研究生: |
吳曜如 Wu, Yao-Ju |
---|---|
論文名稱: |
以斑馬魚模式進行腦功能側化相關研究 Study cerebral lateralization using zebrafish model |
指導教授: |
呂國棟
Lu, Kwok-Tung |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 108 |
中文關鍵詞: | 斑馬魚 、端腦 、腦側化 、fmr1基因 、長期增益作用 、長期抑制作用 |
英文關鍵詞: | zebrafish, telencephalon, brain lateralization, fmr1 gene, LTP, LTD |
DOI URL: | https://doi.org/10.6345/NTNU202202913 |
論文種類: | 學術論文 |
相關次數: | 點閱:206 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
斑馬魚(Denio rerio)因其胚胎透明、容易飼養及觀察等優點,近年成為神經與發育生物學研究之新興動物模式。斑馬魚的神經系統與大多數硬骨魚類似,其端腦 (telencephalon) 的主要構造、相對體積大小、解剖位置及功能與哺乳類之邊緣系統 (limbic system) 相似,為一個易於操作的端腦功能研究模式。本篇論文即利用斑馬魚的各項研究優勢,進行三個部分的研究,以探討斑馬魚端腦的功能、相關之運作過程與訊息傳遞之機轉。在第一章中,我們延續先前的實驗成果,利用吸引法(aspiration)對端腦進行直接的破壞,以探究端腦在空間記憶形成上所扮演的角色,結果顯示端腦的左、右兩半球,分別對於空間及情緒性記憶 (emotional memory) 有著不同的影響,特別是在獲取 (acquisition) 及重新擷取 (retrieval) 的過程中,而對端腦進行單側破壞(unilateral ablation),均可干擾情緒性記憶的形成。在第二章中,由於過去文獻發現X染色體脆折症 (fragile X syndrome) 患者在腦側化 (cerebral lateralization) 的表現上受到影響,故藉著fmr1基因剔除品系斑馬魚,探討此斑馬魚身上,是否會呈現類似人類病患之異常情緒性行為,結果證實了fmr1之缺損,會造成斑馬魚情緒性行為之發展異常,也會干擾了抑制性逃避記憶 (inhibitory avoidance memory) 的形成。在第三章中,主要使用了電生理的實驗方式,探究斑馬魚端腦外側 (Dl) 到端腦內側 (Dm) 之訊號傳遞。我們發現不只通往同側的端腦內側 (ipsilateral telencephalic Dm region) 有訊號傳遞,而在對側 (contralateral) 端腦之內側亦有類似的訊號傳遞,並且兩側同時存在着代表神經可塑性的長期增强效應long-term potentiation (LTP) 及長期抑制效應long-term depression (LTD) 現象,兩者的作用機制需要麩胺酸NMDA及代謝性受體 (metabotropic glutamate receptor) 的參與;其神經可塑性之LTP與LTD模式,在左、右側端腦中的表現並非完全相同,這呼應了第一階段的實驗結果,進一步證實了斑馬魚的左右側端腦,在處理學習與記憶的功能時,扮演著不同的角色。最後我們也發現,有別於哺乳類動物,斑馬魚主要藉由前連合 (anterior commissure) 構造進行兩側端腦的訊息傳遞。
總結上述三階段的研究成果,可證明斑馬魚端腦中亦存在著腦側化的現象,而斑馬魚確實能應用於探討腦側化的機轉研究。
Zebrafish is an important animal model for the neuroscience and developmental biology researches, the transparent egg and embryo of zebrafish which is convenience to observe the developmental process. It shares similar neural structure and function among teleost. The simplicity of its neural system is more convenient for studying limbic system function than conventional mammalian models. The present study used these advantages to achieve two research goals. In chapter one, we observed the abnormality of emotional behavior in fmr1 KO zebrafish. In chapter two, we used electrophysiological recording paradigms to study the ipsilateral and contralateral synapse between lateral diencephalon (Dl) and medial diencephalon (Dm). Our results showed consistency with the previous study showing the neural projection between Dl-Dm. We also proved that the projection does not only link to ipsilateral but also connected with the contralateral telencephalon. Most interestingly, both LTP and LTD were form in contralateral Dl and different mechanisms underlie the synaptic plasticity between ipsilateral and contralateral side of TEL. Results of behavioral experiments showed each side of telencephalon may play different role in learning and memory. Furthermore our results also suggested the possibility that the uneven distribution of metabotropic glutamate receptor type one (mGluR1) on telencephalon may essential for the cerebral lateralization in zebrafish.
