簡易檢索 / 詳目顯示

研究生: 王銘義
Wang, Ming-Yi
論文名稱: 以雷射誘發結晶在旋轉塗佈法中來提升鹵化物全無機鈣鈦礦發光二極體之效率
Enhancement of the Efficiency of Halide Perovskite Light-Emitting Diodes by Laser-Induced Nucleation in the Spin-Coating Process
指導教授: 陳賜原
Chen, Szu-Yuan
林皓武
Lin, Hao-Wu
李君婷
Li, Chun-Ting
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 85
中文關鍵詞: 鈣鈦礦發光二極體全無機金屬鹵化物鈣鈦礦溶液製程反溶解度旋轉塗佈法
英文關鍵詞: Perovskite light-emitting diodes, All-inorganic metal halide perovskite, Spin coating, Solution process, Inverse solubility
DOI URL: http://doi.org/10.6345/NTNU202001430
論文種類: 學術論文
相關次數: 點閱:260下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦發光二極體具有製作成本低廉、製作快速、高量子效率、色域寬廣且放光波長固定等優點,再加上其外部量子效率的發展在十年間與其他發光二極體達到相同技術水準,使得鈣鈦礦發光二極體有機會取代其他技術,應用在新一代照明與顯示器。本研究透過鈣鈦礦的反溶解度特性,在旋轉塗佈法的過程中引入雷射,試圖透過雷射豐富的可控制參數,讓底部ITO (Indium tin oxide) 能在特定時間升溫、結晶,以解決過往在旋轉塗佈法中不易控制的成膜與結晶問題,改變鈣鈦礦形貌與結晶性,進而提升發光二極體之亮度與效率。本研究使用各種添加物找出其對鈣鈦礦的影響,並優化發光二極體各層之形成條件,解決過去實驗漏電流與低發光亮度的問題,接著找出部分造成元件不穩定的因素,最後在優化過的雷射條件下,使鈣鈦礦發光二極體發光亮度最多提升至4倍,而相較於實驗室學長的實驗結果,最大亮度也上升20~50倍。

    Perovskite light-emitting diodes (PeLEDs) have the advantage of low-cost, wide color gamut, narrow emission line-widths, and high quantum efficiency. PeLEDs have promising potential owing to their external quantum efficiency reach the same level as other LED within a decade. To enhance the performance of PeLEDs, we overcome the issue of morphology controlling in the spin coating process. Specifically, based on the inverse solubility of the perovskite, we use a laser as a heating source to control the nucleation and crystallization. Furthermore, we optimized the preparation condition in each layer of the PeLEDs to solve the problem of low brightness and leakage current. In summary, the luminance of PeLEDs increased up to 3~4 times comparing to the light-emitting diodes without a laser. Maximum luminance of deivice increased up to 20~50 times comparing with the result made by the senior in our lab.

    第1章、緒論 1 1.1、照明光源的進展 1 1.2、發光二極體 2 1.3、鈣鈦礦的發展與目標 2 1.4、鈣鈦礦發光二極體 4 1.4.1、鈣鈦礦發光二極體的優勢與挑戰 4 1.4.2、鈣鈦礦發光二極體重要文獻回顧 7 1.5、研究目標 11 第2章、實驗材料、量測與元件製程 12 2.1、元件設計 12 2.2、鈣鈦礦層製作方法 14 2.3、實驗材料 15 2.4、實驗儀器 18 2.4.1、近紅外光光纖雷射 (Fiber laser) 18 2.4.2、手套箱 (Glove box) 19 2.4.3、旋轉塗佈機 20 2.4.4、氧電漿機 (O2 plasma) 23 2.4.5、紫外光/臭氧 改質 (UV/O3 reforming ) 23 2.4.6、X射線繞射儀 (X-ray diffractometer,XRD) 24 2.4.7、掃描式電子顯微鏡 (Scannning electron microscopy,SEM) 25 2.4.8、真空蒸鍍機 (Thermal evaporation coater) 26 2.4.9、聚焦離子束 (Focus ion beam,FIB) 27 2.4.10、穿透式電子顯微鏡 (Transmission electron microscope,TEM) 28 2.6、元件製程與封裝 29 2.6.1、配置溶液 30 2.6.2、清洗基板 30 2.6.3、基板改質與PEDOT:PSS成膜 32 2.6.4、定義主動層與熱退火 33 2.6.5、主動層成膜(包含鈣鈦礦層、絕緣層與電子傳輸層) 33 2.6.6、陰極蒸鍍 35 2.6.7、元件封裝 35 2.7、元件性質量測 36 第3章、實驗結果與討論 38 3.1、各層優化與趨勢 38 3.1.1、優化純鈣鈦礦 38 3.1.2、優化TPBi 41 3.1.3、氧電漿處理PEDOT:PSS 46 3.1.4、清潔與定義主動區優化 49 3.2、鈣鈦礦層實驗結果 51 3.2.1、以MABr與BABr作為添加物 51 3.2.2、使用PMMA作為絕緣層 54 3.3、雷射對於鈣鈦礦層之影響 56 3.3.1、雷射加熱法:改變雷射加入鈣鈦礦的時機 58 3.3.2、雷射加熱法:改變雷射Intensity 60 3.3.3、雷射併用添加物 61 3.4、討論 66 3.4.1、鈣鈦礦不穩定 66 3.4.2、亮度隨著量測次數而逐漸上升 66 3.4.3、發光範圍不均之問題 67 第4章、 結論與未來展望 72 參考文獻 75 附錄A-1 80 附錄A-2 82 附錄A-3 83 附錄B:量測元件效能之Labview程式 85

