簡易檢索 / 詳目顯示

研究生: 王甯
Wang, Ning
論文名稱: 男子捷泳選手轉身前划手調整對轉身表現之影響
Stroke Adjustment in the Regulation of Turning in Front Crawl Stroke
指導教授: 劉有德
Liu, Yeou-Teh
學位類別: 博士
Doctor
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 121
中文關鍵詞: 游泳滾翻式轉身轉身前後時間
英文關鍵詞: swimming, tumble turn, turning round trip time
論文種類: 學術論文
相關次數: 點閱:174下載:42
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前言:競速游泳比賽的表現優劣取決於整體游泳時間,許多研究指出游泳轉身技術是一種進階技巧的動作也直接影響整體游泳成績,意味著在高競技水平的競賽中,轉身技術的優劣對於游泳成績表現扮演著舉足輕重的角色。人類運動行為的協調型態是不同的限制來源交互作用下的結果,技術純熟的運動行為正是準確地接收環境中的訊息並產生知覺接著調整或啟動動作的表現結果。本研究以複雜系統觀點,對捷泳滾翻式轉身動作進行析論,觀察不同限制來源交互作用下的捷泳轉身協調型態與表現,進一步探討優秀捷泳選手如何準確地接收環境中的訊息並產生知覺接著調整及啟動轉身動作。本研究目的旨在探討捷泳轉身前划手調整策略對轉身表現之影響。實驗參與者為優秀游泳選手與一般游泳選手各九位,進行兩種實驗工作:第一種工作在15公尺泳池中檢驗選手對五種不同距離的知覺判斷。第二種工作則在25公尺泳池中藉由操弄兩種不同游泳速度(70%與90%)和改變泳池底的T字標線位置(距池壁2 m、2.3 m與2.6 m)以水底攝影機(60 fps)與陸上攝影機(50 fps)拍攝紀錄轉身過程,透過Kwon3D動作分析軟體擷取單側肢段關節二維資料。實驗之結果以積差相關考驗轉身表現與絕對誤差關聯性;以三因子多變量分析檢驗不同層級選手在不同游泳速度與不同泳池底的T字標線情境,轉身前划手調整策略與轉身過程中各項運動學參數,顯著水準設為 α =.05。結果1.在轉身前兩次划手與啟動轉身等三個時間點的比較中可觀察到水平速度並非維持穩定或線性關係而是有減速-加速之模式,同時也說明轉身前具有調整策略。2.優秀選手較能掌握啟動轉身的關鍵時間點(如啟動時間早、距離遠且啟動位置穩定、變異性低),並在轉身過程中具有較佳的物理特徵(如較高的接近期水平速度、旋轉期軀幹旋轉角速度、踩踏期蹬牆速度等)。3.速度是改變轉身動作行為的控制參數之一,建議在游泳教學或訓練中應加強游泳速度變異內容提升轉身技術。

    In this research program tumble turn was examined as a complex system where the individual, the task, and the environmental constraints were continually interacting to shape the performance. This research provided an opportunity to investigate the adjustment and adaptations of movements in a sample of elite athletes. Thus, aims of this study were to examine the key characteristics and explore the influences of the stroke adjustment on the turning performance. Nine regional and nine club level French male swimmers participated in this study. Two experimental tasks were implemented. The first task was to examine the perceptual ability of estimating distance to the wall. The second task was to examine the differences of the regulation strategy while approaching the wall (turning movement) in the crawl stroke between two levels of swimmers at two efforts (70% and 90%) under the changes of the standard “T” line position (normal T line, T line repositioned backward 30cm, and 60cm). One underwater camera (50Hz) and a ground camera were used for data collection. The correlation between the estimation accuracy of the distance and the performance of the turn was examined, and the movement kinematics was analyzed using the 3-way MANOVA. The results showed that the velocity pattern from the two strokes before turn initiation was neither stable nor increasing but in a pattern of decelerating then accelerating. This particular velocity profile indicates a stroke adjustment strategy before turning. Furthermore, elite swimmers present a constant and earlier turning point behavior and have superior performance of movement represented by kinematic variables. Last, the velocity may be an important control parameter in tumble turn coordination. We suggest increasing the variability of speed in swimming program in order to improve the turning performances.

    目 次 口試委員與系主任簽字之論文通過簽名表….………………………………………i 論文授權書…………….……………………………….…..…………………………ii 中文摘要………………………….…………………….……….……………………iii 英文摘要…………………………………………………..………...…………….. iv 謝誌……………………………………………………………………………………v 目次……………………………………………………….…………...………...……vi 表次…………………………………………………………………………..……….vii 圖次……………………………………………………................……...……….……x 第壹章 緒論…...……………………………………………….………1 第一節 問題背景…...………………………….………………………………1 第二節 研究目的……………………………………..………………………6 第三節 名詞操作性定義…...…………………………….………………..…6 第四節 研究範圍與限制……………………………………….....…………9 第貳章 文獻探討……………………………………………………10 第一節 游泳運動…...………………………….……………………..………10 第二節 複雜系統、三角限制模式、直接知覺與人體運動…………………22 第三節 量化游泳運動協調型態之方法………………………………..……32 第四節 文獻總結…………………………………………………………..…34 第參章 前導實驗……………………………………………………35 第一節 方法…...........………………………….…………………………..…35 第二節 結果…...………………………….………………………………..…38 第三節 討論…...………………………….………………………………..…40 第四節 結論…...………………………….………………………………..…41 第肆章 方法…………………………………………………………42 第一節 受試者…...……………………………….………………………..…42 第二節 實驗工作…...…………………………….………………………..