Abitbol M, Menini C, Delezoide AL, Rhyner T, Vekemans M, Mallet J. 1993. Nucleus basalis magnocellularis and hippocampus are the major sites of FMR-1 expression in the human fetal brain. Nat Genet 4: 147-53
American Psychiatric A, American Psychiatric A, Force DSMT. 2013. Diagnostic and statistical manual of mental disorders : DSM-5.
Andrew RJ, Tommasi L, Ford N. 2000. Motor control by vision and the evolution of cerebral lateralization. Brain Lang 73: 220-35
Ashley CT, Jr., Wilkinson KD, Reines D, Warren ST. 1993. FMR1 protein: conserved RNP family domains and selective RNA binding. Science 262: 563-6
Bassell GJ, Warren ST. 2008. Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60: 201-14
Beck H, Goussakov IV, Lie A, Helmstaedter C, Elger CE. 2000. Synaptic plasticity in the human dentate gyrus. J Neurosci 20: 7080-6
Bhattacharya A, Kaphzan H, Alvarez-Dieppa AC, Murphy JP, Pierre P, Klann E. 2012. Genetic removal of p70 S6 kinase 1 corrects molecular, synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76: 325-37
Chirwa S, Mack J, Park R, Dennis K, Aduonum A. 2001. An in vivo model for investigating bilateral synaptic plasticity across CA3/CA1 synapses in guinea pig dorsal hippocampus. J Neurosci Methods 110: 25-30
Churchill JD, Grossman AW, Irwin SA, Galvez R, Klintsova AY, et al. 2002. A converging-methods approach to fragile X syndrome. Dev Psychobiol 40: 323-38
Cognato Gde P, Bortolotto JW, Blazina AR, Christoff RR, Lara DR, et al. 2012. Y-Maze memory task in zebrafish (Danio rerio): the role of glutamatergic and cholinergic systems on the acquisition and consolidation periods. Neurobiol Learn Mem 98: 321-8
Colwill RM, Raymond MP, Ferreira L, Escudero H. 2005. Visual discrimination learning in zebrafish (Danio rerio). Behav Processes 70: 19-31
Concha ML. 2004. The dorsal diencephalic conduction system of zebrafish as a model of vertebrate brain lateralisation. Neuroreport 15: 1843-6
Darland T, Dowling JE. 2001. Behavioral screening for cocaine sensitivity in mutagenized zebrafish. Proceedings of the National Academy of Sciences of the United States of America 98: 11691-6
Darnell JC, Jensen KB, Jin P, Brown V, Warren ST, Darnell RB. 2001. Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell 107: 489-99
Davis RE, Klinger PD. 1987. Spatial discrimination in goldfish following bilateral tectal ablation. Behav Brain Res 25: 255-60
den Broeder MJ, van der Linde H, Brouwer JR, Oostra BA, Willemsen R, Ketting RF. 2009. Generation and characterization of FMR1 knockout zebrafish. PLoS One 4: e7910
Devys D, Lutz Y, Rouyer N, Bellocq JP, Mandel JL. 1993. The FMR-1 protein is cytoplasmic, most abundant in neurons and appears normal in carriers of a fragile X premutation. Nat Genet 4: 335-40
Dreosti E, Lopes G, Kampff AR, Wilson SW. 2015. Development of social behavior in young zebrafish. Frontiers in Neural Circuits 9: 9
Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, et al. 2009. Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behavioural Brain Research 205: 38-44
El-Gaby M, Shipton OA, Paulsen O. 2015. Synaptic Plasticity and Memory: New Insights from Hippocampal Left-Right Asymmetries. Neuroscientist 21: 490-502
Engeszer RE, Barbiano LA, Ryan MJ, Parichy DM. 2007. Timing and plasticity of shoaling behaviour in the zebrafish, Danio rerio. Anim Behav 74: 1269-75
Feng Y, Absher D, Eberhart DE, Brown V, Malter HE, Warren ST. 1997. FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. Mol Cell 1: 109-18
Fitzjohn SM, Kingston AE, Lodge D, Collingridge GL. 1999. DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 38: 1577-83
