研究生: |
李思賢 Lee, Szu-Hsien |
---|---|
論文名稱: |
注意力對重複效果影響之事件相關電位研究 An Event-Related Potential Study on the Attentional Modulation of Repetition Effect |
指導教授: |
許禕芳
Hsu, Yi-Fang |
口試委員: |
劉惠美
Liu, Huei-Mei 陳昱君 Chen, Yu-Chun 許禕芳 Hsu, Yi-Fang |
口試日期: | 2021/12/29 |
學位類別: |
碩士 Master |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 重複抑制 、預期誤差 、注意力 、事件相關電位 |
英文關鍵詞: | repetition suppression, prediction errors, attention, event-related potentials |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300266 |
論文種類: | 學術論文 |
相關次數: | 點閱:152 下載:29 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當刺激重複出現時,會使神經活動減少,即重複抑制。這種現象最初被認為是由下而上的感覺訊息處理所引起,知覺的預期編碼模式則假設了重複效果反應由上而下產生的預期誤差的衰減。先前的事件相關電位研究顯示,這個衰減現象依序包含注意力獨立和注意力依賴的歷程,當出現單次重複刺激時,無論注意力的狀態如何,預期誤差的衰減都會出現在較早的事件相關電位成分上,但在較晚的事件相關電位成分上,只有在有注意時預期誤差的衰減會出現,不注意時的預期誤差衰減並不會出現。先前的研究通常基於重複一次刺激來研究這個問題。但當重複次數增加時,重複抑制和注意力之間的關係會如何隨時間演變,目前所知並不多。本研究欲使用腦電波技術瞭解在超過一次的重複刺激中,所引起注意力獨立和注意力依賴的效果之事件相關電位效果會如何變化。研究設計為每一個實驗區塊,有一組重複音流和填充音流,兩種音流交錯呈現。重複音流包含多組序列的聲音,每一序列為4個重複音調組成。填充音流則是不會馬上重複的隨機音調。為了能更好的呈現聽覺環境中隨時變化的特性,重複音流包含了連續和間歇兩種類型。受試者會被要求專注於重複音流或填充音流,以利分別測量在重複音流中注意和不注意的重複效果。本研究發現在N1的注意力依賴重複效果顯示快速下降,表示預測誤差的自動衰減的快速可塑性。然而,在連續重複音流中,注意和不注意兩種情況下,N1沒有呈現完全一致的重複抑制型態,但目前尚不清楚背後的原因。此結果僅在連續音流中發現,但沒有在間歇音流中發現,表示暫時性的干擾存在與否,會影響預期誤差衰減的容易度。而在本研究中,並沒有在P2發現注意力依賴的重複效果,這表示P2的注意力依賴重複效果可能是不穩定的現象。
Repetition suppression refers to a reduction in neural responses to stimulus repetition. This phenomenon was initially believed to result from the bottom-up processing of perceptual information. This view was later challenged by the predictive coding model of perception which postulates that repetition suppression reflects the top-down attenuation of prediction errors. Recent event-related potential (ERP) studies further suggested that repetition effect comprises of sequentially ordered attention-independent and attention-dependent processes. Specifically, repetition effect appears on earlier ERP components regardless of attention. On the other hand, repetition effect only occurs in attended but not unattended condition on later ERP components. However, previous research commonly examined repetition effect using one-time repetition of the stimuli. Less is known concerning how the relationship between repetition effect and attention evolves over time when the number of repetitions increases. This electroencephalography (EEG) study aimed at investigating how attention-independent and attention-dependent repetition effects on ERPs might evolve beyond one-time repetition of the stimuli. Participants were presented with blocks of tones where a roving stream (consisting of trains of 4 repeated tones) was interleaved with a filler stream (consisting of random tones without immediate repetitions). To better represent the everchanging nature of our auditory environment, the roving stream could be either continuous or intermittent. Participants were required to focus on either the roving stream or the filler stream to allow the measurement of attended and unattended repetition effects in the roving stream. The attention-dependent repetition effect on the N1 showed a fast depression and then rebounded, demonstrating the rapid plasticity of auditory processing. However, it is unclear why the exact pattern of repetition effect differed between attended and unattended conditions. Moreover, this pattern was found in the continuous-roving but not intermittent-roving stream, indicating that the absence or presence of temporary disruptions could affect the ease to attenuate prediction errors. On the other hand, no attention-dependent repetition effect was found on the P2, suggesting that the attention-dependent repetition effect here might be volatile.