…42 第三節 器材與場地布置…...…………………………….………………..…43 第四節 實驗步驟……………………………………………………………46 第五節 資料處理與分析…...…………………………….………………..…50 第六節 統計分析……………………………………………………………51 第伍章 結果…………………………………………………………54 第一節 受試者基本資料……………………………………………………54 第二節 距離知覺判斷測驗…..….……………………………….………..…55 第三節 轉身測驗…...……………………………………………………..…58 第陸章 討論…………………………………………………………89 第一節 距離知覺判斷…...............……………….………………………..…89 第一節 轉身前划手調整策略…...……………….………………………..…90 第二節 轉身表現特徵與行為…...……………….………………………..…92 第柒章 結論…………………………………………………………98 第一節 結論與建議…...………………………….………………………..…98 參考文獻………………………………………………………………100 附錄……………………………………………………………………119 附錄一 受試者須知與同意…………………….………………………...…111 附錄二 伯格運動自覺強度量表……………….………………………...…120 附錄三 各項轉身參數之相關係數………………………………....………121 表 次 表3-1 受試者基本資料………...………………………………..……………...…35表3-2 甲、乙組選手平均游泳速度…....……………………………………..……38表3-3 16位選手在23公尺出發最後兩下划手速度與滑行速度比例比較….…39表5-1 受試者各項基本資料與描述性統計表……………………………………54 表5-2 轉身測驗各項參數描述統計與變異係數…………………………………58 表5-3 滾翻式轉身動作分期百分比………………………………………………59 表5-4 轉身行為在不同技能水準、努力程度與T字位置間MANOVA分析……62 表5-5 轉身表現在不同技能水準、努力程度與T字位置間MANOVA分析……63 表5-6 轉身前運動學在不同技能水準、努力程度與時間點間MANOVA分析...64 表5-7 3mRTT與轉身表現各項參數之多元迴歸分析摘要表………………...…70 表5-8 兩組選手在兩種努力程度轉身動作順序方式統計與轉身表現比較....…88 圖 次 圖1-1 滾翻式與平轉式轉身動作圖解…...……….……………………………...…3圖2-1 2014國際游泳運動生物力學與醫學研討會研討主題…....………………14圖2-2 Hay (1993) 轉身技術分析因素圖…...………………………………….…17圖2-3 三角限制模式…...……………………………………………...………..…25圖2-4 訊息接收過程的時間分割與完整性...………………………...………..…27圖2-5 知覺與動作之間的雙向循環關係...………………………...…………..…29圖2-6 急行跳遠踩踏跳板前落腳位置分析...………………………...………..…31圖3-1 前導實驗場地佈置圖..…………………...……………………………..…37圖3-2 甲、乙組觸牆動作得分表現圖...………………………...…………..…..…39圖3-3 甲、乙組滑行速度比較圖...………………………...……………..……..…40圖4-1 木製池底T字標誌板示意圖…………...…………….…………….…..…44圖4-2 實驗場地佈置圖.........................………………………...…………..…..…45圖4-3 轉身測驗場地示意圖...………………..…………...……………..……..…45圖4-4 轉身測驗場地佈置示意圖...……………….……...……………..……..…46圖4-5 距離判斷知覺測驗流程...……………………………..……….………..…47圖4-6 實驗流程圖...…………….……………..…………...……………..……..…49 圖5-1 優秀與一般選手在70%努力程度的3mRTT時間與距離絕對誤差…...…..55 圖5-2 優秀與一般選手在五種不同出發位置之距離絕對誤差…...…………..…56 圖5-3 優秀與一般選手在70%努力程度的3mRTT時間與划手次數絕對誤差.…56 圖5-4 優秀與一般選手在五種不同出發位置之划手次數絕對誤差………….…57 圖5-5 優秀選手(編號1)90%努力程度標準T字位置轉身過程水平速度變化.…60 圖5-6 一般選手(編號2)90%努力程度標準T字位置轉身過程水平速度變化….60 圖5-7 優秀與一般選手在不同努力程度情境中的整體速度……...…………..…65 圖5-8 優秀與一般選手在不同努力程度情境中的平均划距……………...…..…66 圖5-9 優秀與一般選手在不同努力程度情境中的平均划頻.……………...…….67 圖5-10 優秀與一般選手在不同T字位置的T字轉身差…………………….….…68 圖5-11 優秀與一般選手在不同T字位置的啟動轉身瞬間頭部與池壁距離……69 圖5-12 優秀與一般選手在不同努力程度情境中的轉身前後三公尺折返時間...71 圖5-13 優秀與一般選手在不同T字位置的轉身時間........................................…72 圖5-14 優秀與優秀與一般選手在不同T字位置的接近期時間........................…73 圖5-15 90%與70%努力程度在不同T字位置的接近期時間.............................…74 圖5-16 優秀與一般選手在不同努力程度的旋轉期動作時間...........................…75 圖5-17 優秀與一般選手的踩踏期動作時間…………………………...........................…75 圖5-18 優秀與一般選手在不同努力程度情境中的最後一下划手水平速度...…76 圖5-19 優秀與一般選手在不同努力程度情境中的啟動轉身瞬時速度……...…77 圖5-20 優秀與一般選手的軀幹旋轉最大角速度...............................................…78 圖5-21 優秀與一般選手的蹬牆速度...................................................................…79 圖5-22 優秀與一般選手的蹬牆加速度...............................................................…79 圖5-23 優秀與一般選手的轉身距離指數...........................................................…81 圖5-24 優秀與一般選手在三個時間點的水平速度...........................................…82 圖5-25 90%與70%努力程度在三個時間點的水平速度....................................…83 圖5-26 轉身前優秀與一般選手在三個時間點頭部距離池壁標準差之比較...…84 圖5-27 優秀選手最後兩下划手距離與池壁之關係……………………………84圖5-28 一般選手最後兩下划手距離與池壁之關係………............................…85 圖5-29 兩種轉身順序在90%努力程度出現次數………...................................…86 圖5-30 標準順序與顛倒順序在90%努力程度出現次數...................................…86 圖5-31 兩種轉身順序在70%努力程度出現次數………...................................…87 圖5-32 標準順序與顛倒順序在70%努力程度出現次數...................................…87 圖6-1 3mRTT與啟動轉身時的瞬時速度以及頭部、池壁間的距離關係……..…94圖6-2 不同捷泳滾翻式轉身動作順序分解圖………………………………..…97

    參考文獻
    武育勇(1998)。游泳論。臺北縣:啟英。
    雲春萍 (2003) 。從動力學的觀點探究影響蝶泳成績表現之因素。中華體育季刊,17 (1), 49 -56 。
    嚴雅婷 (2008)。排球跳躍發球之時宜探討。(未出版博士論文) 。國立臺灣師範大學,臺北市。
    Alford, J., Ballesteros, J. M., Chengzhi, L., Dick, F., Gambetta, V., Jarver, J., Hay, J. G., Pfaff, D. and Sanderson, L. (1993). NSA Roundtable 19 - Horizontal jumps. New Studies in Athletics, 8(1): 17-28.