    1. Osram Sylvania.(March 12, 2009). Energy and Legislative issue pertaining to Solid State Lighting. Retrieved Sep. 09, 2020. From https://www.slideshare.net/sodhi/ArchLED2008SSLEnergyLegislative2.
    2. 林晉賢 (民107)。以在鈣鈦礦層旋轉塗佈過程中界面活性劑輔助奈米顆粒形成來製備高效能鹵化物鈣鈦礦發光二極體。未出版之碩士論文,國立中央大學物理所,桃園市
    3. Kim, H. S., Im, S. H. &Park, N. G. Organolead halide perovskite: New horizons in solar cell research. J. Phys. Chem. C 118, 5615–5625 (2014).
    4. Park, N. G. Research Direction toward Scalable, Stable, and High Efficiency Perovskite Solar Cells. Adv. Energy Mater. 10, (2020).
    5. Yang, Y. &Li, G. Progress in High- Efficient Solution Process Organic Photovoltaic Devices. (2015). doi:10.1007/978-3-662-45509-8.
    6. Tang, H., He, S. &Peng, C. A Short Progress Report on High-Efficiency Perovskite Solar Cells. Nanoscale Res. Lett. 12, (2017).
    7. NREL. (Aug. 03, 2020). Best Research-Cell Efficiency Chart | Photovoltaic Research. Retrieved Sep. 09, 2020. From https://www.nrel.gov/pv/cell-efficiency.html.
    8. Liu, F. et al. Highly Luminescent Phase-Stable CsPbI3 Perovskite Quantum Dots Achieving Near 100% Absolute Photoluminescence Quantum Yield. ACS Nano 11, 10373–10383 (2017).
    9. Koscher, B. A., Swabeck, J. K., Bronstein, N. D. &Alivisatos, A. P. Essentially Trap-Free CsPbBr3 Colloidal Nanocrystals by Postsynthetic Thiocyanate Surface Treatment. J. Am. Chem. Soc. 139, 6566–6569 (2017).
    10. Cho, H. et al. High-Efficiency Solution-Processed Inorganic Metal Halide Perovskite Light-Emitting Diodes. Adv. Mater. 29, 1–8 (2017).
    11. Kang, J. &Wang, L. W. High Defect Tolerance in Lead Halide Perovskite CsPbBr3. J. Phys. Chem. Lett. 8, 489–493 (2017).
    12. Zhang, N. et al. All-optical control of lead halide perovskite microlasers. Nat. Commun. 10, 1–7 (2019).
    13. Wang, Y. C. et al. Flexible Organometal-Halide Perovskite Lasers for Speckle Reduction in Imaging Projection. ACS Nano 13, 5421–5429 (2019).
    14. Wang, D. et al. Amplified spontaneous emission properties of solution processed CsPbBr3 perovskite thin films doped with large-group ammonium cations . Opt. Mater. Express 10, 981 (2020).
    15. Li, X. et al. All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. Adv. Sci. news 13, 1–24 (2017).
    16. Dirin, D. N., Cherniukh, I., Yakunin, S., Shynkarenko, Y. &Kovalenko, M.V. SI_Solution-Grown CsPbBr3Perovskite Single Crystals for Photon Detection. Chem. Mater. 28, 8470–8474 (2016).
    17. Moreira, R. L. &Dias, A. Comment on ‘Prediction of lattice constant in cubic perovskites’. J. Phys. Chem. Solids 68, 1617–1622 (2007).
    18. Protesescu, L. et al. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Lett. 15, 3692–3696 (2015).
    19. Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 2–9 (2018).
    20. Kieslich, G., Sun, S. &Cheetham, A. K. Solid-state principles applied to organic–inorganic perovskites: New tricks for an old dog. Chem. Sci. 5, 4712–4715 (2014).
    21. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science (80-. ). 350, 1222–1225 (2015).
    22. Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).
    23. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).