Andics, A., Gál, V., Vicsi, K., Rudas, G., & Vidnyánszky, Z. (2013). FMRI repetition suppression for voices is modulated by stimulus expectations. NeuroImage, 69, 277–283. https://doi.org/10.1016/j.neuroimage.2012.12.033
Auksztulewicz, R., & Friston, K. (2016). Repetition suppression and its contextual determinants in predictive coding. Cortex, 80, 125–140. https://doi.org/10.1016/j.cortex.2015.11.024
Baldeweg, T., Klugman, A., Gruzelier, J., & Hirsch, S. R. (2004). Mismatch negativity potentials and cognitive impairment in schizophrenia. Schizophrenia Research, 69(2–3), 203–217. https://doi.org/10.1016/j.schres.2003.09.009
Bentley, P., Vuilleumier, P., Thiel, C. M., Driver, J., & Dolan, R. J. (2003). Effects of attention and emotion on repetition priming and their modulation by cholinergic enhancement. Journal of Neurophysiology, 90(2), 1171–1181. https://doi.org/10.1152/jn.00776.2002
Chang, A., Bosnyak, D. J., & Trainor, L. J. (2018). Beta oscillatory power modulation reflects the predictability of pitch change. Cortex, 106, 248–260. https://doi.org/10.1016/j.cortex.2018.06.008
Costa-Faidella, J., Baldeweg, T., Grimm, S., & Escera, C. (2011). Interactions between “what” and “when” in the auditory system: Temporal predictability enhances repetition suppression. Journal of Neuroscience, 31(50), 18590–18597. https://doi.org/10.1523/JNEUROSCI.2599-11.2011
Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115(4), 732–744. https://doi.org/10.1016/j.clinph.2003.11.021
Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
Dürschmid, S., Edwards, E., Reichert, C., Dewar, C., Hinrichs, H., Heinze, H. J., Kirsch, H. E., Dalal, S. S., Deouell, L. Y., & Knight, R. T. (2016). Hierarchy of prediction errors for auditory events in human temporal and frontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 113(24), 6755–6760. https://doi.org/10.1073/pnas.1525030113
Dyson, B. J., Alain, C., & He, Y. (2005). I’ve heard it all before: Perceptual invariance represented by early cortical auditory-evoked responses. Cognitive Brain Research, 23(2–3), 457–460. https://doi.org/10.1016/j.cogbrainres.2004.11.012
Eger, E., Henson, R. N. A., Driver, J., & Dolan, R. J. (2004). BOLD repetition decreases in object-responsive ventral visual areas depend on spatial attention. Journal of Neurophysiology, 92(2), 1241–1247. https://doi.org/10.1152/jn.00206.2004
Emberson, L. L., Boldin, A. M., Robertson, C. E., Cannon, G., & Aslin, R. N. (2019). Expectation affects neural repetition suppression in infancy. Developmental Cognitive Neuroscience, 37, Article 100597. https://doi.org/10.1016/j.dcn.2018.11.001
Ewbank, M. P., Lawson, R. P., Henson, R. N., Rowe, J. B., Passamonti, L., & Calder, A. J. (2011). Changes in “top-down” connectivity underlie repetition suppression in the ventral visual pathway. Journal of Neuroscience, 31(15), 5635–5642. https://doi.org/10.1523/JNEUROSCI.5013-10.2011
Feldman, H., & Friston, K. J. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, Article 215. https://doi.org/10.3389/fnhum.2010.00215
Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1456), 815–836. https://doi.org/10.1098/rstb.2005.1622
Garrido, M. I., Kilner, J. M., Kiebel, S. J., Stephan, K. E., Baldeweg, T., & Friston, K. J. (2009). Repetition suppression and plasticity in the human brain. NeuroImage, 48(1), 269–279. https://doi.org/10.1016/j.neuroimage.2009.06.034
Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23. https://doi.org/10.1016/j.tics.2005.11.006
Grill-Spector, K., & Malach, R. (2001). fMR-adaptation: A tool for studying the functional properties of human cortical neurons. Acta Psychologica, 107(1–3), 293–321. https://doi.org/10.1016/S0001-6918(01)00019-1
Haenschel, C., Vernon, D. J., Dwivedi, P., Gruzelier, J. H., & Baldeweg, T. (2005). Event-related brain potential correlates of human auditory sensory memory-trace formation. Journal of Neuroscience, 25(45), 10494–10501. https://doi.org/10.1523/JNEUROSCI.1227-05.2005
Henson, R. N. A., & Mouchlianitis, E. (2007). Effect of spatial attention on stimulus-specific haemodynamic repetition effects. NeuroImage, 35(3), 1317–1329. https://doi.org/10.1016/j.neuroimage.2007.01.019
Henson, R. N. A., & Rugg, M. D. (2003). Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia, 41(3), 263–270. https://doi.org/10.1016/S0028-3932(02)00159-8
