簡易檢索 / 詳目顯示

研究生: 林佳穎
Lin, Jia-Ying
論文名稱: 提升高中聽覺障礙學生的科學素養之系列研究
Research on Improving the Scientific Literacy of High School Students with Hearing Impairment
指導教授: 邱美虹
Chiu, Mei-Hung
口試委員: 吳仲卿 劉湘瑤 劉秀丹 薛明里 邱美虹
口試日期: 2021/08/03
學位類別: 博士
Doctor
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 258
中文關鍵詞: 科學家意象科學素養科學探究科學閱讀擴增實境聽覺障礙
英文關鍵詞: augmented reality, scientific inquiry, scientific literacy, scientific reading, scientist image, students with hearing impairment
研究方法: 行動研究法準實驗設計法半結構式訪談法
DOI URL: http://doi.org/10.6345/NTNU202101003
論文種類: 學術論文
相關次數: 點閱:214下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為提升高中聽覺障礙學生的科學素養,從理解高中聽障生對科學家與科學之態度出發,進而發展出一系列提升高中聽障生科學探究能力、科學閱讀能力與科學知識之研究。首先,研究一使用「畫科學家測驗」以瞭解高中聽障生持有之科學家意象。並參考先前研究發展出「現代科學家檢核表」,並將68位高中聽障生的繪圖資料進行檢核與分析。研究結果顯示,學生持有之科學家特徵最多為整潔乾淨、男科學家、中年以上與有好奇心;學生持有之科學家類型以刻板印象為最多,並發現學生畫出無關科學家的比例偏高;此外也發現女學生持有較正面的科學家意象,男學生持有較負面的科學家意象,不同年級學生持有之科學家意象無顯著差異,並經由深度晤談發現學生對科學較不感興趣,也認為自己較不適合學習科學。
    研究二以提升學生之科學探究能力為目的,指導3位高中聽障生參與科學展覽,以及發展出科學探究課程。本研究使用美國奧勒岡州教育部(ODE)提出之「科學探究活動評分表」分析學生之科展作品書,分析結果顯示學生之探究能力各項目分數皆高於4分,顯示出參與科學展覽可以培養學生之探究能力。本研究進一步分析學生實驗日誌與教師省思日記,發現有學生提及做實驗的過程很有趣,也有學生覺得自己更瞭解科學家的工作,未來可以多嘗試科學相關活動,顯示出參與科學展覽可以提升科學興趣、提升參與科學的自信心與對科學家持有正面態度。
    研究三以提升學生科學閱讀能力為目的,將斷詞與科學語言遊戲教學融入細胞分裂課程中,研究對象為7位高中聽障生,使用細胞分裂文本斷詞測驗、細胞分裂閱讀理解測驗與細胞分裂概念理解測驗為工具,以測驗教學前後的學生學習成就表現。研究結果顯示學生的斷詞以及概念理解之前測與後測成績皆達到顯著差異(P<.05),表示科學語言遊戲能有效提升學生的斷詞能力與科學概念理解。
    研究四以提升學生科學知識為目的,研究者設計出擴增實境DNA課程,研究對象為9位高中聽障生,研究工具為DNA紙筆測驗和DNA繪圖測驗以及課程問卷。研究結果顯示,學生DNA紙筆測驗的前測與後測成績(P<.05)與DNA繪圖測驗前測與後測成績(P<.001)均具有顯著差異,表示擴增實境教學可以提升學生的DNA概念學習。從DNA繪圖分析可知,學生於教學後皆能畫出一種以上的DNA表徵模型,顯示出擴增實境能提升學生的模型表徵能力。本研究並發展出「DNA心智模式評量表」,將DNA心智模式分為0至6等級,用以分析學生之DNA繪圖。分析結果顯示,教學後可以提升多數學生之心智模式層級,但學生持有之DNA心智模式仍未達到科學模式。
    本研究進行四個研究,透過這些研究以理解聽障學生對科學家與科學之態度,並設計出能提升學生之科學探究能力、科學閱讀能力與科學知識之課程。期望本研究能提供科學教育研究者、特殊教育研究者與教學現場老師們從事研究與教學之參考,並能拋轉引玉,使得更多研究者或教師關注聽障生的科學教育。

    The purpose of this research is to improve the scientific literacy of high school students with hearing impairment, and to develop a series of studies to understand the images of scientists held by students and improve students' scientific inquiry ability, scientific reading ability, and scientific knowledge. The purpose of research 1 was to understand the images of scientists held by students with hearing impairment. Chambers developed the Draw-a-Scientist Test (DAST) in 1983, where students draw an image of a scientist on drawing paper for evaluation. We used the DAST to understand the images of scientists held by students with hearing impairment. We developed the Modern DAST Checklist based on previous research and analyzed the data from drawings by 68 senior high school students from a local hearing-impaired school. The results revealed that the attributes perceived of scientists held by the students with hearing impairment included neatness or cleanliness, male sex, middle-age or older, and curiosity. Female scientist sex was positively correlated with more positive impressions, and male scientist sex was positively correlated with stereotypes of scientists. The students tended to have stereotypical images of scientists, and a high percentage of students drew pictures of unrelated scientists. In addition, we discovered that female students held more positive images of scientists, and male students held more negative images of scientists. We observed no significant differences in the images of scientists held by students in different grades. Through in-depth interviews, we learned that the students were uninterested in science and believed that they were not suitable for learning science.
    The purpose of research 2 was to enhance students' scientific inquiry ability, and the subjects of the study were 3 high school students with hearing impairment. This study used “Scienctific Inquiry Test Scoring Guide” proposed by the Oregon Department of Education to analyze students’ science exhibition workbooks. The results revealed that participating in science exhibitions can cultivate students' inquiry ability. We further analyzed the student experiment diary and the teacher's reflection diary, and found that some students mentioned that the process of doing experiments was very interesting, and some students felt that they knew more about the work of scientists, and they could try more science-related activities in the future, showing that participating in science exhibitions can improve students’ interest in science, increase their confidence in participating in science, and have a positive attitude towards scientists.