    Anson, G., Elliott, D., & Davids, K. (2005). Information processing and constraints-based views of skill acquisition: Divergent or complementary. Motor Control, 9, 217-241.
    Araújo, D., Davids, K., Bennett, S., Button, C., & Chapman, G. (2004). Emergence of Sport Skills under Constraints. In A. M. Williams, N.J. Hodges (Ed.), Skill Acquisition in Sport: Research, Theory and Practice (pp. 409-433). London: Routledge, Taylor & Francis.
    Araújo, D., Davids, K., & Hristovski, R. (2006). The ecological dynamics of decision making in sport. Psychology of Sport and Exercise, 7, 653-676.
    Araújo, D., Davids, K., Chow, J. Y., & Passos, P. (2009). The development of decision making skill in sport: An ecological dynamics perspective. In D. Araújo, H. Ripoll & M. Raab (Eds.), Perspectives on Cognition and Action in Sport. New York: Nova Sciences Publisher Inc.
    Araujo, L. G., Pereira, S.M., Gatti, R. G. O., Freitas, E. S., Jacomel, G., Roesler, H. & Vilas-Boas, J. P. (2010). Analyzes of the lateral push-off in the freestyle flip turn. Journal of Sports Sciences, 28, 1175.
    Arellano, R., Brown, P., Cappaert, J. & Nelson, R. (1994). Analysis of 50, 100, and 200 m Freestyle Swimmers at the 1992 Olympic Games. Journal of Applied Biomechanics, 10, 189-199.
    Arellano, R., Moreno, F., Martinez, M. and Oña, A. (1996) A device for quantitative measurement of starting time in swimming. In: Biomechanics and Medicine in Swimming VII. Eds: Troup, J.P., Hollander, A.P., Strasse, D., Trappe, S.W., Cappaert, J.W. and Trappe, T.A. London: E and FN Spon. 195-200.
    Bahadoran, M. R., Mosavi, S. H., Hasannejad, E., & Moradlo, H. (2012). Investigation kinematic of the flip turn technique in front crawl swimming. Oral session presented at the annual meeting of the International Society of Biomechanics in Sports, Melbourne, Australia.
    Bak, P. & Paczuski, M. (1995). Complexity, contingency, and criticality. Proceedings of the National Academy of Sciences of the United States of America, 92(15),6689-6696.
    Bak, P., & Chialvo, D. R. (2001). Adaptive learning by external dynamics and negative feedback. Physical Review E, 63(3), 1912-1924.
    Bando, M., Hasebe, K., Nakayama, A., Shibata, A. and Sugiyama, Y. (1995). Dynamical model of traffic congestion and numerical simulation. Physical Review, 51(2).
    Barbosa, T. M., Keskinen, K. L., Fernandes, R., Colaço, P., Lima, A. B. & Vilas-Boas, J. P. (2005). Energy cost and intracyclic variation of the velocity of the centre of mass in butterfly stroke. European Journal of Applied Physiology, 93(5), 519–523.
    Barbosa, T. M., Fernandes, R., Keskinen, K. L., Colaço, P., Cardoso, C., Silva, J., & Vilas-Boas, J. P. (2006). Evaluation of the Energy Expenditure in Competitive Swimming Strokes. International Journal of Sports and Medcine, 27, 894-899.
    Barbosa, T. M., Fernandes, R. J., Morouço, P., & Vilas-Boas, J. P. (2008). Predicting the intra-cyclic variation of the velocity of the centre of mass from segmental velocities, in butterfly stroke: a pilot study. Journal of Sport Sciences and Medicine, 7, 201-209.
    Barbosa, T. M., Bragada, J. A., Reis, V. M., Marinho, D. A., Carvalho, C. & Silva, A. J. (2010). Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. Journal of Science and Medicine in Sport, 13(2), 262–269.
    Bardy, B. G. & Laurent, M. (1998). How is body orientation controlled during somersaulting? Journal of Experimental Psychology: Human Perception and Performance, 24(3), 963-977.
    Barker, R. G. (1968). Ecological psychology. Stanford, CA, Stanford University Press.
    Bartlett, R. (2007). Introduction to sports biomechanics. London: Routledge.
    Beckett, K. D. (1985). Pulling a fast one: A double-arm pull off the wall may make your swimmers’ flip turn faster. Swimming Technique, 21(4), 27-29.
    Benjanuvatra, N, Blanksby, B. A., & Elliott, B. C. (2001). Morphology and hydrodynamic resistance in young swimmers. Pediatric Exercise Science, 13(3), 246-255.
    Berg, W. P., Wade, M. G., & Greer, N. L. (1994) Visual regulation of gait in bipedal locomotion: revisiting Lee, Lishman, and Thomson (1982). Journal of Experimental Psychology: Human Perception and Performance, 20(4), 854-863.
    Bernstein, N. A. (1967). The Control and Regulation of Movements. London: Pergamon Press.
    Bernstein, N. A. (1996). On dexterity and its development. In M. L. Latash, & M. T. Turvey(Eds.), Dexterity and its development (pp. 1–244). Mahwah, NJ: Erlbaum Publishers.
    Berthold, P., Helbig, A. J., Mohr, G., & Querner, U. (1992). Rapid microevolution of migratory behavior in a wild bird species. Nature, 360, 668-670.
    Bixler, B. & Riewald, S. (2002). Analysis of a swimmer’s hand and arm in steady flow conditions using computational fluid dynamics. Journal of Biomechanics, 35(5), 713–717.
    Blanksby, B. A., Gathercole, D. G., & Marshall, R. N. (1996). Force plate and video analysis of the tumble turn by age-group swimmers. Journal of Swimming Research, 11, 40–45.
    Blanksby, B. A., Hodgkinson, J. N., & Marshall, R. N. (1996). Force-time characteristics of freestyle tumble turns by elite swimmers. South African Journal for Research in Sport, Physical Education and Recreation, 19(1&2), 1-15.
    Blanksby, B. A., Simpson, J. R., Elliott, B. C., & McElroy, G. K. (1998). Biomechanical factors influencing breaststroke turns by age-group swimmers. Journal of Applied Biomechanics, 14,180-189.
