簡易檢索 / 詳目顯示

研究生: 楊子瑜
YANG, Tzu-Yu
論文名稱: 以身體活動中斷靜態行為對中老年人認知彈性之影響:事件關聯電位研究
Effect of breaking up sedentary behavior with physical activity on cognitive flexibility in middle-aged and older adults: An ERP study
指導教授: 張育愷
Chang, Yu-Kai
口試委員: 劉淑燕
Liu, Su-Yen
陳勇志
CHEN, Yung-Chih
張育愷
CHANG, Yu-Kai
口試日期: 2022/01/19
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 55
中文關鍵詞: 健身運動靜態行為坐式行為大腦執行功能
英文關鍵詞: accumulated exercise, prolonged sitting, interrupting sitting, executive function
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202200096
論文種類: 學術論文
相關次數: 點閱:333下載:40
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中老年人長時間靜態行為對認知功能產生負面影響之論點已成為當今重要的公共衛生議題。過去研究指出以身體活動中斷靜態行為能改善諸多與認知功能有關之生理指標,但該議題直接探討對認知功能影響之研究相當有限,且尚未有一致的結論,此外,目前尚無該議題在認知功能的測驗上目前只有行為的測量。本研究目的為探討以身體活動中斷靜態行為對認知彈性、事件相關電位之P3振幅與餐後血糖之影響。本研究招募共60名64±4歲中老年人並以隨機方式分為 (一) 連續久坐組 (PS組):連續久坐; (二) 中斷久坐組 (ACT):中度強度的騎行中斷連續久坐。本研究使用混合設計三因子變異數分析檢測任務轉換測驗的表現與P3振幅差異,並使獨立樣本t檢定分析檢測餐後血糖與心率。本研究結果顯示轉換測驗以及P3振幅在組間皆無顯著差異,兩組之間之心率與餐後血糖之iAUC有顯著差異 (p< .05)。本研究發現以身體活動中斷久坐可以改善餐後血糖,然而 3.5小時靜態行為對認知彈性的效應並不受到有無身體活動中斷的影響,顯示身體活動中斷靜態行為其對血糖控制產生之效應皆獨立於認知彈性。

    Recent research has shown breaking sedentary behavior (SB) with short bouts of physical activity (PA) might positively impact physiological indicators related to cognitive function (CF). Notably, the effects on CF have still been underexplored. Besides, no previous research has utilized the neuroelectrical approach to examine the potential underlying mechanisms of breaking SB on CF. This study has aimed to determine the effects of breaking SB with short bouts of PA on cognitive flexibility, P3 amplitudes of event-related potentials, and postprandial blood glucose in middle-aged and older adults. Sixty participants aged 64±4 years took part in two 3.5-hour groups: (1) prolonged sitting (PS), and (2) sitting with moderate-intensity cycling breaks (ACT). Cognitive flexibility and P3 amplitudes were analyzed separately with the 3-way Mixed Design ANOVAs. Blood glucose level was examined using the t-test. There were no significant differences in cognitive flexibility and P3 amplitudes between the groups. The incremental area under the curve of blood glucose was significantly higher in the PS than in ACT (p<.05). While postprandial glucose has been positively impacted by breaking up SB, the cognitive flexibility has not been affected by the prolonged sitting or the breaking SB, suggesting the independent influence of breaking SB on physiological and cognitive indices in middle-aged and older adults.

    第壹章 緒論 1 第一節 問題背景 1 第二節 研究目的 4 第三節 研究假設 4 第四節 操作性名詞定義解釋 4 第貳章 文獻探討 6 第一節 老年人靜態行為與認知功能之相關研究 6 第二節 老年人身體活動與認知功能之相關研究 7 第三節 身體活動中斷靜態行為與認知功能回顧 9 第四節 身體活動中斷靜態行為與認知功能之可能機轉 11 第五節 老年人認知彈性與之 P3 振幅相關研究 13 第六節 文獻總結 14 第參章 研究方法與步驟 15 第一節 研究設計 15 第二節 研究參與者 15 第三節 研究流程 16 第四節 研究設計 16 第五節 身體活動介入 17 第六節 餐後血糖 18 第七節 任務轉換測驗 19 第八節 事件關聯電位 20 第九節 心肺功能檢測 21 第十節 資料處理與統計分析 22 第肆章 研究結果 24 第一節 參與者背景變項 24 第二節 有無中斷靜態行為對作業轉換之影響 24 第三節 有無中斷靜態行為對事件關聯電位之影響 33 第四節 有無中斷靜態行為對生理指標之影響 37 第伍章 討論 41 第一節 以身體活動中斷靜態行為之相關影響 41 第二節 以身體活動中斷靜態行為之研究設計探討 43 第三節 研究限制 46 第陸章 結論與未來建議 47 參考文獻 48