    The purpose of research 3 was to use word segmentation and scientific language games to improve students' understanding of the concept of cell division, and the subjects of the study were 7 high school students with hearing impairment. We used the text segmentation test of cell division, the cell division reading comprehension test, and the cell division concept comprehension test to measure students' learning effectiveness. The results showed that students’ word segmentation scores and concept comprehension scores had a significant difference between the pre-test and post-test scores (P<.05), indicating that scientific language games can effectively improve students’ word segmentation ability and scientific concept understanding.
    The purpose of research 3 was to use DNA augmented reality to improve the students' concept of DNA, and the subjects of the study were 9 high school students with hearing impairment. The research tools are DNA paper-and-pencil test, DNA drawing test, and course questionnaire. The results showed that students' DNA paper-and-pencil test scores and DNA drawing test scores had a significant difference between the pre-test and post-test scores (P<.05 and P<.001), indicating that augmented reality teaching can improve students' DNA concept achievement. We also found that students can draw more than one DNA representation model after teaching, showing that augmented reality can improve students' model representation ability. We developed the "DNA Mental Model Scale", and used this tool to analyze students' DNA drawings. The results showed that the mental model level of most students held can be improved after teaching, but the DNA mental model held by the students has not yet reached the scientific model.
    This research conducted four studies to improve the scientific literacy of high school students with hearing impairment, and proposed follow-up research directions and practical applications as well as provided suggestions for future related activities.

    目次 中文摘要 i Abstract iii 目次 vi 表次 vii 圖次 viii 第壹章 緒論 1 第一節 背景與動機 1 第二節 目的與架構 8 第三節 名詞釋義 10 第四節 研究範圍與限制 13 第五節 研究之重要性 16 第貳章 文獻探討 17 第一節 身心障礙學生的科學教育政策 17 第二節 聽障學生的學習特質 19 第三節 聽障生學習科學之相關研究 24 第四節 科學素養 26 第五節 科學家意象與畫科學家測驗 30 第六節 科學探究 40 第七節 科學閱讀 54 第八節 擴增實境 63 第九節 心智模式與表徵 72 第十節 遺傳學相關教學研究 75 第參章 研究1:探討高中聽覺障礙學生之科學家意象 77 第肆章 研究2:探討透過參加科學展覽以提升聽覺障礙高中生的探究能力 109 第伍章 研究3:探討透過斷詞與科學語言遊戲以增進高中聽覺障礙學生的細胞分裂概念理解 158 第陸章 研究4:探討透過擴增實境教學以提升高中聽覺障礙學生的DNA概念理解 176 第柒章 總結 197 參考文獻 203 附錄1 226 附錄2 250 附錄3 253 附錄4 257

    1. 牛其源(2019)。桃園市高中參加科展學生的科學本質與科學態度之關係研究。未出版之碩士論文,國立臺北科技大學技術及職業教育研究所,台北市。
    2. 王文科、李乙明、謝建全、洪榮照、杞昭安和林玉霞等人(2015)。特殊教育導論特殊教育導論(第二版)。臺北市:臺灣五南圖書出版股份有限公司。
    3. 朱經明和王鳳妃(2006)。多媒體聽障者成功奮鬥故事協助聽障學生理解主要概念及提昇自我概念成效之研究。特殊教育研究學刊,30,135-154。
    4. 何宗穎、王敏男、謝佩妤、郭幸宜、趙大衛和黃台珠(2013)。大學普通生物學實驗課程應用探究鷹架自我評估策略對學生探究能力表現之影響。科學教育學刊,21(4),401-429。
    5. 何宗懿(2015)。閱讀者提問請教文本:試論PISA閱讀素養架構進階之道。教育研究與發展期刊,11(2),1-31。
    6. 佘曉清、林煥祥(主編)(2017)。PISA 2015台灣學生的表現。新北市:心理出版社。
    7. 吳坤璋、吳裕益和黃台珠(2005)。科學探究能力測驗的編製與信、效度考驗。測驗學刊,52(2),119-148。
    8. 吳貞儀、林陳涌和張永達(2016)。文本知識編排順序對國中學生遺傳學閱讀理解的影響。課程與教學季刊2016,19(3),85-112。
    9. 吳清山(2017)。素養導向教師教育:理念,挑戰與實踐。學校行政,(112), 14-27。
    10. 呂紹海和巫俊明(2008)。國小自然與生活科技教科書中科學史內容之分析。新竹教育大學教育學報,25(2),1-31。
    11. 李坤(2020)。屏東縣參與科展競賽學生之科學學習動機與科學過程技能調查研究。未出版之博士論文,國立高雄師範大學科學教育暨環境教育研究所,高雄市。
    12. 沈惠淳和荊溪昱(2011)。高雄市國小教師指導科展現況、困難與需求之研究。中州管理與人文科學叢刊,1(1),183-198。
    13. 岳修平譯(1998)。教育心理學-學習的認知基礎。臺北市:遠流出版。Ellen D. Gagne, Carol Walker Yekovich, and Frank R.Yekovich 原著,The Cognitive Psychology of School Learning (2nd Ed.).
