective mathematical development: The case of statistical data analysis. Mathematical Thinking & Learning, 1(1), 5.
Cobb, P. (2002). Modeling, symbolizing, and tool use in statistical data analysis. In K. Gravemeijer, R. Lehrer, B. v. Oers & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 171-195). Netherland: Kluwer Academic.
Curcio, F. R. (1987). Comprehension of mathematical relationships expressed in graphs. Journal for Research in Mathematics Education, 18(5), 382-393.
Duit, R. & Treagust, D. F. (1995). Students' conceptions and constructivist teaching approaches. In B. J. Fraser & H. J. Walberg (Eds.), Improving science education (pp. 46-69). Chicago, Illinois: The University of Chicago Press.
Gagne, E. D., Yekovich, C. W., & Yekovich, F. R. (1993). The cognitive psychology of school learning. New York, NY: Harper Collins College Publishers.
Gagne, R. M. (1985). The condition of learning and theory of instruction. New York, NY: Holt, Rinehert & Winston.
Garfield, J. B., & Ben-Zvi, D. (2004). Research on statistical literacy, reasoning, and thinking issues, challenges, and implications. In D. Ben-Zvi & J. B. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 397-409). Dordrecht, The Netherlands: Kluwer Academic.
Haury, D. L., & Rillero, P. (1994). Perspectives of hands-on science teaching. Columbus, OH: The ERIC Clearinghouse for Science, Mathematics and Environmental Education.
Herron, J. D. (1996). The chemistry classroom: Formulas for successful teaching. Washington, DC: American Chemical Society.
Judd, C. H. (1908). The relation of special training to general intelligence. Educational Review, 36, 28-42.
Kohler, W. (1929). Gestalt psychology. New York, NY: Horace Liveright.
Konold, C., Pollatsek, A., & Well, A. D. (1997). Students analyzing data: Research of critical barriers. In J. Garfield and G. Burrill (Eds.), Research on the role of technology in teaching and learning statistics (pp. 151-167). Voorburg, The Netherlands: International Statistical Institute.
Konold, C., Robinson, A., & Khalil, K. (2002, July). Students' use of modal clumps to summarize data. Paper presented at the Sixth International Conference on Teaching Statistics, Cape Town, South Africa.
Leavy, A. (2006). Using data comparison to support a focus on distribution: Examining preservice teachers' understandings of distribution when engaged in statistical inquiry. Statistics Education Research Journal, 5(2), 89-114.
Li, Z., Dong S., Chui W. N.,& Shen, W. P. (2011). Matlab-based visualization and data processing for college physics teaching. Journal of Qinghai Nationalities University, (5), 39-43.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York, NY: Cambridge University Press.
Qualifications and Curriculum Authority (2007a). Mathematics: Programme of study for key stage 3 and attainment targets.
Qualifications and Curriculum Authority (2007b). Mathematics: Programme of study for key stage 4.
Reading, C., & Reid, J. (2006). An emerging hierarchy of reasoning about distribution: from a variation perspective. Statistics Education Research Journal, 5(2), 46-68.
Schwartz, D. L., Bransford, J. D., & Sears, D. L. (2005). Efficiency and innovation in transfer. In J. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 1-51). Greenwich, CT: Information Age Publishing.
Showalter, V. M. (1974). A model for the structure of science. Cleveland, OH: Educational Research Council of America.
Singley, K., & Anderson, J. R. (1989). The transfer of cognitive skill. Cambridge, MA: Harvard University Press.
Thorndike, E. L. (1904). An introduction to the theory of mental and social measurement. New York, NY: Science Press.
Watkins, A. E., Scheaffer, R. L., & Cobb, G. W. (2004). Statistics in action: Understanding a world of data. Emeryville, CA: Key Curriculum Press.
Wild, C. (2006). The concept of distribution. Statistics Education Research Journal, 5(2), 10-26.