    古博文、陳上迪、鄭聖儒、陳俐蓉 (2019)。成人每日靜態行為時間上限之建議。台灣公共衛生雜誌,38(3), 228-235。http://doi.org/10.6288/tjph.201906_38(3).108009

    古博文、陳俐蓉、許志宏 (2016)老年靜態行為與認知老化之文獻回顧。體育學報,49(S),1-16。

    國家發展委員會 (2019)109年度9月份重要統計資料手冊。

    劉人豪、吳治翰、宋岱芬、張育愷、齊璘 (2017)不同運動類型與認知功能之關聯,運動教練科學(46),103-118。

    Bergouignan, A., Legget, K. T., De Jong, N., Kealey, E., Nikolovski, J., Groppel, J. L., . . . Bessesen, D. H. (2016a). Effect of frequent interruptions of prolonged sitting on self-perceived levels of energy, mood, food cravings and cognitive function. The International Journal of Behavioral Nutrition and Physical Activity, 13(1), 113. http://doi.org/10.1186/s12966-016-0437-z

    Bixter, M. T., Blocker, K. A., & Rogers, W. A. (2018). Enhancing social engagement of older adults through technology. In R. Pak & A. C. McLaughlin (Eds.), Aging, Technology and Health (pp. 179-214). San Diego: Academic Press.

    Department of Health & Social Care (2019). UK Chief Medical Officers’ Physical Activity Guidelines.

    Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2), 126-131.

    Chang, M., Jonsson, P. V., Snaedal, J., Bjornsson, S., Saczynski, J. S., Aspelund, T., . . . Harris, T. B. (2010). The effect of midlife physical activity on cognitive function among older adults: AGES—Reykjavik Study. Journals of Gerontology Series A: Biomedical Sciences And Medical Sciences, 65(12), 1369-1374.

    Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453, 87-101. http://doi.org/10.1016/j.brainres.2012.02.068

    Charlett, O. P., Morari, V., & Bailey, D. P. (2020). Impaired postprandial glucose and no improvement in other cardiometabolic responses or cognitive function by breaking up sitting with bodyweight resistance exercises: A randomised crossover trial. Journal of Sports Sciences, 1-9. http://doi.org/10.1080/02640414.2020.1847478

    Chen, F. T., Hopman, R. J., Huang, C. J., Chu, C. H., Hillman, C. H., Hung, T. M., & Chang, Y. K. (2020). The effect of exercise training on brain structure and function in older adults: A systematic review based on evidence from randomized control trials. Journal of clinical medicine. http://doi.org/10.3390/jcm9040914

    Chrismas, B. C. R., Taylor, L., Cherif, A., Sayegh, S., & Bailey, D. P. (2019). Breaking up prolonged sitting with moderate-intensity walking improves attention and executive function in Qatari females. PLoS One, 14(7), e0219565. http://doi.org/10.1371/ journal.pone.0219565

    Cox, E. P., O’Dwyer, N., Cook, R., Vetter, M., Cheng, H. L., Rooney, K., & O’Connor, H. (2016). Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. Journal of Science and Medicine In Sport, 19(8), 616-628.

    Cristofori, I., Cohen-Zimerman, S., & Grafman, J. (2019). Chapter 11 - Executive functions. In M. D'Esposito & J. H. Grafman (Eds.), Handbook of Clinical Neurology (Vol. 163, pp. 197-219): Elsevier.

    Dai, C. T., Chang, Y. K., Huang, C. J., & Hung, T. M. (2013). Exercise mode and executive function in older adults: An ERP study of task-switching. Brain and Cognition, 83(2), 153-162. http://doi.org/10.1016/j.bandc.2013.07.007

    de Asteasu, M. L. S., Martinez Velilla, N., Zambom Ferraresi, F., Casas Herrero, A., & Izquierdo, M. (2017). Role of physical exercise on cognitive function in healthy older adults:A systematic review of randomized clinical trials. Ageing Research Rreviews, 37, 117-134.

    Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168.

    Ekelund, U., Brown, W. J., Steene-Johannessen, J., Fagerland, M. W., Owen, N., Powell, K. E., . . . Lee, I.-M. (2019). Do the associations of sedentary behaviour with cardiovascular disease mortality and cancer mortality differ by physical activity level? A systematic review and harmonised meta-analysis of data from 850 060 participants. British Journal of Sports Medicine, 53(14), 886-894.