    14. 林小慧和吳心楷(2019)。科學探究能力評量之標準設定與其效度檢核。教育心理學報,50(3),473-502。
    15. 林文杰(2006)。科學語言遊戲融入教學對物理文本的語意理解與語法應用之探討—以生活中的力單元為例。未出版之碩士論文,國立臺灣師範大學科學教育研究所,台北市。
    16. 林淑梤、劉聖忠、黃茂在、陳素芬和張文華(2008)。運用科學史傳達科學本質之教學實務探討-以簡單機械單元為例。科學教育月刊,315,2-18。
    17. 林陳涌(1996)。「了解科學本質量表」之發展與效化。科學教育學刊,(41),1-58。
    18. 林寶貴(2006)。聽覺障礙教育理論與實務。臺北:五南。
    19. 林寶貴、錡寶香(1991)。高職階段聽覺障礙學生國語文與數學能力之研究。特殊教育研究學刊,7,109-127。
    20. 林寶貴和黃玉枝(1997)。聽障學生國語文能力及錯誤類型之分析。特殊教育研究學刊,15,109-129。
    21. 林寶貴和黃玉枝(1997)。聽障學生國語文能力及錯誤類型之分析。特殊教育研究學刊,15,109-129。
    22. 邱明富、高慧蓮(2006)。科學史融入教學對國小學童科學本質觀影響之探究。科學教育學刊,14(2),163-187。
    23. 邱淑明(2004)。電腦教學對國中聽障生學習「自然與生活科技」成效之研究。未出版之碩士論文,國立彰化師範大學生物研究所,彰化縣。
    24. 柯華葳、詹益綾、張建妤、游婷雅(2008)。臺灣四年級學生閱讀素養PIRLS2006報告。行政院國家科學委員專題研究成果報告(編號:NSC 96-MOE-S008-002)。桃園市:國立中央大學學習與教學研究所。
    25. 柯華葳和方金雅(2010)。閱讀理解評量。載於柯華葳 (2010)主編。中文閱讀障礙,167-176。臺北:心理。
    26. 洪文東、黃俊偉(2008)。國小學童對科學家的意象調查研究:以屏東縣某國小學童為例。美和技術學院學報,27(2),21-48。
    27. 洪振方(2003)。探究式教學的歷史回顧與創造性探究模式之初探。高雄師大學報,15,641-662。
    28. 洪蘭、曾志朗和張稚美(1993)。閱讀障礙兒童的認知心理學基礎。學習障礙與資源教學,74-86。台北:台北市教師研習中心。
    29. 胡永崇(2008)。閱讀理解的教學評量方式。屏師特殊教育,16,1-9。
    30. 胡永崇、黃秋霞、王智玫等合譯(2014)。學習障礙之教育。臺北市:心理。
    31. 翁群評(2016)。學科能力測驗自然考科與科學素養評量之關連性探討。考試學刊,11,42-76。
    32. 高慧蓮(2005)。國民小學九年一貫課程 [自然與生活科技] 領域科學探究能力之培養研究: 科學探究能力之評量 (I)。行政院國家科學委員會專題研究成果報告 (NSC93-2511-S-153-006)。
    33. 國家發展委員會(2018)。2030雙語國家政策發展藍圖。臺北市:國家發展委員會。
    34. 張珮珊、賴吉永和溫媺純(2017)。科學探究與實作課程的發展、實施與評量;以實驗室中的科學論證為核心之研究。科學教育學刊,25(4),355-389。
    35. 張蓓莉(1987)。回歸主流聽覺障礙學生語文能力之研究。特殊教育研究學刊,3,119-134。
    36. 張蓓莉(1989)。聽覺障礙學生之語言能力研究。特殊教育研究學刊,5,165-204。
    37. 張蓓莉(2006)。啟動建構學習的教學方式對數學低成就聽覺障礙學生二步驟四則運算文字題的教學效果。特殊教育研究學刊,30,75-94。
    38. 教育部(2003)。科學教育白皮書。臺北市:教育部。
    39. 教育部(2008)。高級中等以下學校特殊教育課程發展共同原則及課程大綱。臺北市:教育部。
    40. 教育部(2015)。2016-2020資訊教育總藍圖。臺北市:教育部。
    41. 教育部(2015)。十二年國民基本教育實施計畫。臺北市:教育部。
    42. 教育部(2018)。十二年國民基本教育-特殊教育課程實施規範。臺北市:教育部。
    43. 教育部(2018)。十二年國民基本教育課程綱要-自然科學領域。臺北市:教育部。
    44. 粘福揚(2009)。語言遊戲對概念改變成效之研究—以燃燒為例。未出版之碩士論文,國立臺中教育大學科學應用與推廣學系,台中市。
    45. 莊梅君和劉秀丹(2014)。可預測性繪本教學方案對國小聽覺障礙學生閱讀理解的成效。特殊教育研究學刊,39(3),29-48。
    46. 許綺婷(2015)。個案都市原住民學生之西方科學本質觀探討。課程與教學,18(2),125-167。
    47. 郭泓男(2013)。探討導入科學探究教學於科展培訓對學生科學探究能力之影響。未出版之碩士論文,國立臺灣師範大學科學教育研究所,台北市。
    48. 郭重吉和蔣佳玲(1995)。評析學生對科學家的形象之相關研究。科學教育月刊,179,2-27。
    49. 陳小娟(1999):三至八歲聽覺障礙兒童語音聽知覺接受力之研究。特殊教育與復健學報,7,51-78
    50. 陳小娟、邢敏華(譯)(2007)。失聰者:心理教育及社會轉變中的觀點。臺北:心理。
    51. 陳世文、古智雄和楊文金(2018)。從系統功能語言觀點探討科學詞彙的歧義與解歧。科學教育學刊,26(3),241-259。
    52. 陳世文和楊文金(2005)。國中科學教科書中[物質]及其複合詞之分析。物理教育,6(1),11-23。
    53. 陳世文和楊文金(2006)。以系統功能語言學探討學生對不同科學文本的閱讀理解。師大學報:科學教育類,51(1&2),107-124。
    54. 陳世文和楊文金(2009)。科學文本中陳述語意關係的語言特性:以國中階段科學教科書為例。教育科學研究期刊,54(4),63-83。
    55. 陳虹樺(2013)。不同科展指導經驗教師對科展指導增能研習之觀點。科學教育月刊,363,29-40。
    56. 陳家興和蔡介立(2016)。詞彙邊界線索影響閱讀中文表現的眼動證據。中華心理學刊,58(1),19-44。
    57. 陳健忠(2015)。心智圖及論證融入科展培養學生科學探究能力之研究。未出版之博士論文,國立東華大學課程設計與潛能開發學系,花蓮縣。
    58. 陳惠如 (2009)。低識讀能力學生對科學文本 [血糖的恆定] 之閱讀困難研究。未出版之碩士論文,臺灣師範大學科學教育研究所,台北市。
    59. 陳雅君(2019)。實施DII對國小科展學生探究能力之研究。未出版之碩士論文,國立嘉義大學數理教育研究所,嘉義市。
    60. 陳雅玲(2010)。國小四年級一般字彙知識、中文斷詞與中文讀寫能力之相關研究。未出版之碩士論文,國立台中教育大學特殊教育研究所,台中市。
    61. 彭天音(2010)。探討氣象探究網路競賽中學生科學探究能力的表現。未出版之碩士論文,國立臺灣師範大學地球科學系,台北市。
    62. 程琪龍(1994 )。系統功能語法導論。汕頭大學出版社。
    63. 黃台珠、鄭世暖、林明輝、蘇懿生、張學文、趙大衛(1994)。國中生物遺傳教學的改進研究。國立高雄師範大學學報,5,113-135。
    64. 黃玉枝(2016)。實施引導式探究教學發展國小聽障學生的科學探究技能。特殊教育學報,43期,63-92.
