研究生: |
高欣 Kao, Hsin |
---|---|
論文名稱: |
視覺類比量尺的診斷分類模型 A Diagnostic Classification Model for Visual Analogue Scale |
指導教授: |
劉振維
Liu, Chen-Wei |
口試委員: |
劉振維
Liu, Chen-Wei 陳柏熹 Chen, Po-Hsi 陳俊宏 Chen, Jyun-Hong |
口試日期: | 2023/12/29 |
學位類別: |
碩士 Master |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 115 |
中文關鍵詞: | 視覺類比量尺 、診斷分類模型 、連續性資料 、馬可夫鏈蒙地卡羅 |
英文關鍵詞: | visual analogue scale, diagnostic classification model, continuous data, Markov chain Monte Carlo |
研究方法: | 模擬研究 、 實徵資料分析 |
DOI URL: | http://doi.org/10.6345/NTNU202401556 |
論文種類: | 學術論文 |
相關次數: | 點閱:53 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
視覺類比量尺(visual analogue scale, VAS)使受試者根據題目的敘述,在連續的視覺化量尺上進行標記,來反應受試者於試題欲測量潛在特質的傾向。由於VAS具有等距的特性,因此相較於間斷量尺(如李克特量尺),VAS在個體層面上得以提供更細緻的區辨度。鑒於目前所知的文獻中並未有針對VAS資料的診斷分類模型(diagnostic classification model, DCM),因此本研究旨在發展針對VAS資料的DCM。由於VAS資料為連續且具有雙邊界(doubly bounded)特性,本研究透過結合beta response model (BRM)以及log-linear cognitive diagnosis model(LCDM)組成針對連續雙邊界資料的beta diagnostic classification model (BDCM),並以馬可夫鏈蒙地卡羅(Markov chain Monte Carlo, MCMC)作為模型參數的估計方法。模擬研究中透過操弄特質數以及樣本數比較兩種模型:(1)應用BDCM於VAS資料以及(2)使用LCDM於二分資料,比較兩者之間試題參數回復以及分類準確率的差異。研究結果顯示,在試題參數回復上,BDCM所需的樣本小於LCDM,且在分類準確率上BDCM也優於LCDM。實徵研究針對Holland職業代碼(Holland code)發展的VAS職業興趣量表進行分析,並針對受試者的特質分類進行探討。
Visual analogue scale (VAS) enables participants to mark their responses on a continuous visual scale based on the item descriptions that reflect their tendencies toward the measured latent traits in the given items. VAS appears to provide more fine-grained discrimination at the individual level compared to categorical scale (i.e., Likert’s scale), given its interval properties. To the author’s best knowledge, there is currently no diagnostic classification model (DCM) designed for VAS data. Therefore, this study aims to develop a novel DCM model specifically tailored for VAS data. As VAS data are continuous and exhibit doubly bounded characteristics, this study integrates the beta response model (BRM) and the log-linear cognitive diagnosis model (LCDM) into beta diagnostic classification model (BDCM), suitable for continuous bounded data. Markov Chain Monte Carlo (MCMC) was employed as the estimation method for model parameters. The simulation study manipulated the number of attributes and sample sizes and compared two models: (1) applying BDCM to VAS data and (2) utilizing LCDM with dichotomous data. Specifically, the simulation study compared item parameter recovery and classification accuracy between the two models. The results suggest that, in terms of item parameter recovery, the sample size required for BDCM is smaller than that for LCDM. Additionally, in terms of classification accuracy, BDCM outperforms LCDM. An empirical study was conducted to examine the VAS Career Interest Scale based on the Holland Code, and investigated the trait classification of participants.
Aitken, R. C. (1969). Measurement of feelings using visual analogue scales. Proceedings of the Royal Society of Medicine, 62(10), 989–993.
Baneshi, M. R., & Talei, A. (2011). Dichotomisation of continuous data: Review of methods, advantages, and disadvantages. Iranian Journal of Cancer Prevention, 4(1), 26–32.