Folgueira M, Anadon R, Yanez J. 2004. An experimental study of the connections of the telencephalon in the rainbow trout (Oncorhynchus mykiss). I: Olfactory bulb and ventral area. J Comp Neurol 480: 180-203
Folgueira M, Bayley P, Navratilova P, Becker TS, Wilson SW, Clarke JD. 2012. Morphogenesis underlying the development of the everted teleost telencephalon. Neural Dev 7: 32
Francis SM, Sagar A, Levin-Decanini T, Liu W, Carter CS, Jacob S. 2014. Oxytocin and vasopressin systems in genetic syndromes and neurodevelopmental disorders. Brain Res
Fu YH, Kuhl DPA, Pizzuti A, Pieretti M, Sutcliffe JS, et al. 1991. Variation of the CGG repeat at the fragile-X site results in genetics instability - resolution of the sherman paradox. Cell 67: 1047-58
Ganz J, Kaslin J, Freudenreich D, Machate A, Geffarth M, Brand M. 2012. Subdivisions of the adult zebrafish subpallium by molecular marker analysis. J Comp Neurol 520: 633-55
Garber K, Smith KT, Reines D, Warren ST. 2006. Transcription, translation and fragile X syndrome. Curr Opin Genet Dev 16: 270-5
Gerlai R. 2014. Social behavior of zebrafish: from synthetic images to biological mechanisms of shoaling. J Neurosci Methods 234: 59-65
Gomez A, Duran E, Salas C, Rodriguez F. 2010. Cerebellum lesion impairs eyeblink-like classical conditioning in goldfish. Neuroscience 166: 49-60
Gomez Y, Vargas JP, Portavella M, Lopez JC. 2006. Spatial learning and goldfish telencephalon NMDA receptors. Neurobiol Learn Mem 85: 252-62
Henze DA, Urban NN, Barrionuevo G. 1997. Origin of the apparent asynchronous activity of hippocampal mossy fibers. J Neurophysiol 78: 24-30
Hinds HL, Ashley CT, Sutcliffe JS, Nelson DL, Warren ST, et al. 1993. Tissue specific expression of FMR-1 provides evidence for a functional role in fragile X syndrome. Nat Genet 3: 36-43
Hinz FI, Aizenberg M, Tushev G, Schuman EM. 2013. Protein synthesis-dependent associative long-term memory in larval zebrafish. J Neurosci 33: 15382-7
Hsu MTW, Y. J,; Ng, M. C.; Yang, Y. L.; Lu, K. T. 2014. Fragile X mental retardation-1 knockout zebrafish showed precocious development in social behavior. Presented at 12th Meeting of Asian- Pacific Society for Neurochemistry, Kaoshiung, Tai- wan
Ingham PW. 1997. Zebrafish genetics and its implications for understanding vertebrate development. Hum Mol Genet 6: 1755-60
Kanterewicz BI, Urban NN, McMahon DB, Norman ED, Giffen LJ, et al. 2000. The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci 20: 3057-66
Kawakami R, Shinohara Y, Kato Y, Sugiyama H, Shigemoto R, Ito I. 2003. Asymmetrical allocation of NMDA receptor epsilon2 subunits in hippocampal circuitry. Science 300: 990-4
Kelleher RJ, 3rd, Bear MF. 2008. The autistic neuron: troubled translation? Cell 135: 401-6
Kim JJ, DeCola JP, Landeira-Fernandez J, Fanselow MS. 1991. N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning. Behav Neurosci 105: 126-33
Klopocki E, Lohan S, Doelken SC, Stricker S, Ockeloen CW, et al. 2012. Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion. J Med Genet 49: 119-25
Knafo S, Venero C, Sanchez-Puelles C, Pereda-Perez I, Franco A, et al. 2012. Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement. PLoS Biol 10: e1001262
Maximino C, Puty B, Benzecry R, Araujo J, Lima MG, et al. 2013. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology 71: 83-97
McNaughton CH, Moon J, Strawderman MS, Maclean KN, Evans J, Strupp BJ. 2008. Evidence for social anxiety and impaired social cognition in a mouse model of Fragile X syndrome. Behavioral Neuroscience 122: 293-300
Miklosi A, Andrew RJ. 1999. Right eye use associated with decision to bite in zebrafish. Behav Brain Res 105: 199-205