    65. 黃孝宗(2000)。高雄縣大寮國小學童科學家意象之研究。未出版之碩士論文,臺東師範學院教育研究所,臺東縣。
    66. 黃忻怡、廖晨惠(2010)。斷詞能力在中文閱讀認知歷程之探究。國小特殊教育,(50),64-72。
    67. 黃俊儒和簡妙如(2010)。在科學與媒體的接壤中所開展之科學傳播研究: 從科技社會公民的角色及需求出發。新聞學研究,(105),127-166。
    68. 黃純敏(2019)。基於語彙鏈、格律斷詞方法以主題模型進行古詩詞探勘與分析。資訊管理學報,26(3),275-306。
    69. 黃純敏、陳聰宜和詹雅筑(2014)。新聞事件偵測與追蹤之分群分類演算法研究。資訊科技國際期刊,8(1), 1-9。
    70. 楊文金(2011)。漢語與科學文本閱讀。臺北市立圖書館館訊,28(4),1-15。
    楊坤原和張賴妙理(2004)。遺傳學迷思概念的文獻探討及其對教學的啟示。科學教育學刊,12(3),365-398。
    71. 楊桂瓊、陳雅君、洪瑞兒和林煥祥(2015)。新興科技融入探究式教學的成效探討。科學教育學刊,23(2),111-127。
    72. 楊憲明(1998)。閱讀障礙學生文字辨識自動化處理之分析研究。特殊教育與復健學報,(6),15-37。
    73. 廖哲政(2009)。科學語言遊戲對概念改變之研究:以溶解為例。未出版之碩士論文,國立台中教育大學科學應用與推廣學系,台中市。
    74. 廖晨惠、黃忻怡、曹傑如和白鎧鋕(2012)。國小低年級學童聲韻覺識、聲旁表音覺識、造詞能力、斷詞能力與中文閱讀之縱貫性研究。測驗統計年刊,(20),31-65。
    75. 劉秀丹(2009)。手語和口語工作記憶機制之異同分析。台灣聽力語言學會雜誌,23,31-47。
    76. 歐守娟(2011)。科學語言遊戲對溶解之迷思概念改變的研究。未出版之碩士論文,國立臺中教育大學科學應用與推廣學系,台中市。
    77. 潘慧玲(1996)。教育研究,載於黃光雄(主編),教育導論,341-368。台北:師大書苑。
    78. 蔡哲銘、邱美虹、曾茂仁和謝東霖(2020)。探討二階段專題導向的探究與實作課程中學生之學習成效。科學教育月刊,(431),2-20。
    79. 蔡浩軒和孟瑛如(2020)。擴增實境技術融入特殊教育課程設計之現況與趨勢探討。特教論壇,(28),1-19。
    80. 蔡清田、陳延興(2013)。國民核心素養之課程轉化。課程與教學,16(3), 59-78。
    81. 鄭豔齡(2013)。探討不同科學家介紹課程對七年級學生科學家意象與對科學的態度之影響。未出版之碩士論文,國立彰化師範大學生物學系研究所,彰化縣。
    82. 盧台華(1995)。身心障礙學生數學能力比較研究。特殊教育研究學刊,12,25-50。
    83. 蕭佳純(2014)。國小學童參與科展的歷程、內在動機與科技創造力成長的縱貫性分析。教育實踐與研究,27(2),33-66。
    84. 蕭儒棠(2014)。物理辯論競賽之學生科學探究活動評量探析。物理教育學刊,15(2),107-118。
    85. 嚴婉尹(2008)。國中生科展經驗對其科學探究技能與歷程覺知之影響。未出版之碩士論文,國立臺灣海洋大學教育研究所,基隆市。
    86. 蘇子傑(2011)。科學語言遊戲對燃燒之迷思概念改變的研究。未出版之碩士論文,國立臺中教育大學科學應用與推廣學系,台中市。
    87. 鐘建坪和邱美虹(2014)。運用 SOLO 分類法探討科展活動之建模的類型—以八年級物理科展為例。較於實踐與研究,27(1),31-64。
    88. Akçayır, M., & Akçayır, G. (2017). Advantages and challenges associated with augmented reality for education: A systematic review of the literature. Educational Research Review, 20, 1-11.
    89. Akinoglu, O. (2008). Assessment of the Inquiry-based Project Implementation Process in Science Education Upon Students' Points of Views. Online Submission, 1(1), 1-12.
    90. Arici, F., Yildirim, P., Caliklar, Ş., & Yilmaz, R. M. (2019). Research trends in the use of augmented reality in science education: Content and bibliometric mapping analysis. Computers & Education, 142, 103647.
    91. Atwood-Blaine, D., & Huffman, D. (2017). Mobile gaming and student interactions in a science center: the future of gaming in science education. International journal of science and mathematics education, 15(1), 45-65.
    92. Azuma, R. T. (1997). A survey of augmented reality. Presence, 6(4), 355-385.
    93. Bacca, J., Baldiris, S., Fabregat, R., & Graf, S. (2014). Augmented Reality Trends in Education: A Systematic Review of Research and Applications. Journal of Educational Technology & Society, 17(4), 133-149.
    94. Bai, X., Yan, G., Liversedge, S. P., Zang, C., & Rayner, K. (2008). Reading spaced and unspaced Chinese text: Evidence from eye movements. Journal of Experimental Psychology: Human Perception and Performance, 34, 1277-1287.
    95. Barman, C.R. & Stockton, J.D. (2002). An evaluation of Project SOAR-High: A web-based science program for deaf students. American Annals of the Deaf, 147, 5-10.
    96. Bauer, H. H. (1994). Scientific literacy and the myth of the scientific method. University of Illinois Press.
    97. Beckett, D. (2008). Holistic competence: Putting judgments first. Asia Pacific Education Review, 9(1), 21-30.
    98. Browning, M. E., & Lehman, J. D. (1988). Identification of student misconceptions in genetics problem solving via computer program. Journal of Research in Science Teaching, 25(9), 747-761.