Bond, T., Yan, Z., & Moritz, H. (2020). Applying the rasch model: fundamental measurement in the human sciences. Routledge. https://doi.org/10.4324/9781410614575
Chen, J., & de la Torre, J. (2018). Introducing the general polytomous diagnosis modeling framework. Frontiers in Psychology, 9, Article 1474. https://doi.org/10.3389/fpsyg.2018.01474
Costa, P. T., & McCrae, R. R. (2008). The revised neo personality inventory (neo-pi-r). The SAGE Handbook of Personality Theory and Assessment, 2(2), 179–198. https://doi.org/10.4135/9781849200479.n9
de la Torre, J. (2011). The generalized DINA model framework. Psychometrika, 76, 179–199. https://doi.org/10.1007/S11336-011-9207-7
de la Torre, J., van der Ark, L. A., & Rossi, G. (2018). Analysis of clinical data from a cognitive diagnosis modeling framework. Measurement and Evaluation in Counseling and Development, 51(4), 281–296. https://doi.org/10.1080/07481756.2017.1327286
de Valpine, P., Turek, D., Paciorek, C. J., Anderson-Bergman, C., Lang, D. T., & Bodik, R. (2017). Programming with models: writing statistical algorithms for general model structures with NIMBLE. Journal of Computational and Graphical Statistics, 26(2), 403–413. https://doi.org/10.1080/10618600.2016.1172487
DeCarlo, L. T. (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix. Applied Psychological Measurement, 35(1), 8–26. https://doi.org/10.1177/0146621610377081
Deonovic, B., Chopade, P., Yudelson, M., de la Torre, J., & von Davier, A. A. (2019). Application of cognitive diagnostic models to learning and assessment systems. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models: Models and model extensions, applications, software packages (pp. 437–460). Springer International Publishing. https://doi.org/10.1007/978-3-030-05584-4_21
Dias, J. G., & Wedel, M. (2004). An empirical comparison of EM, SEM and MCMC performance for problematic Gaussian mixture likelihoods. Statistics and Computing, 14, 323–332. https://doi.org/10.1023/B:STCO.0000039481.32211.5a
Fang, G., Liu, J., & Ying, Z. (2019). On the identifiability of diagnostic classification models. Psychometrika, 84, 19–40.
https://doi.org/10.1007/s11336-018-09658-x
Ferrando, P. J. (2001). A nonlinear congeneric model for continuous item responses. British Journal of Mathematical and Statistical Psychology, 54(2), 293–313. https://doi.org/10.1348/000711001159573
Funke, F., & Reips, U.-D. (2012). Why semantic differentials in web-based research should be made from visual analogue scales and not from 5-point scales. Field Methods, 24(3), 310–327. https://doi.org/10.1177/1525822X12444061
Geweke, J. (1991). Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments. Federal Reserve Bank of Minneapolis.
Gilks, W. R., Richardson, S., & Spiegelhalter, D. (1995). Markov chain Monte Carlo in practice. CRC press.
Goodman, D. P., & Huff, K. (2007). The demand for cognitive diagnostic assessment. In M. Gierl & J. Leighton (Eds.), Cognitive diagnostic assessment for education: Theory and applications (pp. 19–60). Cambridge University Press. https://doi.org/10.1017/CBO9780511611186.002
Grant, S., Aitchison, T., Henderson, E., Christie, J., Zare, S., Mc Murray, J., & Dargie, H. (1999). A comparison of the reproducibility and the sensitivity to change of visual analogue scales, Borg scales, and Likert scales in normal subjects during submaximal exercise. Chest, 116(5), 1208–1217. https://doi.org/10.1378/chest.116.5.1208
Haertel, E. H. (1989). Using restricted latent class models to map the skill structure of achievement items. Journal of Educational Measurement, 26(4), 301–321. https://doi.org/10.1111/j.1745-3984.1989.tb00336.x
Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. University of Illinois at Urbana-Champaign.
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97–109. https://doi.org/10.1093/biomet/57.1.97
Hayes, M. (1921). Experimental development of the graphic rating method. Psychological Bulletin, 18, 98–99.