    Blanksby, B. A., Skender, S., Elliott, B. C., McElroy, G. K., & Landers, G. (2004). Ananalysis of rollover backstroke turns by age-group swimmers. Sports Biomechanics, 3(1), 1-14.
    Bootsma, R. J., & Van Wierigen, P. C. W. (1990). Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16, 21-29.
    Borg, G.A.V. (1982) Psychophysical bases of perceived exertion. Medicine and Science in Sports and Exercise, 14, 377-81.
    Bradshaw, E. J. and Sparrow, W. A. (2001). Effects of approach velocity and foot-target characteristics on the visual regulation of step length. Human Movement Science, 20(4-5), 401-426.
    Bryman, A., & Cramer, D. (1997). Quantitative Data Analysis with SPSS for Windows: A guide for social scientists. London: Routledge.
    Caljouw, S. R., van der Kamp, J., & Savelsbergh, G. J. P. (2004). Timing of goal-directed hitting: Impact requirements change the information-movement coupling. Experimental Brain Research, 155(2), 135-144.Chatard, J. C., Bourgoin, B., & Lacour, J. R. (1990). Passive drag is still a good evaluator of swimming aptitude. European Journal of Applied Physiology, 59(4), 399-404.
    Camazine, S., Deneubourg, J. L., Franks, N. R., Sneyd, J., Theraula, G., & Bonabeau, E. (2001). Self-Organization in Biological Systems: Princeton Studies in Complexity. Princeton New Jersey: Princeton University Press.
    Chemero, A. (2009) Radical Embodied Cognitive Science. Cambridge: The MIT Press.
    Chollet, D., Seifert, L., Leblanc, H., Boulesteix, L., & Carter, M. (2004). Evaluation of armleg coordination in flat breaststroke. International Journal of Sports Medicine, 25, 486–495.
    Chollet, D., Seifert, L., Boulesteix, L., & Carter, M. (2006). Arm to leg coordination in elite butterfly swimmers. International Journal of Sports Medicine, 27(4), 322-329.
    Chow, J. W., Hay, J. G., Wilson, B. D., & Imel, C. (1984). Turning technique of elite swimmers. Journal of Sport Sciences, 2(3), 241-255.
    Chow, J. Y., Davids, K., Button, C., Shuttleworth, R., Renshaw, I., & Araújo, D. (2007). The role of nonlinear pedagogy in physical education. Review of Educational Research, 77(3), 251-278.
    Chow, J. Y., Davids, K., Button, C., & Rein, R. (2008). Dynamics of movement patterning in learning a discrete multiarticular action. Motor Control, 12(3), 219-240.
    Chow, J. Y., Davids, K., Hristovski, R., Araújo, D., & Passos, P. (2011). Nonlinear pedagogy: Learning design for self-organizing neurobiological systems. New Ideas in Psychology, 29(2), 189-200.
    Clarke, D., & Crossland, J. (1985). Action Systems: An Introduction to the Analysis of Complex Behavior. London: Methuen.
    Cordovil, R., Araujo, D., Davids, K., Gouveia, L., Barreiros, J., Fernandes, O. & Serpa, S. (2009). The influence of instructions and body-scaling as constraints on decision-making processes in team sports. European Journal of Sport Science, 9(3), 169-179.
    Cossor, J., Blanksby, B. & Elliott, B. (1999). The influence of plyometric training on the freestyle tumble turn. Journal of Science and Medicine in Sport, 2(2), 106-116.
    Cossor, J., Slawson, S., Conway, P., & West, A. (2014, May). The effect of feet placement during the wall contact phase on freestyle turns. Oral session presented at the meeting of the biomechanics and medicine in swimming. Canberra, Australia.
    Costill, D. L., Maglischo, E. W. & Richardson, A. B. (1992). Handbook of Sports Medicine and Science: Swimming. Blackwell Scientific Publications, Melbourne.
    Counsilman, J. E. (1955). Forces in swimming two types of crawl stroke. ResearchQuarterly, 26, 127-139.
    Couzin, I. D., Krause, J., Franks, N. R., & Levin, S. A. (2005). Effective leadership and decision making in animal groups on the move. Nature, 433, 513-516.
    Craig, A. B. & Pendeegast, D. R. (1979). Relationships of stroke rate, distance per stroke, and velocity in competitive swimming. Medicine & Science in Sports & Exercise, 11(3), 278.
    Craig, A. B., Skehan, P. L., Pawelczyk, J. A. & Boomer, W. L. (1985). Velocity, stroke rate, and distance per stroke during elite swimming competition. Medicine and Science in Sports and Exercise, 17(6), 625–634.
    Daniel, K., Klauck, J., & Bieder, A. (2003). Kinematic and dynamographic research in different swimming turns. In J.- C. Chatard (Ed.), Biomechanics and medicine in swimming IX (pp. 201–206). Saint-E´ tienne: Publications de l’Universite´ de Saint-E´tienne.
    Davids, K., Araújo, D., Shuttleworth, R. & Button, C. (2003). Acquiring Skill in Sport: A Constraints-Led Perspective. International Journal of Computer Science in Sport, 2, 31-39.
    Davids, K., Renshaw, I., & Glazier, P. (2005). Movement models from sports reveal fundamental insights into coordination processes. Exercise and Sport Science Reviews, 33(1), 36-42.
    Davids, K., Bennett, S., & Newell, K. (2006). Movement system variability. Champaign, IL: Human Kinetics.
    Davids, K., Button, C., Araújo, D., Renshaw, I., & Hristovski, R. (2006). Movement models from sports provide representative task constraints for studying adaptive behavior in human movement systems. Adaptive Behavior, 14, 73-95.
    Davids, K. and Baker, J. (2007). Genes, environment and sport performance - why the nature-nurture dualism is no longer relevant. Sports Medicine, 37(11): 961-980.
    Davids, K., Button, C., & Bennett, S. (2008). Dynamics of skill acquisition: A constraints-led approach. Champaign, IL: Human Kinetics.
    Davids, K., & Glazier, P. (2010). Deconstructing neurobiological coordination: The role of the biomechanics-motor control nexus. Exercise and Sport Sciences Reviews, 38(2), 86-90.