Miller N, Gerlai R. 2012. From schooling to shoaling: patterns of collective motion in zebrafish (Danio rerio). PLoS One 7: e48865
Mines MA, Yuskaitis CJ, King MK, Beurel E, Jope RS. 2010. GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile X syndrome and autism. PLoS One 5: e9706
Mineur YS, Sluyter F, de Wit S, Oostra BA, Crusio WE. 2002. Behavioral and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 12: 39-46
Morris RG. 1989. Synaptic plasticity and learning: selective impairment of learning rats and blockade of long-term potentiation in vivo by the N-methyl-D-aspartate receptor antagonist AP5. J Neurosci 9: 3040-57
Mueller T, Dong Z, Berberoglu MA, Guo S. 2011. The dorsal pallium in zebrafish, Danio rerio (Cyprinidae, Teleostei). Brain Res 1381: 95-105
Mueller T, Guo S. 2009. The distribution of GAD67-mRNA in the adult zebrafish (teleost) forebrain reveals a prosomeric pattern and suggests previously unidentified homologies to tetrapods. J Comp Neurol 516: 553-68
Mueller T, Wullimann MF. 2009. An evolutionary interpretation of teleostean forebrain anatomy. Brain Behav Evol 74: 30-42
Nam RH, Kim W, Lee CJ. 2004. NMDA receptor-dependent long-term potentiation in the telencephalon of the zebrafish. Neurosci Lett 370: 248-51
Ng MC, Yang YL, Lu KT. 2013. Behavioral and synaptic circuit features in a zebrafish model of fragile X syndrome. PLoS One 8: e51456
Oberle I, Rousseau F, Heitz D, Kretz C, Devys D, et al. 1991. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 252: 1097-102
Otmakhov N, Khibnik L, Otmakhova N, Carpenter S, Riahi S, et al. 2004. Forskolin-induced LTP in the CA1 hippocampal region is NMDA receptor dependent. J Neurophysiol 91: 1955-62
Palmer MJ, Irving AJ, Seabrook GR, Jane DE, Collingridge GL. 1997. The group I mGlu receptor agonist DHPG induces a novel form of LTD in the CA1 region of the hippocampus. Neuropharmacology 36: 1517-32
Portavella M, Torres B, Salas C. 2004. Avoidance response in goldfish: emotional and temporal involvement of medial and lateral telencephalic pallium. J Neurosci 24: 2335-42
Portavella M, Torres B, Salas C, Papini MR. 2004. Lesions of the medial pallium, but not of the lateral pallium, disrupt spaced-trial avoidance learning in goldfish (Carassius auratus). Neurosci Lett 362: 75-8
Portavella M, Vargas JP, Torres B, Salas C. 2002. The effects of telencephalic pallial lesions on spatial, temporal, and emotional learning in goldfish. Brain Res Bull 57: 397-9
Rodriguez F, Lopez JC, Vargas JP, Broglio C, Gomez Y, Salas C. 2002. Spatial memory and hippocampal pallium through vertebrate evolution: insights from reptiles and teleost fish. Brain Res Bull 57: 499-503
Rojas DC, Benkers TL, Rogers SJ, Teale PD, Reite ML, Hagerman RJ. 2001. Auditory evoked magnetic fields in adults with fragile X syndrome. Neuroreport 12: 2573-6
Roussigne M, Bianco IH, Wilson SW, Blader P. 2009. Nodal signalling imposes left-right asymmetry upon neurogenesis in the habenular nuclei. Development 136: 1549-57
Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, et al. 2010. Zebrafish Behavior in Novel Environments: Effects of Acute Exposure to Anxiolytic Compounds and Choice of Danio rerio Line. Int J Comp Psychol 23: 43-61
Salas C, Broglio C, Duran E, Gomez A, Ocana FM, et al. 2006. Neuropsychology of learning and memory in teleost fish. Zebrafish 3: 157-71
Salas C, Broglio C, Rodriguez F, Lopez JC, Portavella M, Torres B. 1996a. Telencephalic ablation in goldfish impairs performance in a 'spatial constancy' problem but not in a cued one. Behav Brain Res 79: 193-200
Salas C, Rodriguez F, Vargas JP, Duran E, Torres B. 1996b. Spatial learning and memory deficits after telencephalic ablation in goldfish trained in place and turn maze procedures. Behav Neurosci 110: 965-80