Heidelberger, P., & Welch, P. D. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31(6), 1109–1144. https://doi.org/10.1287/opre.31.6.1109
Henson, R. A., Templin, J. L., & Willse, J. T. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74, 191–210. https://doi.org/10.1007/s11336-008-9089-5
Hilbert, S., Kuechenhoff, H., Sarubin, N., Nakagawa, T. T., & Buehner, M. (2016). The influence of the response format in a personality questionnaire: An analysis of a dichotomous, a Likert-type, and a visual analogue scale. TPM: Testing, Psychometrics, Methodology in Applied Psychology, 23(1). https://doi.org/10.4473/TPM23.1.1
Holland, J. L. (1959). A theory of vocational choice. Journal of Counseling Psychology, 6(1), Article 35. https://doi.org/10.1037/h0040767
Holland, J. L. (1997). Making vocational choices: A theory of vocational personalities and work environments (3rd ed.). Psychological Assessment Resources.
Huang, Z., Kohler, I. V., & Kämpfen, F. (2020). A single-item visual analogue scale (VAS) measure for assessing depression among college students. Community Mental Health Journal, 56, 355–367.
https://doi.org/10.1007/s10597-019-00469-7
Jamieson, S. (2004). Likert scales: How to (ab) use them? Medical Education, 38(12), 1217–1218. https://doi.org/10.1111/j.1365-2929.2004.02012.x
Jang, Y., & Cohen, A. S. (2020). The impact of Markov chain convergence on estimation of mixture IRT model parameters. Educational and Psychological Measurement, 80(5), 975–994. https://doi.org/10.1177/0013164419898228
Jia, B., Zhu, Z., & Gao, H. (2021). International comparative study of statistics learning trajectories based on PISA data on cognitive diagnostic models. Frontiers in Psychology, 12, Article 657858. https://doi.org/10.3389/fpsyg.2021.657858
Jiang, Z., & Carter, R. (2019). Using Hamiltonian Monte Carlo to estimate the log-linear cognitive diagnosis model via Stan. Behavior Research Methods, 51, 651–662. https://doi.org/10.3758/s13428-018-1069-9
Junker, B. W., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258–272. https://doi.org/10.1177/01466210122032064
Kloft, M., Hartmann, R., & Heck, D. W. (2022). The Dirichlet Dual Response Model: An Item Response Model for Continuous Bounded Interval Responses. Psychometrika, 88, 888–916. https://doi.org/10.1007/s11336-023-09924-7
Kuhlmann, T., Dantlgraber, M., & Reips, U.-D. (2017). Investigating measurement equivalence of visual analogue scales and Likert-type scales in Internet-based personality questionnaires. Behavior Research Methods, 49, 2173–2181. https://doi.org/10.3758/s13428-016-0850-x
Lambert, B. (2018). A student's guide to Bayesian statistics. Sage Publications Ltd.
Lee, Y.-S., Park, Y. S., & Taylan, D. (2011). A cognitive diagnostic modeling of attribute mastery in Massachusetts, Minnesota, and the US national sample using the TIMSS 2007. International Journal of Testing, 11(2), 144–177. https://doi.org/10.1080/15305058.2010.534571
Lee, Y.-W., & Sawaki, Y. (2009). Application of three cognitive diagnosis models to ESL reading and listening assessments. Language Assessment Quarterly, 6(3), 239–263. https://doi.org/10.1080/15434300903079562
Lesage, F.-X., Berjot, S., & Deschamps, F. (2012). Clinical stress assessment using a visual analogue scale. Occupational Medicine, 62(8), 600–605. https://doi.org/10.1093/occmed/kqs140
Liang, K., Tu, D., & Cai, Y. (2022). Using Process Data to Improve Classification Accuracy of Cognitive Diagnosis Model. Multivariate Behavioral Research, 58(5), 969–987. https://doi.org/10.1080/00273171.2022.2157788
Liu, C.-W. (2022). Efficient Metropolis-Hastings Robbins-Monro Algorithm for High-Dimensional Diagnostic Classification Models. Applied Psychological Measurement, 46(8), 662–674. https://doi.org/10.1177/01466216221123981
Liu, C.-W. (2023). Multidimensional item response theory models for testlet-based doubly bounded data. Behavior Research Methods, 55(7), 1–45. https://doi.org/10.3758/s13428-023-02272-5
Liu, J., Xu, G., & Ying, Z. (2011). Learning item-attribute relationship in Q-matrix based diagnostic classification models (Report: arXiv:1106.0721). https://doi.org/10.48550/arXiv.1106.0721
Liu, X., & Johnson, M. S. (2019). Estimating CDMs using MCMC. In M. von Davier & Y.-S. Lee (Eds.), Handbook of diagnostic classification models: Models and model extensions, applications, software packages (pp. 629–646). Springer International Publishing. https://doi.org/10.1007/978-3-030-05584-4_31
LR, D. (1973). SCL-90: An outpatient psychiatric rating scale-preliminary report. Psychopharmacol Bull, 9, 13–28.