Hsu, Y.-F., Darriba, Á., & Waszak, F. (2021). Attention modulates repetition effects in a context of low periodicity. Brain Research, 1767, Article 147559. https://doi.org/10.1016/j.brainres.2021.147559
Hsu, Y.-F., Hämäläinen, J. A., & Waszak, F. (2014). Repetition suppression comprises both attention-independent and attention-dependent processes. NeuroImage, 98, 168–175. https://doi.org/10.1016/j.neuroimage.2014.04.084
Hsu, Y.-F., Waszak, F., & Hämäläinen, J. A. (2019). Prior precision modulates the minimization of auditory prediction error. Frontiers in Human Neuroscience, 13, Article 30. https://doi.org/10.3389/fnhum.2019.00030
Jiang, J., Summerfield, C., & Egner, T. (2013). Attention sharpens the distinction between expected and unexpected percepts in the visual brain. Journal of Neuroscience, 33(47), 18438–18447. https://doi.org/10.1523/JNEUROSCI.3308-13.2013
Kikuchi, Y., Ip, J., Lagier, G., Mossom, J. C., Kumar, S., Petkov, C. I., Barraclough, N. E., & Vuong, Q. C. (2019). Interactions between conscious and subconscious signals: Selective attention under feature-based competition increases neural selectivity during brain adaptation. Journal of Neuroscience, 39(28), 5506–5516. https://doi.org/10.1523/JNEUROSCI.3052-18.2019
Kok, P., Jehee, J. F. M., & de Lange, F. P. (2012). Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex. Neuron, 75(2), 265–270. https://doi.org/10.1016/j.neuron.2012.04.034
Lange, K. (2013). The ups and downs of temporal orienting: A review of auditory temporal orienting studies and a model associating the heterogeneous findings on the auditory N1 with opposite effects of attention and prediction. Frontiers in Human Neuroscience, 7, Article 263. https://doi.org/10.3389/fnhum.2013.00263
Moore, K. S., Yi, D.-J. J., & Chun, M. (2013). The effect of attention on repetition suppression and multivoxel pattern similarity. Journal of Cognitive Neuroscience, 25(8), 1305–1314. https://doi.org/10.1162/jocn_a_00387
Näätänen, R., Gaillard, A. W. K., & Mäntysalo, S. (1978). Early selective-attention effect on evoked potential reinterpreted. Acta Psychologica, 42(4), 313–329. https://doi.org/10.1016/0001-6918(78)90006-9
Näätänen, R., & Picton, T. (1987). The N1 Wave of the Human Electric and Magnetic Response to Sound: A Review and an Analysis of the Component Structure. Psychophysiology, 24(4), 375–425. https://doi.org/10.1111/j.1469-8986.1987.tb00311.x
Recasens, M., Leung, S., Grimm, S., Nowak, R., & Escera, C. (2015). Repetition suppression and repetition enhancement underlie auditory memory-trace formation in the human brain: An MEG study. NeuroImage, 108, 75–86. https://doi.org/10.1016/j.neuroimage.2014.12.031
Schröger, E., Marzecová, A., & SanMiguel, I. (2015). Attention and prediction in human audition: A lesson from cognitive psychophysiology. The European journal of neuroscience, 41(5), 641–664. https://doi.org/10.1111/ejn.12816
Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M. M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11(9), 1004–1006. https://doi.org/10.1038/nn.2163
Summerfield, C., Wyart, V., Johnen, V. M., & de Gardelle, V. (2011). Human scalp electroencephalography reveals that repetition suppression varies with expectation. Frontiers in Human Neuroscience, 5, Article 67. https://doi.org/10.3389/fnhum.2011.00067
Todorovic, A., van Ede, F., Maris, E., & de Lange, F. P. (2011). Prior expectation mediates neural adaptation to repeated sounds in the auditory cortex: An MEG study. Journal of Neuroscience, 31(25), 9118–9123. https://doi.org/10.1523/JNEUROSCI.1425-11.2011
Volosin, M., & Horváth, J. (2014). Knowledge of sequence structure prevents auditory distraction: An ERP study. International Journal of Psychophysiology, 92(3), 93–98. https://doi.org/10.1016/j.ijpsycho.2014.03.003
Yi, D. -J., & Chun, M. M. (2005). Attentional modulation of learning-related repetition attenuation effects in human parahippocampal cortex. Journal of Neuroscience, 25(14), 3593–3600. https://doi.org/10.1523/JNEUROSCI.4677-04.2005
Yi, D. -J., Kelley, T. A., Marois, R., & Chun, M. M. (2006). Attentional modulation of repetition attenuation is anatomically dissociable for scenes and faces. Brain Research, 1080(1), 53–62. https://doi.org/10.1016/j.brainres.2006.01.090