    Davids, K., Hristovski, R., Araújo, D., Balague, N., Button, C., Passos, P., Newell, K. M., Liu, Y. T. & Ranganathan, R. (2014). Complex System in Sports, NY: Routledge.
    Dempster, W. T. (1955). Space Requirements of the Seated Operator. WADC Technical Report (TR-55-159). Wright -Patterson Air Force Base, OH.
    Dicks, M., Davids, K., & Button, C. (2010). Individual differences in the visual control of intercepting a penalty kick in association football. Human Movement Science, 29(3), 401-411. doi: DOI: 10.1016/j.humov.2010.02.008.
    Edelman, G. M. & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences of the United States of America, 98(24), 13763-13768.
    Fajen, B. R., Riley, M. A., & Turvey, M. T. (2009). Information, affordances, and the control of action in sport. International Journal of Sport Psychology, 40(1), 79-107.
    Fox, E. L., Bartels, R. L., & Bowers, R. W. (1963). Comparison of speed and energy expenditure for two swimming turns. Research Quarterly, 34, 322-326.
    Freeman, W. J. (2007). Indirect biological measures of consciousness from field studies of brains as dynamical systems. Neural Networks, 20(Special Issue): 1021-1031.
    Gardano, P. & Dabnichki, P. (2006). On Hydrodynamics of Drag and Lift of the Human Arm, Journal of Biomechanics, 39(15), 2767–2773.
    Gathercole, D. G. (1994). Analysis of the Competitive Freestyle Turn Through the Use of a Force-Platform and Underwater Video. Unpublished Masters thesis, The University of Western Australia, Nedlands, Australia.
    Gavrilets, S. (1999). A Dynamical Theory of Speciation on Holey Adaptive Landscapes. The American Naturalist, 154(1), 1-22.
    Gershenson, C., Aerts, D., & Edmonds, B. (Eds.). (2007). Worldviews, science and us: Philosophy and complexity. Singapore: World Scientific Publishing Co.
    Gibbs, R. W. (2005). Embodiment and Cognitive Science. New York: Cambridge University Press.
    Gibson, J. J. (1979). The ecological approach to visual perception, NJ: Lawrence Erlbaum Associates.
    Gordon, D. M. (2007). Control without hierarchy. Nature, 446(7132), 143-143.
    Gréhaigne, J. F., Bouthier, D. & David, B. (1997). Dynamic-system analysis of opponent relationships in collective actions in soccer. Journal and Sports Science, 15, 137-149.
    Grieve, D. (1968). Gait patterns and the speed of walking. Biomedical Engineering, 3, 119-122.
    Haken, H., & Wunderlin, A. (1990). Synergetics and its paradigm of self-organization in biological systems. In H. T. A. Whiting, O. G. Meijer & P. C. W. van Wieringen (Eds.), The natural-physical approach to movement control. Amsterdam: VU University Press.
    Haken, H., Peper, C. E., Beek, P. J., & Daffertshofer, A. (1996). A model for phase transitions in human hand movements during multifrequency tapping. Physica D: Nonlinear Phenomena, 90(1), 179-196.
    Haljand, R. (1998). Roles of Starts and Turns at Short Course Events. L. E. Natation (Ed.). Sheffield:Ponds Forge International Sports Center.
    Handford, C., Davids, K., Bennett, S., & Button, C. (1997). Skill acquisition in sport: Some applications of an evolving practice ecology. Journal of Sports Sciences, 15(6), 621-640.
    Hay, J. G., Guimaraes, A. C. S., & Grimston, S. K. (1983). A quantitative look at swimming biomechanics. Swimming Technique, 20(2), 11,12,14-17.
    Hay, J. G. (1988) Approach strategies in the long jump. International Journal of Sport Biomechanics, 4, 114-129.
    Hay, J. G. (1992). The Biomechanics of Sports Techniques (4th ed.). Englewood Cliffs, NJ: Prentice Hall International Inc.
    Hodgkinson, J. N. (1994). Force-Time Characteristics of Freestyle Turns by Elite Swimmers. Unpublished Honours thesis, The University of Western Australia, Nedlands, Australia.
    Hodgkinson, J. N., & Blanksby, B. A. (1995). A look at the tumble turn. Proceedings of the Australian Swim Coaches Association Conference (pp. 102-109). Brisbane, Australia: ASTA (Qld.) Inc.
    Hristovski, R., Davids, K., Araújo, D., & Button, C. (2006). How boxer decide to punch a target: emergent behaviour in nonlinear dynamical movement systems. Journal of Sports Science and Medicine, CSSI, 60-73.
    Hsu, M. W. & Liu, Y. T. (2006). Timing a serve in table tennis. Physical Education Journal, 39, 2, 95-106.
    Huellhorst, U., Ungerechts, B. E., & Willimczik, K. (1988). Displacement and speed characteristics of the breaststroke turn - a cinematographic analysis. In B. E. Ungerechts, K. Reischle & K. Wilke (Eds.), International Series of Sport Sciences, Volume 18; Swimming Science V (pp. 93-96). Champaign, USA: Human Kinetics Publishers.
    Huys, R., Daffertshofer, A., & Beek, P. J. (2004). Multiple time scales and subsystem embedding in the learning of juggling. Human Movement Science, 23, 315-336.
    Ishak S., Adolph K. E., & Lin G. C. (2008) Perceiving affordances for fitting through apertures. Journal of Experimental Psychology: Human Perception and Performance, 34, 1501–1514.
    Jacobs, D. M., & Michaels, C. F. (2007). Direct learning. Ecological Psychology, 19, 321-349.
    Jones, K. (2009). Adolph and Tex: Backstroke Flip Turn. USMS Swimmer, Jan-Feb: 50.
    Kauffmann, S. A. (1993). The Origins of Order: Self-Organisation and Selection in Evolution. New York: Oxford University Press.
    Kehm, G. (2007). Great moments in Olympic history: Olympic swimming and diving. New York: The Rosen Publishing Group.
    Kelso, J. A. S. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology: Regulatory, Integrative, and Comparative, 246, R1000-R1004.
    Kelso, J. A. S. (1995). Dynamic patterns: The self-organization of brain and behaviour. Cambridge, MA: MIT Press.