Müller, H. (1987). A rasch model for continuous ratings. Psychometrika, 52(2), 165–181. https://doi.org/10.1007/BF02294232
Ma, W., & de la Torre, J. (2020). GDINA: An R Package for Cognitive Diagnosis Modeling. Journal of Statistical Software, 93(14), 1–26. https://doi.org/10.18637/jss.v093.i14
Madison, M. J., & Bradshaw, L. P. (2015). The effects of Q-matrix design on classification accuracy in the log-linear cognitive diagnosis model. Educational and Psychological Measurement, 75(3), 491–511. https://doi.org/10.1177/0013164414539162
McGlohen, M., & Chang, H.-H. (2008). Combining computer adaptive testing technology with cognitively diagnostic assessment. Behavior Research Methods, 40, 808–821. https://doi.org/10.3758/BRM.40.3.808
McKelvie, S. J. (1978). Graphic rating scales—How many categories? British Journal of psychology, 69(2), 185–202. https://doi.org/10.1111/j.2044-8295.1978.tb01647.x
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092. https://doi.org/10.1063/1.1699114
Minchen, N., & de la Torre, J. (2018). A general cognitive diagnosis model for continuous-response data. Measurement: Interdisciplinary Research and Perspectives, 16(1), 30–44. https://doi.org/10.1080/15366367.2018.1436817
Minchen, N. D., de la Torre, J., & Liu, Y. (2017). A cognitive diagnosis model for continuous response. Journal of Educational and Behavioral Statistics, 42(6), 651–677. https://doi.org/10.3102/1076998617703
Noel, Y., & Dauvier, B. (2007). A beta item response model for continuous bounded responses. Applied Psychological Measurement, 31(1), 47–73.
Plummer, M., Best, N., Cowles, K., & Vines, K. (2006). CODA: Convergence diagnosis and output analysis for MCMC. R Journal, 6, 7–11.
Ravand, H., & Robitzsch, A. (2018). Cognitive diagnostic model of best choice: A study of reading comprehension. Educational Psychology, 38(10), 1255–1277. https://doi.org/10.1080/01443410.2018.1489524
Reips, U.-D., & Funke, F. (2008). Interval-level measurement with visual analogue scales in Internet-based research: VAS Generator. Behavior Research Methods, 40(3), 699–704. https://doi.org/10.3758/BRM.40.3.699
Revuelta, J., Halty, L., & Ximénez, C. (2018). Validation of a questionnaire for personality profiling using cognitive diagnostic modeling. The Spanish Journal of Psychology, 21, E63. https://doi.org/10.1017/sjp.2018.62
Royston, P., Altman, D. G., & Sauerbrei, W. (2006). Dichotomizing continuous predictors in multiple regression: A bad idea. Statistics in Medicine, 25(1), 127–141. https://doi.org/10.1002/sim.2331
Rubin, D. B. (1984). Bayesianly justifiable and relevant frequency calculations for the applied statistician. The Annals of Statistics, 12(4), 1151–1172. http://www.jstor.org/stable/2240995
Sinharay, S., Johnson, M. S., & Stern, H. S. (2006). Posterior predictive assessment of item response theory models. Applied Psychological Measurement, 30(4), 298–321. https://doi.org/10.1177/0146621605285517
Stephens, M. (2000). Dealing with label switching in mixture models. Journal of the Royal Statistical Society Series B (Statistical Methodology), 62(4), 795–809. https://doi.org/10.1111/1467-9868.00265
Streiner, D. L. (2002). Breaking up is hard to do: The heartbreak of dichotomizing continuous data. The Canadian Journal of Psychiatry, 47(3), 262–266. https://doi.org/10.1177/070674370204700307
Sung, Y.-T., & Wu, J.-S. (2018). The visual analogue scale for rating, ranking and paired-comparison (VAS-RRP): A new technique for psychological measurement. Behavior Research Methods, 50, 1694–1715. https://doi.org/10.3758/s13428-018-1041-8