    99. Bruner, J. S. (1973). Organization of early skilled action. Child development, 1-11.
    100. Cascales-Martínez, A., Martínez-Segura, M. J., Pérez-López, D., & Contero, M. (2016). Using an augmented reality enhanced tabletop system to promote learning of mathematics: A case study with students with special educational needs. Eurasia Journal of Mathematics, Science and Technology Education, 13(2), 355-380.
    101. Cawthon, S. W. (2004). Schools for the deaf and the no child left behind act. American Annals of the Deaf, 149(4), 314-323.
    102. Chamberlain, C., & Mayberry, R. I. (2000). Theorizing about the relation between American Sign Language and reading. Language acquisition by eye, 221-259.
    103. Chang, R. C., Chung, L. Y., & Huang, Y. M. (2016). Developing an interactive augmented reality system as a complement to plant education and comparing its effectiveness with video learning. Interactive Learning Environments, 24(6), 1245-1264.
    104. Chen, P., Liu, X., Cheng, W., & Huang, R. (2017). A review of using Augmented Reality in Education from 2011 to 2016. In Innovations in Smart Learning (pp. 13-18). Springer, Singapore.
    105. Cheng, K. H., & Tsai, C. C. (2013). Affordances of augmented reality in science learning: Suggestions for future research. Journal of science education and technology, 22(4), 449-462.
    106. Chiang, T. H. C., Yang, S. J., & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students' learning achievements and motivations in natural science inquiry activities. Educational Technology & Society, 17(4), 352-365.
    107. Christidou, V., Bonoti, F., & Kontopoulou, A. (2016). American and Greek children’s visual images of scientists. Science & Education, 25(5-6), 497-522.
    108. Cobern, W. W. (1996). Worldview theory and conceptual change in science education. Science education, 80(5), 579-610.
    109. Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students' understandings of modern genetics across the 5th–10th grades. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 46(6), 655-674.
    110. Easterbrooks, S. R., & Stephenson, B. (2006). An examination of twenty literacy, science, and mathematics practices used to educate students who are deaf or hard of hearing. American annals of the deaf, 151(4), 385-397.
    111. Ehrlén, K. (2009). Drawings as representations of children's conceptions. International Journal of Science Education, 31(1), 41-57.
    112. Emvalotis, A., & Koutsianou, A. (2018). Greek primary school students’ images of scientists and their work: has anything changed? Research in Science & Technological Education, 36(1), 69-85.
    113. Enyedy, N., Danish, J. A., & DeLiema, D. (2015). Constructing liminal blends in a collaborative augmented-reality learning environment. International Journal of Computer-Supported Collaborative Learning, 10(1), 7-34.
    114. Farland‐Smith, D. (2012). Development and field test of the modified Draw‐A‐Scientist test and the Draw‐A‐Scientist rubric. School Science and Mathematics, 112(2), 109-116.
    115. Ferguson, S. L., & Lezotte, S. M. (2020). Exploring the state of science stereotypes: Systematic review and meta‐analysis of the Draw‐A‐Scientist Checklist. School Science and Mathematics, 120(1), 55-65.
    116. Finson, K. D. (2003). Applicability of the DAST-C to the images of scientists drawn by students of different racial groups. Journal of Elementary Science Education, 15(1), 15-26.
    117. Finson, K. D., Beaver, J. B., & Cramond, B. L. (1995). Development and field test of a checklist for the Draw‐A‐Scientist Test. School Science and Mathematics, 95(4), 195-205.
    118. Fisher, K., Wandersee, J. H., & Moody, D. E. (2001). Mapping biology knowledge (Vol. 11). Springer Science & Business Media.
    119. Flick, L. (1990). Scientist in residence program improving children's image of science and scientists. School science and mathematics, 90(3), 204-214.
    120. Fung, Y. Y. (2002). A comparative study of primary and secondary school students' images of scientists. Research in Science & Technological Education, 20(2), 199-213.
    121. Gardner, A., & Olson, A. (2016). 3D Printing of Molecular Models. Grantee Submission, 40(1), 15-21.
    122. Garzón, J., Pavón, J., & Baldiris, S. (2019). Systematic review and meta-analysis of augmented reality in educational settings. Virtual Reality, 23(4), 447-459.
    123. Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry‐based science program on middle school students' attitudes toward science. Science education, 86(5), 693-705.
    124. Gormally, C. L., & Marchut, A. (2017). " Science Is Not My Thing": Exploring Deaf Non-Science Majors' Science Identities. Journal of Science Education for Students with Disabilities, 20(1), 1-15.
    125. Gormally, C., & Inghram, R. (2021). Goggles and White Lab Coats: Students' Perspectives on Scientists and the Continued Need to Challenge Stereotypes. Journal of microbiology & biology education, 22(1), 22.1.9.
    126. Halliday, M. A. (1993). Towards a language-based theory of learning. Linguistics and education, 5(2), 93-116.
    127. Hansen, A. K., Dwyer, H. A., Iveland, A., Talesfore, M., Wright, L., Harlow, D. B., & Franklin, D. (2017, March). Assessing children's understanding of the work of computer scientists: The draw-a-computer-scientist test. In Proceedings of the 2017 ACM SIGCSE technical symposium on computer science education (pp. 279-284).
    128. Höllerer, T. H., & Feiner, S. K. (2004). Mobile augmented reality. In: Karimi H, Hammad A (eds) Telegeoinformatics: location-based computing and services. Taylor & Francis Books, London
    129. Holt, J. A. (1994). Classroom attributes and achievement test scores for deaf and hard of hearing students. American Annals of the Deaf, 139(4)430-437.
    130. Huber, R. A., & Burton, G. M. (1995). What do students think scientists look like?. School Science and Mathematics, 95(7), 371-376.
    131. Hurd, P. D. (1958). Science literacy: Its meaning for American schools. Educational leadership, 16(1), 13-16.
    132. Hwang, G. J., Wu, P. H., Chen, C. C., & Tu, N. T. (2016). Effects of an augmented reality-based educational game on students' learning achievements and attitudes in real-world observations. Interactive Learning Environments, 24(8), 1895-1906.