    Ekelund, U., Steene-Johannessen, J., Brown, W. J., Fagerland, M. W., Owen, N., Powell, K. E., . . . Group, L. S. B. W. (2016). Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. The Lancet, 388(10051), 1302-1310.

    Fancourt, D., & Steptoe, A. (2019). Television viewing and cognitive decline in older age: findings from the English longitudinal study of ageing. Scientific Reports, 9(1), 2851. http://doi.org/10.1038/s41598-019-39354-4

    Fisher, G. G., Chacon, M., & Chaffee, D. S. (2019). Chapter 2 - Theories of Cognitive Aging and Work. In B. B. Baltes, C. W. Rudolph, & H. Zacher (Eds.), Work Across the Lifespan (pp. 17-45): Academic Press.

    Gajewski, P. D., Ferdinand, N. K., Kray, J., & Falkenstein, M. (2018). Understanding sources of adult age differences in task switching: Evidence from behavioral and ERP studies. Neuroscience and Biobehavioral Reviews, 92, 255-275. http://doi.org/ 10.1016/ j.neubiorev.2018.05.029

    Hamer, M., & Stamatakis, E. (2014). Prospective study of sedentary behavior, risk of depression, and cognitive impairment. Medicine And Science in Sports and Exercise, 46(4), 718-723. http://doi.org/10.1249/MSS.0000000000000156

    Hillman, C. H., Kramer, A. F., Belopolsky, A. V., & Smith, D. P. (2006). A cross-sectional examination of age and physical activity on performance and event-related brain potentials in a task switching paradigm. International Journal of Psychophysiology, 59(1), 30-39.

    Kao, S. C., Cadenas‐Sanchez, C., Shigeta, T. T., Walk, A. M., Chang, Y. K., Pontifex, M. B., & Hillman, C. H. (2019). A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology, 57(7), e13425. http://doi.org/10.1111/ psyp.13425
    Kemppainen, J., Aalto, S., Fujimoto, T., Kalliokoski, K. K., Långsjö, J., Oikonen, V., .Knuuti, J. (2005). High intensity exercise decreases global brain glucose uptake in humans. The Journal of Physiology, 568(1), 323-332.http://doi.org/10.1113/ jphysiol.2005.091355

    Kesse-Guyot, E., Charreire, H., Andreeva, V. A., Touvier, M., Hercberg, S., Galan, P., & Oppert, J.-M. (2012). Cross-sectional and longitudinal associations of different sedentary behaviors with cognitive performance in older adults. PLoS One, 7(10).

    Kray, J., & Lindenberger, U. (2000). Adult age differences in task switching. Psychology and aging, 15(1), 126.

    Ku, P.-W., Steptoe, A., Liao, Y., Hsueh, M.-C., & Chen, L.-J. (2019). A threshold of objectively-assessed daily sedentary time for all-cause mortality in older adults: A meta-regression of prospective cohort studies. Journal of Clinical Medicine, 8(4), 564. http://doi.org/10.3390/jcm8040564

    Laurin, D., Verreault, R., Lindsay, J., MacPherson, K., & Rockwood, K. (2001). Physical activity and risk of cognitive impairment and dementia in elderly persons. Archives of Neurology, 58(3), 498-504. http://doi.org/10.1001/archneur.58.3.498

    Law, L. L., Rol, R. N., Schultz, S. A., Dougherty, R. J., Edwards, D. F., Koscik, R. L., . . . Okonkwo, O. C. (2018). Moderate intensity physical activity associates with CSF biomarkers in a cohort at risk for Alzheimer's disease. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 10(1), 188-195. http://doi.org/10.1016/j.dadm. 2018.01.001

    Loh, R., Stamatakis, E., Folkerts, D., Allgrove, J. E., & Moir, H. J. (2020). Effects of interrupting prolonged sitting with physical activity breaks on blood glucose, insulin and triacylglycerol measures: A systematic review and meta-analysis. Sports Medicine, 50(2), 295-330. http://doi.org/10.1007/s40279-019-01183-w

    Lox, C. L., Ginis, K. A. M., & Petruzzello, S. J. (2016). The psychology of exercise: Integrating theory and practice: Taylor & Francis.