Santos AR, Kanellopoulos AK, Bagni C. 2014. Learning and behavioral deficits associated with the absence of the fragile X mental retardation protein: what a fly and mouse model can teach us. Learn Mem 21: 543-55
Schnabel R, Kilpatrick IC, Collingridge GL. 1999. An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology 38: 1585-96
Shih JC, Chen K. 1999. MAO-A and -B gene knock-out mice exhibit distinctly different behavior. Neurobiology (Bp) 7: 235-46
Shinohara Y, Hirase H. 2009. Size and Receptor Density of Glutamatergic Synapses: A Viewpoint from Left-Right Asymmetry of CA3-CA1 Connections. Front Neuroanat 3: 10
Siomi H, Matunis MJ, Michael WM, Dreyfuss G. 1993a. The pre-mRNA binding K protein contains a novel evolutionarily conserved motif. Nucleic Acids Res 21: 1193-8
Siomi H, Siomi MC, Nussbaum RL, Dreyfuss G. 1993b. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74: 291-8
Sorensen EM, Bertelsen F, Weikop P, Skovborg MM, Banke T, et al. 2015. Hyperactivity and lack of social discrimination in the adolescent Fmr1 knockout mouse. Behav Pharmacol 26: 733-40
Steenbergen PJ, Richardson MK, Champagne DL. 2011. Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav Brain Res 222: 15-25
Streisinger G, Walker C, Dower N, Knauber D, Singer F. 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291: 293-6
Swain HA, Sigstad C, Scalzo FM. 2004. Effects of dizocilpine (MK-801) on circling behavior, swimming activity, and place preference in zebrafish (Danio rerio). Neurotoxicol Teratol 26: 725-9
Taylor RW, Qi JY, Talaga AK, Ma TP, Pan L, et al. 2011. Asymmetric inhibition of Ulk2 causes left-right differences in habenular neuropil formation. J Neurosci 31: 9869-78
Turner G, Webb T, Wake S, Robinson H. 1996. Prevalence of fragile X syndrome. Am J Med Genet 64: 196-7
van 't Padje S. 2007. Zebrafish as a Model to study Human Disease: Functional Studies of the FXR Proteins. Ph.D. thesis thesis. Erasmus University Rotterdam
Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, et al. 1991. Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65: 905-14
Villani L, Zironi I, Guarnieri T. 1996. Telencephalo-habenulo-interpeduncular connections in the goldfish: a DiI study. Brain Behav Evol 48: 205-12
von Trotha JW, Vernier P, Bally-Cuif L. 2014. Emotions and motivated behavior converge on an amygdala-like structure in the zebrafish. The European journal of neuroscience 40: 3302-15
Westerfield M. 1995. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 3rd Edition. pp. 285. Eugene, OR, University of Oregon Press.
Westerfield M. 2007. The Zebrafish Book: A Guide for Laboratory Use of the Zebrafish Denio* (Brachydanio) rerio. University of Oregon.
Williams FE, White D, Messer WS. 2002. A simple spatial alternation task for assessing memory function in zebrafish. Behav Processes 58: 125-32
Xiao MY, Zhou Q, Nicoll RA. 2001. Metabotropic glutamate receptor activation causes a rapid redistribution of AMPA receptors. Neuropharmacology 41: 664-71
Xu X, Bazner J, Qi M, Johnson E, Freidhoff R. 2003. The role of telencephalic NMDA receptors in avoidance learning in goldfish (Carassius auratus). Behav Neurosci 117: 548-54
Xu X, Scott-Scheiern T, Kempker L, Simons K. 2007. Active avoidance conditioning in zebrafish (Danio rerio). Neurobiol Learn Mem 87: 72-7
Young LJ, Pitkow LJ, Ferguson JN. 2002. Neuropeptides and social behavior: animal models relevant to autism. Mol Psychiatry 7 Suppl 2: S38-9
Zhang YQ, Bailey AM, Matthies HJ, Renden RB, Smith MA, et al. 2001. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107: 591-603