    Kelso, J. A. S. (1997). Relative timing in brain and behavior: Some observations about the generalized motor program and self-organized coordination dynamics. Human Movement Science, 16, 453-460.
    King, W. H., & Irwin, L. R. (1957). A time and motion study of competitive backstroke swimming turns. Research Quarterly, 28, 11-17.
    Kugler, P. N., & Turvey, M. T. (1987). Information, Natural Law, and the Self-assembly of Rhythmic Movement. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Komar, J., Sanders, R. H., Chollet, D., & Seifert, L. (2014). Do qualitative changes in inter-limb coordination lead to effectiveness of aquatic locomotion rather than efficiency? Journal of Applied Biomechanics, 30(2), 189-196.
    Kurz, M. J., & Stergiou, N. (2004). Applied dynamic systems theory for the analysis of movement. In N. Stergiou (Ed.), Innovative analyses of human movement (pp. 93–119). Champaign: Human Kinetics.
    Lee, D. N., & Reddish, P. E. (1981). Plummeting gannets: A paradigm of ecological optics. Nature, 293, 293-294.
    Lee, D. N., Lishman, J. R., & Thomson, J. A. (1982). Regulation of gait in long jumping. Journal of Experimental Psychology: Human Perception and Performance, 8(3), 448-459.
    Lee, D. N., Young, D. S., Reddish, P. E., Loungh, S., & Clayton, T. M. H. (1983). Visual timing in hitting an accelerating ball. Quarterly Journal of Experimental Psychology, 35A, 333-346.
    Lu, T. W., Wang, T. M., Yen, H. C., Chen, H. L., Chang, C. F., Liu, Y. H., et al (2009). Bilateral knee osteoarthritis does not affect interjoint coordination in older adults with gait deviations during obstacle-crossing. Journal of Biomechanics, 42, 2349–2356.
    Lyttle, A., Mason, B. (1997). A kinematic and kinetic analysis of the freestyle and butterfly turns. Journal of Swimming Research 12, 7–11.
    Lyttle, A. D. (1999). Hydrodynamics of the Human Body During the Freestyle Tumble Turn. Unpublished Doctoral dissertation, The University of Western Australia, Nedlands, Australia.
    Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (1999a). The effect of depth and velocity on drag during the streamlined glide. Journal of Swimming Research, 13, 15-22.
    Lyttle, A. D., Blanksby, B. A., Elliott, B. C., & Lloyd, D. G. (1999b). Investigating kinetics in the freestyle flip turn push-off. Journal of Applied Biomechanics, 15, 242-252.
    Lyttle, A. D. (1999). Hydrodynamics of the Human Body During the Freestyle Tumble Turn. Unpublished Doctoral dissertation, The University of Western Australia, Nedlands, Australia.
    Lyttle, A. D., & Benjanuvatra, N. (2004). Optimising swim turn performance. Retrieved July 23, 2004, from http://www.coachesinfo.com/article/281.
    Lyttle, A. and Benjanuvatra, N. (2005) Start Right? A Biomechanical Review of Dive Start Performance. Available from URL: http:// www.coachesinfo.com/category /swimming/321/.
    Lyttle, A., & Benjanuvat, A. M. (2006). A Kinematic and kinetic analysis of the freestyle and butterfly turns. The Journal of Swimming Research, 12, 7-11.
    Maan˜ on, R., Sanchez, J. A., Eiroa, J., Bran˜ a, S., & Mon, J. (2003). Evolution of the crawl turn after technical intervention in the swimming training. In J.- C. Chatard (Ed.), Biomechanics and medicine in swimming IX (pp. 225–230). Saint-E´ tienne: Publications de l’Universite´ de Saint-E´ tienne.
    Maglischo, E. W. (2003). Swimming fastest. Champaign, IL: Human Kinetics.
    Manoel, E., & Connolly, K. (1995). Variability and the development of skilled actions. International Journal of Psychophysiology, 19, 129-147.
    Maraj, B. K. (2002). Control and co-ordination in the triple jump. In K. Davids, G. Savelsbergh, S. Bennett (Eds). Interceptive actions in sport. Information and Movement. London: Routledge.
    Mason, B. R. & Pilcher, A. (2002). The relationship of depth under the water to swim start and turn performance in freestyle events at the Sydney 2000 Olympic games. Retrieved June 15, 2003, from http://www.coachesinfo.com/files/ swimming/wssc2002/ mason.pdf.
    Mayer-Kress, G., Liu, Y. T., & Newell, K. M. (2006). Complex systems and human movement. Complexity, 12(2), 45-51.
    McGarry, T., Anderson, D. I., Wallace, S. A., Hughes, M. D., & Franks, I. M. (2002). Sport competition as a dynamical self-organizing system. Journal of Sports Sciences, 20(10), 771-781.
    McGarry, T. (2005). Soccer as a dynamical system: Some theoretical considerations. In T. Reilly, J. Cabri, & D. Araujo (Eds.), Science and Football V, (pp. 551-560). London: Routledge.
    Michaels, C. F., & Carello, C. (1981). Direct perception. Englewood Cliffs, NJ: Prentice Hall.
    Millán, H., Kalauzi, A., Llerena, G., Sucoshañay, J. and Piedra, D. (2009). Meteorological complexity in the Amazonian area of Ecuador: An approach based on dynamical system theory. Ecological Complexity, 6, 278–285.
    Miller, J. H., & Page, S. E. (2007). Complex Adaptive Systems: an Introduction to Computational Models of Social Life. Princeton: Princeton University Press.
    Mills, B. and Gehlsen, G. (1996). A multidisciplinary investigation of the relation of state sport confidence with preference and velocity of swimming starts. Perceptual and Motor Skills (83), 207-210.
    Mitchell, M. (2009). Complexity: A guided tour. Oxford, University Press.
    Montagne G., Cornus S., Glize D., Quaine F., & Laurent M. (2000). A perception-action coupling type control in long jump. Journal of Motor Behaviour, 32, 37-42.
    Montagne, G. (2005). Prospective control in sport. International Journal of Sport Psychology, 36, 127-150.
    Muller, H., & Sternad, D. (2004). Decomposition of Variability in the Execution of Goal-Oriented Tasks: Three Components of Skill Improvement. Journal of Experimental Psychology: Human Perception and Performance, 30(1), 212-233.