    Maasakkers, C. M., Melis, R. J. F., Kessels, R. P. C., Kessels, R. P. C., Gardiner, P. A., Olde Rikkert, M. G. M., . . . Claassen, J. A. H. R. (2020). The short-term effects of sedentary behaviour on cerebral hemodynamics and cognitive performance in older adults: A cross-over design on the potential impact of mental and/or physical activity. Alzheimer's Research and Therapy, 12(1). http://doi.org/10.1186/s13195-020-00644-z

    Magnusson, K. R., & Brim, B. L. (2014). The Aging Brain. Biomedical Sciences: Elsevier.

    Makizako, H., Liu-Ambrose, T., Shimada, H., Doi, T., Park, H., Tsutsumimoto, K., . . . Suzuki, T. (2014). Moderate-intensity physical activity, hippocampal volume, and memory in older adults with mild cognitive impairment. The Journals of Gerontology: Series A, 70(4), 480-486. http://doi.org/10.1093/gerona/glu136

    Morris, J. K., Vidoni, E. D., Honea, R. A., Burns, J. M., & Initiative, A. s. D. N. (2014). Impaired glycemia increases disease progression in mild cognitive impairment. Neurobiology of Aging, 35(3), 585-589.

    Mullane, S. L., Buman, M. P., Zeigler, Z. S., Crespo, N. C., & Gaesser, G. A. (2017). Acute effects on cognitive performance following bouts of standing and light-intensity physical activity in a simulated workplace environment. Journal of Science and Medicine in Sport, 20(5), 489-493. http://doi.org/10.1016/j.jsams.2016.09.015

    Murman, D. L. (2015). The Impact of age on cognition. Seminars in Hearing, 36(3), 111-121. http://doi.org/10.1055/s-0035-1555115

    Naderali, E. K., Ratcliffe, S. H., & Dale, M. C. (2009). Review: obesity and alzheimer’s disease: a link between body weight and cognitive function in old age. American Journal of Alzheimer's Disease and Other Dementiasr, 24(6), 445-449. http://doi.org/10.1177/ 1533317509348208

    Narang, B. J., Atkinson, G., Gonzalez, J. T., & Betts, J. A. (2020). A tool to explore discrete-time data: the time series response analyser. International Journal Of Sport Nutrition and Exercise Metabolism, 1(aop), 1-8.

    Olanrewaju, O., Stockwell, S., Stubbs, B., & Smith, L. (2020). Sedentary behaviours, cognitive function, and possible mechanisms in older adults: A systematic review. Aging Clinical and Experimental Research, 1-16.

    Owen, N., Healy, G. N., Matthews, C. E., & Dunstan, D. W. (2010). Too much sitting: The population health science of sedentary behavior. Exercise and Sport Sciences Reviews, 38(3), 105-113. http://doi.org/10.1097/JES.0b013e3181e373a2

    Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: selected studies of the event-related potential. International Journal of Medical Sciences, 2(4), 147.

    Patterson, R., McNamara, E., Tainio, M., de Sá, T. H., Smith, A. D., Sharp, S. J., . . . Wijndaele, K. (2018). Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. European Journal of Epidemiology, 33(9), 811-829. http://doi.org/10.1007/ s10654-018-0380-1

    Pieruccini-Faria, F., Lord, S. R., Toson, B., Kemmler, W., & Schoene, D. (2019). Mental flexibility influences the association between poor balance and falls in older people – A secondary analysis. Frontiers in Aging Neuroscience, 11(133). http://doi.org/10.3389/ fnagi.2019.00133

    Prakash, R. S., Voss, M. W., Erickson, K. I., Lewis, J., Chaddock, L., Malkowski, E., . . . White, S. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4, 229.

    Rogers, R. D., & Monsell, S. (1995). Costs of a predictible switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207.

    Rosenberg, D. E., Bellettiere, J., Gardiner, P. A., Villarreal, V. N., Crist, K., & Kerr, J. (2016). Independent associations between sedentary behaviors and mental, cognitive, physical, and functional health among older adults in retirement communities. Journals Of Gerontology Series A: Biomedical Sciences and Medical Sciences, 71(1), 78-83.

    Siddarth, P., Burggren, A. C., Eyre, H. A., Small, G. W., & Merrill, D. A. (2018). Sedentary behavior associated with reduced medial temporal lobe thickness in middle-aged and older adults. PLoS One, 13(4), e0195549. http://doi.org/10.1371/journal. pone.0195549

    Steinberg, S. I., Sammel, M. D., Harel, B. T., Schembri, A., Policastro, C., Bogner, H. R.,. Arnold, S. E. (2015). Exercise, sedentary pastimes, and cognitive performance in healthy older adults. American Journal of Alzheimer's Disease and Other Dementias, 30(3), 290-298.