    24. Enlitech. (2018). Perovskite-based LEDs are making rapid progress! EQE up to 20.1% comparable to OLEDs. Retrieved Sep. 09, 2020. From https://www.enlitechnology.com/show/perovskite-led.htm
    25. 陳光鑫/黃孝文 (2007)。有機發光二極體的效率。OLED夢幻顯示器 (234-237頁)。五南圖書出版
    26. Wang, Z. et al. Efficient Two-Dimensional Tin Halide Perovskite Light-Emitting Diodes via a Spacer Cation Substitution Strategy. J. Phys. Chem. Lett. 11, 1120–1127 (2020).
    27. Era, M., Morimoto, S., Tsutsui, T. &Saito, S. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H 4NH3)2PbI4. Appl. Phys. Lett. 65, 676–678 (1994).
    28. Jeon, T. et al. Laser Crystallization of Organic-Inorganic Hybrid Perovskite Solar Cells. ACS Nano 10, 7907–7914 (2016).
    29. Dirin, D. N., Cherniukh, I., Yakunin, S., Shynkarenko, Y. &Kovalenko, M.V. Solution-Grown CsPbBr3Perovskite Single Crystals for Photon Detection. Chem. Mater. 28, 8470–8474 (2016).
    30. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photonics 11, 108–115 (2017).
    31. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).
    32. Cheng, L. P. et al. Efficient CsPbBr 3 Perovskite Light-Emitting Diodes Enabled by Synergetic Morphology Control. Adv. Opt. Mater. 7, 1–9 (2019).
    33. Pedot, C. P. &Thermoelectrics, O. Modification and Characterization of Conducting Polymer PEDOT:PSS in Organic Thermoelectrics. ph. D. thesis.
    34. Cameron, J. &Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horizons 7, 1759–1772 (2020).
    35. Ebnesajjad, S. Surface tension and its measurement. Handbook of Adhesives and Surface Preparation (Elsevier Inc., 2011). doi:10.1016/B978-1-4377-4461-3.10003-3.
    36. 李烜逸 (民95)。高效率藍光多層共軛高分子發光二極體。未出版之碩士論文,國立交通大學物理所,新竹市
    37. ITO_XRD_peak_position. (2012). Retrieved Sep. 09, 2020. From http://www.fis.unical.it/files/fl178/6726noteXRD.pdf.
    38. Liu, Z. Y. et al. Solution-processed small molecular electron transport layer for multilayer polymer light-emitting diodes. Synth. Met. 161, 426–430 (2011).
    39. Zhou, Y. et al. Mild oxygen plasma treated PEDOT:PSS as anode buffer layer for vacuum deposited organic light-emitting diodes. Chem. Phys. Lett. 427, 394–398 (2006).
    40. Zhou, Y. et al. c | ence | rect Improved stability of OLEDs with mild oxygen plasma treated PEDOT : PSS. 20–22 doi:10.1016/j.jlumin.2006.0l.236.
    41. Researchgate. (Sep. 7, 2015) Can oxygen plasma treatment improve the hydrophilicity of ITO/PEDOT:PSS or ITO/ZnO surface? Retrieved Sep. 09, 2020. From https://www.researchgate.net/post/Can_oxygen_plasma_treatment_improve_the_hydrophilicity_of_ITO_PEDOTPSS_or_ITO_ZnO_surface.
    42. Cameron, J. &Skabara, P. J. The damaging effects of the acidity in PEDOT:PSS on semiconductor device performance and solutions based on non-acidic alternatives. Mater. Horizons 7, 1759–1772 (2020).
    43. Shrotriya, V., Li, G., Yao, Y., Chu, C. W. &Yang, Y. Transition metal oxides as the buffer layer for polymer photovoltaic cells. Appl. Phys. Lett. 88, 1–4 (2006).
    44. 沈廷霖 (民107)。離子遷移效應於有機鹵化鉛鈣鈦礦發光二極體。未出版之碩士論文,國立成功大學光電工程所,台南市
    45. Duan, L. et al. Solution processable small molecules for organic light-emitting diodes. J. Mater. Chem. 20, 6392–6407 (2010).

    下載圖示
    QR CODE