    133. Jang, J. Y., & Hand, B. (2017). Examining the value of a scaffolded critique framework to promote argumentative and explanatory writings within an argument-based inquiry approach. Research in science education, 47(6), 1213-
    134. Jaworski, B. (2013). The effects of science fairs on students' knowledge of scientific inquiry and interest in science. Retrieved from https://scholarworks.montana.edu/xmlui/handle/1/2795
    135. Johnson, L., Adams, S., Cummins, M., Estrada, V., Freeman, A., & Ludgate, H. (2012). The NMC horizon report: 2012 K-12 Edition. The New Media Consortium, Austin, Texas.
    136. Johnson, L., Levine, A., Smith, R., & Stone, S. (2010). The NMC Horizon Report: 2010 K-12 Edition. The New Media Consortium, Austin, Texas
    137. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness (No. 6). Harvard University Press.
    138. Johnson-Laird, P. N. (2013). Mental models and cognitive change. Journal of Cognitive Psychology, 25(2), 131-138.
    139. Jutras, B., & Gagné, J. P. (1999). Auditory sequential organization among children with and without a hearing loss. Journal of Speech, Language, and Hearing Research, 42(3), 553-567.
    140. Kelly, L. (1996). The interaction of syntactic competence and vocabulary during reading by deaf students. The Journal of Deaf Studies and Deaf Education, 1(1), 75-90.
    141. Kelly, L. P. (1995). Processing of bottom-up and top-down information by skilled and average deaf readers and implications for whole language instruction. Exceptional children, 61(4), 318-334.
    142. Kelly, R. R., & Mousley, K. (2001). Solving word problems: More than reading issues for deaf students. American Annals of the Deaf, 146(3), 251-262.
    143. Klopfer, E., & Squire, K. (2008). Environmental Detectives—the development of an augmented reality platform for environmental simulations. Educational technology research and development, 56(2), 203-228.
    144. Knight, M., & Cunningham, C. (2004, June). Draw an engineer test (DAET): Development of a tool to investigate students’ ideas about engineers and engineering. In ASEE Annual Conference and Exposition (Vol. 2004).
    145. Krajcik, J., Blumenfeld, P. C., Marx, R. W., Bass, K. M., Fredricks, J. A., & Soloway, E. (1998). Inquiry in project-based science classrooms: Initial attempts by middle school students. Journal of the Learning Sciences, 7(3&4), 313-350.
    146. Krajkovich, J. G., & Smith, J. K. (1982). The development of the image of science and scientists scale. Journal of Research in Science Teaching, 19(1), 39-44.
    147. Kyriazi, E., & Constantinou, C. (2004). The Science Fair as a Means for Developing Investigative Skills in Elementary School. In Proceedings of the 1st International Conference on Hands on Science (pp. 5-9).
    148. Lederman, J. S., Lederman, N. G., Bartos, S. A., Bartels, S. L., Meyer, A. A., & Schwartz, R. S. (2014). Meaningful assessment of learners' understandings about scientific inquiry—The views about scientific inquiry (VASI) questionnaire. Journal of research in science teaching, 51(1), 65-83.
    149. Lewis, J, Leach, J, & Wood-Robinsoon, C. (2000a). Chromosomes: The missing link – young people’s understanding of mitosis, meiosis, and fertilisation. International Journal of Biological Education, 34(4), 189-199.
    150. Lewis, J., & Wood-Robinson, C. (2000b). Genes, chromosomes, cell division and inheritance - Do students see any relationship? International Journal of Science Education, 22, 177-195.
    151. Lewis, J., Leach, J., & Wood-Robinson, C. (2000c). What’s in a cell? – young people’s understanding of the genetic relationship between cells, within an individual. International Journal of Biological Education, 34, 129-132.
    152. Liu, H. T., Tseng, C. H., & Liu, C. J. (2008). A comparison of Taiwanese Sign Language and Manually Coded Chinese: Word length and Short-Term Memory capacity. In A. Botinis (Eds.), International Speech Communication Association Tutorial and Research Workshop on Experimental Linguistics (pp.141-144). Athen Greece: University of Athen press.
    153. Losh, S. C., Wilke, R., & Pop, M. (2008). Some methodological issues with “Draw a Scientist Tests” among young children. International Journal of Science Education, 30(6), 773-792.
    154. Ludwig, C., & Reimann, C. (2005). Augmented reality: Information at focus. Cooperative computing & communication laboratory, 4(1), 1-12.
    155. Luetke-Stahlman, B., & Nielsen, D. C. (2003). The contribution of phonological awareness and receptive and expressive English to the reading ability of deaf students with varying degrees of exposure to accurate English. Journal of deaf studies and deaf education, 8(4), 464-484.
    156. Mangrubang, F. R. (2004). Preparing elementary education majors to teach science using an inquiry-based approach: The Full Option Science System. American Annals of the deaf, 149(3), 290-303.
    157. Marschark, M., & Hauser, P. C. (2012). How deaf children learn: What parents and teachers need to know. New York, NY: Oxford University Press.
    158. Marschark, M., & Wauters, L. (2008). Language comprehension and learning by deaf students. In M. Marschark & P. C. Hauser (Eds.), Perspectives on deafness. Deaf cognition: Foundations and outcomes (pp. 309–350). Oxford, England: Oxford University Press.
    159. Marschark, M., Sapere, P., Convertino, C. M., Mayer, C., Wauters, L., & Sarchet, T. (2009). Are deaf students’ reading challenges really about reading? American annals of the deaf, 154(4), 357-370.
    160. McCarthy, D. (2015). Teacher candidates’ perceptions of scientists: Images and attributes. Educational Review, 67(4), 389-413.
    161. McComas, W. F. (2011). Science fair. The Science Teacher, 78(8), 34-38.
    162. McMahon, D. D., Cihak, D. F., Gibbons, M. M., Fussell, L., & Mathison, S. (2013). Using a mobile app to teach individuals with intellectual disabilities to identify potential food allergens. Journal of Special Education Technology, 28(3), 21-32.