Tamiya, N., Araki, S., Ohi, G., Inagaki, K., Urano, N., Hirano, W., & Daltroy, L. H. (2002). Assessment of pain, depression, and anxiety by visual analogue scale in Japanese women with rheumatoid arthritis. Scandinavian Journal of Caring Sciences, 16(2), 137–141. https://doi.org/10.1046/j.1471-6712.2002.00067.x
Templin, J., & Hoffman, L. (2013). Obtaining diagnostic classification model estimates using Mplus. Educational Measurement: Issues and Practice, 32(2), 37–50. https://doi.org/10.1111/emip.12010
Templin, J. L., & Henson, R. A. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), Article 287. https://doi.org/10.1037/1082-989X.11.3.287
Verkuilen, J., & Smithson, M. (2012). Mixed and mixture regression models for continuous bounded responses using the beta distribution. Journal of Educational and Behavioral Statistics, 37(1), 82–113. https://doi.org/10.3102/1076998610396895
Von Davier, M. (2008). A general diagnostic model applied to language testing data. British Journal of Mathematical and Statistical Psychology, 61(2), 287–307. https://doi.org/10.1348/000711007X193957
von Davier, M. (2014). The log‐linear cognitive diagnostic model (LCDM) as a special case of the general diagnostic model (GDM) (ETS Research Report Series, RR-14-40). Princeton. https://doi.org/10.1002/ets2.12043
Wang, J., Shi, N., Zhang, X., & Xu, G. (2022). Sequential Gibbs sampling algorithm for cognitive diagnosis models with many attributes. Multivariate Behavioral Research, 57(5), 840–858. https://doi.org/10.1080/00273171.2021.1896352
Wang, T., & Zeng, L. (1998). Item parameter estimation for a continuous response model using an EM algorithm. Applied Psychological Measurement, 22(4), 333–344. https://doi.org/10.1177/014662169802200402
Wright, B. D., & Masters, G. N. (1982). Rating scale analysis. MESA Press.
Wu, H.-M. (2019). Online individualised tutor for improving mathematics learning: A cognitive diagnostic model approach. Educational Psychology, 39(10), 1218–1232. https://doi.org/10.1080/01443410.2018.1494819
Wu, X., Wu, R., Chang, H.-H., Kong, Q., & Zhang, Y. (2020). International comparative study on PISA mathematics achievement test based on cognitive diagnostic models. Frontiers in Psychology, 11, Article 2230. https://doi.org/10.3389/fpsyg.2020.02230
Xie, Q. (2017). Diagnosing university students’ academic writing in English: Is cognitive diagnostic modelling the way forward? Educational Psychology, 37(1), 26–47. https://doi.org/10.1080/01443410.2016.1202900
Xu , G. (2017). Identifiability of restricted latent class models with binary responses. The Annals of Statistics, 45(2), 675–707. https://doi.org/10.1214/16-AOS1464
Xu, G., & Shang, Z. (2018). Identifying latent structures in restricted latent class models. Journal of the American Statistical Association, 113(523), 1284–1295. https://doi.org/10.1080/01621459.2017.1340889
Yamaguchi, K., & Templin, J. (2022). A Gibbs sampling algorithm with monotonicity constraints for diagnostic classification models. Journal of Classification, 39(1), 24–54. https://doi.org/10.1007/s00357-021-09392-7
Yusoff, R., & Mohd Janor, R. (2014). Generation of an interval metric scale to measure attitude. Sage Open, 4(1), 1–16. https://doi.org/10.1177/21582440135167
Zhan, P., Man, K., Wind, S. A., & Malone, J. (2022). Cognitive diagnosis modeling incorporating response times and fixation counts: Providing comprehensive feedback and accurate diagnosis. Journal of Educational and Behavioral Statistics, 47(6), 736–776. https://doi.org/10.3102/10769986221111