    Sun, F., Norman, I. J., & While, A. E. (2013). Physical activity in older people: A systematic review. BMC Public Health, 13(1), 449. http://doi.org/10.1186/1471-2458-13-449

    Tanaka, H., Monahan, K. D., & Seals, D. R. (2001). Age-predicted maximal heart rate revisited. Journal of the American College of Cardiology, 37(1), 153-156.

    Thorp, A. A., Owen, N., Neuhaus, M., & Dunstan, D. W. (2011). Sedentary behaviors and subsequent health outcomes in adults: A systematic review of longitudinal studies, 1996–2011. American Journal of Preventive Medicine, 41(2), 207-215.

    Tremblay, M. S., Aubert, S., Barnes, J. D., Saunders, T. J., Carson, V., Latimer-Cheung, A. E., . . . Chinapaw, M. J. (2017). Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. International Journal of Behavioral Nutrition and Physical Activity, 14(1), 75.

    Tseng, B. Y., Uh, J., Rossetti, H. C., Cullum, C. M., Diaz‐Arrastia, R. F., Levine, B. D., . . . Zhang, R. (2013). Masters athletes exhibit larger regional brain volume and better cognitive performance than sedentary older adults. Journal of Magnetic Resonance Imaging, 38(5), 1169-1176.

    van den Kommer, T. N., Dik, M. G., Comijs, H. C., Jonker, C., & Deeg, D. J. H. (2012). The role of lipoproteins and inflammation in cognitive decline: Do they interact? Neurobiology of Aging, 33(1), 196.e191-196.e112. http://doi.org/10.1016 /j.neurobiolaging.2010.05 .024

    van Dinteren, R., Arns, M., Jongsma, M. L. A., & Kessels, R. P. C. (2014). P300 Development across the Lifespan: A Systematic Review and Meta-Analysis. PLoS One, 9(2), e87347. http://doi.org/10.1371/journal.pone.0087347

    Wanders, L., Cuijpers, I., Kessels, R. P. C., van de Rest, O., Hopman, M. T. E., & Thijssen, D. H. J. (2020). Impact of prolonged sitting and physical activity breaks on cognitive performance, perceivable benefits, and cardiometabolic health in overweight/obese adults: The role of meal composition. Clinical Nutrition. http://doi.org/10.1016/j.clnu. 2020.10.006

    Wang, C. C., Chu, C. H., Chu, I. H., Chan, K. H., & Chang, Y. K. (2013). Executive function during acute exercise: The role of exercise intensity. Journal of Sport and Exercise Psychology, 35(4), 358-367.

    Wasylyshyn, C., Verhaeghen, P., & Sliwinski, M. J. (2011). Aging and task switching: a meta-analysis. Psychology and aging, 26(1), 15.

    Wennberg, P., Boraxbekk, C. J., Wheeler, M., Howard, B., Dempsey, P. C., Lambert, G., . . . Dunstan, D. W. (2016). Acute effects of breaking up prolonged sitting on fatigue and cognition: A pilot study. BMJ Open, 6(2), e009630. http://doi.org/10.1136/ bmjopen-2015-009630

    Wheeler, M. J., Dempsey, P. C., Grace, M. S., Ellis, K. A., Gardiner, P. A., Green, D. J., & Dunstan, D. W. (2017). Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimers Dement (N Y), 3(3), 291-300. http://doi.org/10.1016/j.trci.2017.04.001

    Wilke, J., Giesche, F., Klier, K., Vogt, L., Herrmann, E., & Banzer, W. (2019). Acute effects of resistance exercise on cognitive function in healthy adults: A systematic review with multilevel meta-analysis. Sports Medicine, 49(6), 905-916. http://doi.org/10.1007/s40279-019-01085-x

    Wyke, B. (1959). Electroencephalographic studies in the syndrome of relative cerebral hypoglycaemia. Electroencephalography and Clinical Neurophysiology.

    Yan, S., Fu, W., Wang, C., Mao, J., Liu, B., Zou, L., & Lv, C. (2020). Association between sedentary behavior and the risk of dementia: a systematic review and meta-analysis. Transl Psychiatry, 10(1), 112. http://doi.org/10.1038/s41398-020-0799-5

    Younan, B. (2018). Cognitive functioning differences between physically active and sedentary older adults. Journal of Alzheimer's Disease Reports, 2(1), 93-101.

    下載圖示
    QR CODE