    163. McMahon, D. D., Cihak, D. F., Wright, R. E., & Bell, S. M. (2016). Augmented reality for teaching science vocabulary to postsecondary education students with intellectual disabilities and autism. Journal of Research on Technology in Education, 48(1), 38-56.
    164. Mead, M., & Metraux, R. (1957). Image of the scientist among high-school students. Science, 126(3270), 384-390.
    165. Mertens, T. R. (1992). A paper-&-pencil strategy for teaching mitosis & meiosis, diagnosing learning problems & predicting examination performance. The American Biology Teacher, 54(8), 470-474.
    166. Mertens, T. R., & Hendrix, J. R. (1990). The Popular Press, Scientific Literacy in Human Genetics, and Bioethical Decision‐Making. School Science and Mathematics, 90(4), 317-322.
    167. Miele, E. (2014). Using the draw-a-scientist test for inquiry and evaluation. Journal of college science teaching, 43(4), 36-40.
    168. Milford, T. M., & Tippett, C. D. (2013). Preservice teachers’ images of scientists: Do prior science experiences make a difference? Journal of Science Teacher Education, 24(4), 745-762.
    169. Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE TRANSACTIONS on Information and Systems, 77(12), 1321-1329.
    170. Miller, J. (1983). Scientific literacy: A conceptual and empirical review. Daedalus, 112(2), 29-48.
    171. Miller, J. D. (1998). The measurement of civic scientific literacy. Public understanding of science, 7(3), 203-224.
    172. Montoya, M. H., Díaz, C. A., & Moreno, G. A. (2017). Evaluating the effect on user perception and performance of static and dynamic contents deployed in augmented reality based learning application. Eurasia Journal of Mathematics, Science & Technology Education, 13(2), 301-317.
    173. Moores, D. F., Jatho, J., & Creech, B. (2001). Issues and trends in instruction and deafness: American Annals of the Deaf 1996 to 2000. American Annals of the Deaf, 146(2), 71-76.
    174. Moseley, C., & Norris, D. (1999). Preservice teachers’ views of scientists. Science and Children, 37(1), 50-53.
    175. Napier, J., & Barker, R. (2004). Accessing university education: Perceptions, preferences, and expectations for interpreting by deaf students. Journal of deaf studies and deaf education, 9(2), 228-238.
    176. National Research Council. (1996). National Science Education Standards. National Academy Press, Washington, DC.
    177. National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. National Academies Press.
    178. National Science Foundation. (2009). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2009. Arlington, VA: Author.
    179. National Science Foundation. (2011). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2011. Arlington, VA: Author.
    180. National Science Foundation. (2013). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2013. Arlington, VA: Author.
    181. National Science Teachers Association. (1995). A high school framework for national science education standards, Arlington, VA, National Science Teachers Association.
    182. NGSS, Lead States. (2013). Next generation science standards: For states, by states. In. Washington, DC: The National Academies Press.
    183. Norman, D. A. (1983). Some observations on mental models. Mental models, 7(112), 7-14.
    184. Norris, S. P., & Phillips, L. M. (2003). How literacy in its fundamental sense is central to scientific literacy. Science education, 87(2), 224-240.
    185. Nunes, T., & Moreno, C. (2002). An intervention program for promoting deaf pupils’ achievement in mathematics. Journal of Deaf Studies and Deaf Education, 7(2), 120-133.
    186. Odell, M. R. I., Hewitt, P., Bowman, J., & Boone, W. J. (1993). Stereotypical images of scientists: A cross-age study. In 41st annual national meeting of the National Science Teachers Association, Kansas City, MO.
    187. Oregon Department of Education. (2002). 2002-2003 Scienctific Inquiry Test Scoring Guide. Retrieved July 27, 2021, from https://www.oregon.gov/Pages/index.aspx
    188. Organization for Economic Co-operation and Development. (2013). Measuring student knowledge and skills. The PISA 2013 assessment of reading, mathematical and scientific literacy. Paris: OECD.
    189. Organization for Economic Co-operation and Development. (2016). Measuring student knowledge and skills. The PISA 2016 assessment of reading, mathematical and scientific literacy. Paris: OECD.
    190. Organization for Economic Co-operation and Development. (2018). Measuring student knowledge and skills. The PISA 2018 assessment of reading, mathematical and scientific literacy. Paris: OECD.
    191. Oyao, S. G. Holbrook, J., Rannikmäe, M., & Pagunsan, M. M. (2015). A competence-based science learning framework illustrated through the study of natural hazards and disaster risk reduction. International Journal of Science Education, 37(14), 2237-2263
    192. Oztap, H., Ozay, E., & Oztap, F. (2003). Teaching cell division to secondary school students: An investigation of difficulties experienced by Turkish teachers. International Journal of Biological Education, 38, 13-15.
    193. Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology/Revue canadienne de psychologie, 45(3), 255.
    194. Palincsar, A. S., Magnusson, S. J., Cutter, J., & Vincent, M. (2002). Supporting guided-inquiry instruction. Teaching Exceptional Children, 34(3), 88.
    195. Paul, P. V. (2001). Language and deafness (3rd ed.). San Diego, CA: Singular.
    196. Pavlova, I. V., & Kreher, S. A. (2013). Missing links in genes to traits: Toward teaching for an integrated framework of genetics. American Biology Teacher, 75, 641-649.
    197. Pearson, P. D., Moje, E., & Greenleaf, C. (2010). Literacy and science: Each in the service of the other. science, 328(5977), 459-463.
    198. Pella, M. O., O'hearn, G. T., & Gale, C. W. (1966). Referents to scientific literacy. Journal of research in science teaching, 4(3), 199-208.
    199. Qi, S., & Mitchell, R. E. (2012). Large-scale academic achievement testing of deaf and hard-of-hearing students: Past, present, and future. Journal of deaf studies and deaf education, 17(1), 1-18.
    200. Radu, I. (2014). Augmented reality in education: a meta-review and cross-media analysis. Personal and Ubiquitous Computing, 18(6), 1533-1543.
    201. Reinisch, B., Krell, M., Hergert, S., Gogolin, S., & Krüger, D. (2017). Methodical challenges concerning the Draw-A-Scientist Test: a critical view about the assessment and evaluation of learners’ conceptions of scientists. International Journal of Science Education, 39(14), 1952-1975.