    Newble, D. (1982). A method of analyzing starts and turns in competitive swimming. The Australian Journal of Sports Sciences, 2(1), 11-13.
    Newell, K. M. (1986). Constraints on the development of coordination. In M. G. Wade & H. T. A. Whiting (Eds.), Motor skill acquisition in children: Aspects of coordination and control (pp. 341-360). Amsterdam: Martinies NIJHOS.
    Newell, K. M., & Liu, Y. T. (2001). Time scales in motor learning and development. Psychological Review, 108(1), 57‐82.
    Newell, K. M., & Ranganathan, R. (2010). Instructions as constraints in motor skill acquisition. In I. Renshaw, G. J. Savalsbergh & K. Davids (Eds.), Motor Learning in Practice. London, New York: Routledge.
    Nicol, K., & Kruger, F. (1979). Impulse exerted in performing several kinds of swimming turns. In J. Terauds & E. W. Bedingfield (Eds.), International Series of Sport Sciences, Volume 8; Swimming III (pp. 222-232). Baltimore, USA: University Park Press.
    Parrish, J. K., Viscido, S. V., & Grunbaum, D. (2002). Self-organized fish schools: An examination of emergent properties. Biological Bulletin, 202(3), 296-305.
    Passos, P., Araújo, D., Davids, K., Gouveia, L., Milho, J., & Serpa, S. (2008). Informationgoverning dynamics of attacker-defender interactions in youth rugby union. Journal of Sports Sciences, 26(13), 1421-1429.
    Passos, P., Araujo, D., Davids, K., Gouveia, L., Serpa, S., Milho, J., et al. (2009). Interpersonal pattern dynamics and adaptive behavior in multiagent neurobiological systems: Conceptual model and data. Journal of Motor Behavior, 41, 445-459.
    Pelayo, P. M., Sidney, M., Weissland, T., & Kherif, T. (1994). Stroking characteristics and variations of energy cost [Abstract]. Program and abstract book (pp.44). 7th International Symposium on Biomechanics and Medicine in Swimming. Atlanta: Georgia, U.S.A.
    Pereira, S., Araujo, L. G., Freitas, E., Gatti, R., Silveira, G., & Roesler, H. (2006). Biomechanical analysis of the turn in front crawl swimming. Portuguese Journal of Sport Sciences, 6 (2), 77–79.
    Prins, J. H., & Patz, A. (2006). The influence of tuck index, depth of foot-plant, and wall contact time on the velocity of push-off in the freestyle flip turn. Portuguese Journal of Sport Sciences, 6 (2), 82–85.
    Puel, F., Morlier, J., Mesnard, M., Cid, M., & Hellard, P. (2011). Three-dimensional kinematic and dynamic analysis of the crawl tumble turn performance: the expertise effect. Computer Methods in Biomechanics and Biomedical Engi- neering 14 (Suppl. 1), 215–216.
    Puel, F., Morlier, J., Avalos, M., Mesnard, M., Cid. M., & Hellard, P. (2012). 3D Kinematic and dynamic analysis of the front crawl tumble turn in elite male swimmers. Journal of Biomechanics, 45, 510-515.
    Ramenzoni, V., Riley, M. A.., Davis, T., Shockley, K., & Armstrong, R. (2008). Turning to another person’s action capabilities: Perceiving maximal jumping-reach height from kinematics. Journal of Experimental Psychology: Human Perception and Performance, 34(4), 919-928.
    Renshaw, I., & Fairweather, M. M. (2000). Cricket bowling deliveries and the discrimination ability of professional and amateur batters. Journal of Sports Sciences, 18, 951-957.
    Renshaw, I. and Davids, K. (2004). Nested task constraints shape continuous perception-action coupling control during human locomotor pointing. Neuroscience Letters, 369(2), 93-98.
    Savelsbergh, G. J. P., Whiting, H. T. A., & Bootsma, R. J. (1991). Grasping tau. Journal of Experimental Psychology: Human Perception and Performance, 17(2), 315-322.
    Sanders, R. H., Cappaert, J. M., & Devlin, R. K. (1995). Wave characteristics of butterfly swimming. Journal of Biomechanics, 28 (1), 9-16.
    Sanders, R., Byatt-Smith J. (2001) Improving feedback on swimming turns and starts exponentially. XIXth International Symposium on Biomechanics in Sports. San Francisco, p. 91-94
    Savelsbergh, G. J. P., Kamp, J. van der, Oudejans, R. R. D. & Scott, M. (2004). Perceptual learning is mastering perceptual degrees of freedom. In A.M. Willaims & N. Hodges (Eds.), Skill acquisition in sport: Research, Theory and Practice (p. 374-389). London: Taylor& Francis.
    Scharf, R. J., & King, W. H. (1964). Time and motion analysis of competitive freestyle swimming turns. Research Quarterly, 35, 37-44.
    Schmidt, R. C., Carello, C., & Turvey, M. T. (1990). Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of Experimental Psychology, 16(2), 227-247.
    Schmidt, R. A. & Lee,T. D. ( 2005 ). Motor control and learning: A behavioral emphasis. (4th). Champain, IL: Human Kinetics.
    Schöner, G. & Kelso, J. A. S. (1988). Dynamic pattern generation in behavioral and neural systems. Science, 239, 1513-1520.
    Scott, M. A., Li, F. X., & Davids, K. (1997). Expertise and the regulation of gait in the approach phase of the long jump. Journal of Sport Sciences, 15, 597-605.
    Seeley, T. D. (1995). The Wisdom of the Hive. Harvard University Press, Cambridge, 34-35.
    Seifert, L., Chollet, D., & Bardy, B. (2004). Effect of swimming velocity on arm coordination in front crawl: A dynamical analysis. Journal of Sports Sciences, 22, 651-660.
    Seifert, L., Delignieres, D., Boulesteix, L., & Chollet, D. (2007). Effect of expertise on butterfly stroke coordination. Journal of Sports Sciences, 25(2), 131-141..
    Seifert, L., Boulesteix, L., Chollet, D., & Vilas-Boas J. P. (2008). Differences in spatial-temporal parameters and arm-leg coordination in butterfly stroke as a function of race pace, skill and gender. Human Movement Science, 27, 96-111.
    Seifert, L., Leblanc, H., Chollet, D., & Delignieres, D. (2010). Inter-limb coordination in swimming: Effect of speed and skill level. Human Movement Science, 29, 103-113.
    Seifert, L., Button. C., & Davids. K. (2013). Key properties of expert movement system in sport. Sports Medicine, 43, 167-178.
    Seifert, L.,Komar, J.,Crettenand, F.,Dadashi, F.,Aminian, K.,Millet. G. P.(2014).Inter-limb coordination and energy cost in swimming. Journal of Science and Medicine in Sport,17(4),439-444.
    Shim, J., Carlton, L. G., Chow, J. W., & Chae, W. K. (2005). The use of anticipatory visual cues by highly skilled tennis players. Journal of Motor Behavior, 37(2), 164-175.
    Shimadzu, H., Shibata, R. & Ohgi, Y. (2008). Modelling swimmers' speeds over the course of a race. Journal of Biomechanics, 41, 549-555.
    Silveira, G. A., Araujo, L. G., Freitas, E. S., Schutz, G. R., Souza, T. G., Pereira, S. M., & Roesler, H. (2011). Proposal for standardization of the distance for analysis of freestyle flip-turn performance. Brazilian Journal of Kineanthropometry & Human Performance, 13, (3), 177-182.
    Slawson, S., Conway, P., Justham, L., Le Sage, T. & West, A. (2010). Dynamic signature for tumble turn performance in swimming. Procedia Engineering, 2(2), 3391–3396.
    Stergiou, N. (2004). Innovative analyses of human movement: analytical tools for human movement research. Champaign, IL: Human Kinetics, 93-116.
    Sumpter, D. J. T. (2006). The principle of collective animal behavior. Philosophical Transactions: Biological Science, 361(1465), 5-22.
    Takahashi, G., Yoshida, A., Tsubakimoto S., & Miyashita, M. (1983). Propulsive forces generated by swimmers during a turning motion. In A. P. Hollander, P. A. Huijing & G. de Groot (Eds.), International Series on Sport Sciences, Volume 14; Biomechanics and Medicine in Swimming: Proceedings of the Fourth International Symposium of Biomechanics in Swimming and the Fifth International Congress on Swimming Medicine (pp. 192-198). Champaign, USA: Human Kinetic Publishers.
    Takahashi, G., Sakata, I., Tsubakimoto, S., & Ae, M. (1983). A practical method for evaluation of swimming turn skill based on movement structure. Health and Sport Science, The University of Tsukuba, 6, 65-72.
    Thelen, E. (2002). Self-organisation in developmental processes: Can systems approaches work? In M. H. Johnson, Y. Munakata & R. O. Gilmore (Eds.), Brain Development and Cognition: A reader (2nd ed., pp. 336-374). Malden, MA: Blackwell.
    Tourny-Chollet, C., Chollet, C., Hogie, S. & Papparodopoulos, C. (2002). Kinematic analysis of butterfly turns of international and national swimmers. Journal of Sports Sciences, 20, 383-390.
    Turvey, M., Shaw, R., Reed, E., & Mace, W. (1981). Ecological laws of perceiving and acting: In reply to Fodor and Pylyshyn (1981). Cognition, 9(3), 237-304.
    Turvey, M. T. (1990). Coordination. American Psychologist, 45(8), 938-953.
    Turvey, M. T. & Shaw, R. E. (1999). Ecological foundations of cognition I. Symmetry and specificity of animal-environment systems. Journal of Consciousness Studies, 6(11-12), 95-110.
    Turvey, M. T. (2007). Action and perception at the level of synergies. Human Movement Science, 26(4), 657-697.
    Veiga, S., Cala, A., Frutos, P. G., & Navarro, E. (2013). Kinematical comparison of the 200 m backstroke turns between national and regional level swimmers. Journal of Sports Science and Medicine, 12, 730-737.
    Verlard, G. & Normand, C. (1980). Kontektion Spektrum der Wissenschaft. Heidelberg.
    Vilas-Boas, J., Cruz, J., Sousa, F., Conceição, F., Fernandez, R. & Carvalho, J. (2003) Biomechanical analysis of ventral swimming starts: comparaison of the grab-start with two trackstart techniques. In: Biomechanics and Medicine in Swimming IX, Saint Etienne: University of Saint Etienne. Ed: Chatard, J. 249-253.
    Vilas-Boas, J. P. (2014). Building up in swimming science. . Book of Abstracts (p. 1). Canberra, Australia: 2014 International symposium on biomechanics and medicine in Swimming.
    Wakayoshi, K., D’ Acquisto, L. J., Cappaert, J. M., & Troup, J. P. (1995). Relationship between oxygen uptake, stroke rate and swimming velocity in competitive swimming. International Journal of Sports Medicine, 16, 1, 19-23.
    Walker, J. (1996). Turning technique: The biomechanics of age group turns. The American Swimming Coaches Association World Clinic Series, 27, 129-137.
    Ward, T. A. (1976). A cinamatographical comparison of two turns. Swimming Technique, 13(1), 4-6, 9.
    Warren, W. H. (1984). Perceiving affordances: Visual guidance of stair climbing. Journal of Experimental Psychology, 10(5), 683-703.
    Warren, W. H., Kay, B. A., Zosh, W. D., Duchon, A. P., & Sahuc, S. (2001). Optic flow is used to control human walking. Nature Neuroscience, 4, 213-216.
    Warren, W. H. (2006). The dynamics of perception and action. Psychological Review,
    113(2), 358-389.
    Wei, T., Mark, R., & Hutchison, S. (2014). The Fluid Dynamics of Competitive Swimming. , Annu. Rev. Fluid Mech, 46, 547–565.
    Williams, A. M., Davids, K., & Williams, J. G. (1992). Perception and action in sport. Journal of Human Movement Studies, 22, 147-204.
    Williams, A. M., Davids, K. and Williams, J. G. (1999). Visual perception and action in sport. London, E. & F. N. Spon.
    Yu, W. W. & Stoffregen T. A. (2012). Postural and locomotors contributions to affordance perception. Journal of Motor Behavior, 44(5) 305-11.

    下載圖示
    QR CODE