    202. Rickheit, G., & Sichelschmidt, L. (1999). 1 Mental Models: Some answers, some questions, some suggestions. Advances in psychology, 128, 9-40.
    203. Roald, I. (2002). Norwegian deaf teachers’ reflections on their science education: Implications for instruction. Journal of Deaf Studies and Deaf Education, 7(1), 57-73.
    204. Roseman, J. E., Stern, L. & Koppal, M. (2010). A method for analyzing the coherence of high school biology textbooks. Journal of Research in Science Teaching, 47, 47-70.
    205. Rubin, E., Bar, V., & Cohen, A. (2003). The images of scientists and science among Hebrew-and Arabic-speaking pre-service teachers in Israel. International Journal of Science Education, 25(7), 821-846.
    206. Rychen, D. S., & Salganik, L. H. (Eds.). (2003). Key competencies for a successful life and a wellfunctioning society. Cambridge, MA: Hogrefe & Huber.
    207. Schibeci, R. A., & Sorensen, I. (1983). Elementary school children's perceptions of scientists. School Science and Mathematics, 83(1), 14-20.
    208. Schmidt, K. M. (2014). Science fairs and Science Olympiad: Influence on student science inquiry learning and attitudes toward STEM careers and coursework. Ph. D. Thesis. Northern Illinois University.
    209. Schmidt, K. M., & Kelter, P. (2017). Science fairs: a qualitative study of their impact on student science inquiry learning and attitudes toward STEM. Science Educator, 25(2), 126-132.
    210. Schwab, J. J. (1962). The teaching of science as enquiry. In J. J. Schwab & P. F. Brandwein (Eds.), The teaching of science (pp. 3–103). Cambridge, MA: Harvard University Press.
    211. Shelton, B. E., & Hedley, N. R. (2002, September). Using augmented reality for teaching earth-sun relationships to undergraduate geography students. In Augmented Reality Toolkit, The First IEEE International Workshop (Vol. 8). IEEE.
    212. Simpson, R. D., Koballa, T. R., Oliver, J. S., & Crawley, F. E. (1994). Research on the affective dimension of science learning. Handbook of research on science teaching and learning, 1, 211-234.
    213. Steinke, J., Lapinski, M. K., Crocker, N., Zietsman-Thomas, A., Williams, Y., Evergreen, S. H., & Kuchibhotla, S. (2007). Assessing media influences on middle school–aged children's perceptions of women in science using the Draw-A-Scientist Test (DAST). Science Communication, 29(1), 35-64.
    214. Subramaniam, K., Esprívalo Harrell, P., & Wojnowski, D. (2013). Analyzing prospective teachers’ images of scientists using positive, negative and stereotypical images of scientists. Research in Science & Technological Education, 31(1), 66-89.
    215. Sumrall, W. J. (1995). Reasons for the perceived images of scientists by race and gender of students in grades 1–7. School Science and Mathematics, 95(2), 83-90.
    216. Swanwick, R., Oddy, A., & Roper, T. (2005). Mathematics and deaf children: an exploration of barriers to success. Deafness & Education International, 7(1), 1-21.
    217. Thomas, J. A., Pedersen, J. E., & Finson, K. (2001). Validating the draw-a-science-teacher-test checklist (DASTT-C): Exploring mental models and teacher beliefs. Journal of Science Teacher Education, 12(4), 295-310.
    218. Thomas, M. D., Henley, T. B., & Snell, C. M. (2006). The draw a scientist test: A different population and a somewhat different story. College Student Journal, 40(1), 140-149.
    219. Tsai, C. W., Shen, P. D., & Fan, Y. T. (2014). The application of augmented reality in online education: a review of studies published in selected journals from 2003 to 2012. International Journal of Information and Communication Technology Education (IJICTE), 10(2), 75-80.
    220. Türkmen, H. (2008). Turkish Primary Students' Perceptions about Scientist and What Factors Affecting the Image of the scientists. Eurasia Journal of Mathematics, Science & Technology Education, 4(1), 55-61.
    221. Vega Garzón, J. C., Magrini, M. L., & Galembeck, E. (2017). Using augmented reality to teach and learn biochemistry. Biochemistry and Molecular Biology Education, 45(5), 417-420.
    222. Vosganoff, D., Paatsch, L. E., & Toe, D. M. (2011). The mathematical and science skills of students who are deaf or hard of hearing educated in inclusive settings. Deafness & Education International, 13(2), 70-88.
    223. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and instruction, 4(1), 45-69.
    224. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive psychology, 24(4), 535-585.
    225. Wang, Y., & Paul, P. V. (2011). Integrating technology and reading instruction with children who are deaf or hard of hearing: The effectiveness of the Cornerstones Project. American Annals of the Deaf, 156(1), 56-68.
    226. Webb, P. (2010). Science education and literacy: Imperatives for the developed and developing world. Science, 328(5977), 448-450.
    227. Wellington, J., & Osborne, J. (2001). Language and literacy in science education. McGraw-Hill Education (UK).
    228. Williams, M., DeBarger, A. H., Montgomery, B. L., Zhou, X. C., & Tate, E. (2012). Exploring middle school students’ conceptions of the relationship between genetic inheritance and cell division. Science Education, 96, 78-103.
    229. Wu, H. K., Lee, S. W. Y., Chang, H. Y., & Liang, J. C. (2013). Current status, opportunities and challenges of augmented reality in education. Computers & education, 62, 41-49.
    230. Yarden, A. (2009). Reading scientific texts: Adapting primary literature for promoting scientific literacy. Research in Science Education, 39(3), 307-311.
    231. Yuen, S. C. Y., Yaoyuneyong, G., & Johnson, E. (2011). Augmented reality: An overview and five directions for AR in education. Journal of Educational Technology Development and Exchange (JETDE), 4(1), 11.
    232. Zhou, F., Duh, H. B. L., & Billinghurst, M. (2008, September). Trends in augmented reality tracking, interaction and display: A review of ten years of ISMAR. In Proceedings of the 7th IEEE/ACM International Symposium on Mixed and Augmented Reality (pp. 193-202). IEEE Computer Society.

    下載圖示
    QR CODE