研究生: |
林彥丞 Yen-Cheng Lin |
---|---|
論文名稱: |
高二學生有機化合物概念與其視覺化表徵能力之探究 Investigating 11th graders’ Conceptual and Visual Representational Ability about Organic Compounds |
指導教授: |
邱美虹
Chiu, Mei-Hung |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 157 |
中文關鍵詞: | 有機化合物 、視覺化表徵 、視覺化表徵能力 |
英文關鍵詞: | organic compound, visual representation, visual representational ability |
論文種類: | 學術論文 |
相關次數: | 點閱:418 下載:47 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討視覺化表徵能力教學對學生學習有機化合物概念的影響,透過提升學生視覺化表徵能力,幫助學生學習有機化合物概念,本研究設計針對新北市某市立高中二年級自然組兩班學生進行研究,將兩班隨機分派為實驗組對對照組,實驗組學生有37位,對照組學生有39位,共76位。實驗組與對照組的教學差異在於實驗組額外增加視覺化表徵能力(知覺、詮釋、轉換、連結、評估)說明,而對照組為一般教學,教學研究為期四個星期,共11堂課。
本研究結果顯示:1.透過視覺化表徵能力教學,能幫助學生學習概念,並且其中在概念類型中的性質達顯著差異(F=4.417,p < .05);2.視覺化表徵能力教學能提升學生視覺化表徵能力中的知覺、詮釋、轉換、連結、評估等面向,並且其中連結(F=9.023,p < .001)、評估(F=10.191,p < .001)達顯著差異;3.提升學生視覺化表徵能力有助於學習有機化合物概念,並且達中度相關(r= .687,p = .000<.001);4.學生對視覺化表徵能力教學持有正向的支持,認為知覺、轉換、詮釋、連結、評估時會運用一些知識,所獲得的知識量比課本來的多,豐富了課文的內容並幫助學習。
因此本研究建議:1.建議將視覺化表徵能力應用於各個單元教材中,提升學生視覺化表徵能力,用以幫助學生概念的理解;2.建議在其它概念上培養視覺化表徵能力,使得學生學習有機化合物單元時,能更有效的使用視覺化表徵能力;3.學生經過視覺化表徵能力的教學後,仍有部分學生在命名、性質、結構有學習困難,因此建議教師在採用視覺化表徵能力教學方法上,還要輔助其它教學策略。
The purpose of this study was to investigate the effectiveness of visual representation teaching activities on students’ learning of the concept of organic compound. The study was designed as a teaching method with visual representations ability. Seventy-six 11th graders from a local high school in New Taipei city were involved in this study, and two classes of students were randomly assigned to the experimental group (37) and the control group (39). The difference between the Experimental group and the Control group was that the former was presented with Visual Representational Ability (Preception, Transformation, Interpretation, Connection and Evaluation) of description, while the laster was designed to use the same materials without Visual Representational Ability of description.
Four major results were revealed in the current study. First, Visual Representational Ability instruction was effective in helping students learn concepts, and among concept types, significant difference was found in Properties (F = 4.417, p < .05). Second, it was also found that Visual Representational Ability instruction can enhance students’ abilities of connection (F=9.023, p < .001) and evaluation (F=10.191, p < .001). Third, it was revealed that enhancing students’ visual representational abilities can help students in learning about organic compounds (r= .687,p = .000 < .001). And lastly, the experimental group had a positive view of the Visual Representational Ability instruction as they felt that it could help them learn more than they could from textbooks.
The current study would recommend the application of the Visual Representational Ability in classes as a way to help students understand concepts. It will also be helpful to cultivate students’ Visual Representational Abilities in other fields/concepts so that students would be able to better apply their abilities when learning organic compound concepts. Lastly, as there were still some students who experienced difficulties in the categories of nomenclature, properties, and structure, the adoption of Visual Representational Ability instructional methods should still be complemented by other teaching strategies.
中文文獻:
翁榮源 (2004)。問題引導式學習法在「有機化學」 網站之應用與研究。科學教育學刊,12(4),491-507。
翁榮源、陳定威、呂榮順 (2009)。 Herrmann學習風格理論對大學生有機化學學習成就之研究。科學教育月刊,318,31-48。
許丹瓊、王澄霞 (1989)。高中新舊化學實驗教材比較研究─(十三)探討有機化合物新舊實驗教材之異同。科學教育月刊,118,9-30。
廖焜熙、邱美虹 (1996)。三維度視覺在技能與化學學習上的探討,科學教育月刊,189,14-36。
詹元淵 (2002)。國三學生學習有機化合物之迷思概念、類型與成因探討(未出版之碩士論文)。國立嘉義大學,嘉義市。
詹婉約 (2010)。中學生的視覺表徵能力與分子概念理解之探究(未出版之碩士論文)。國立臺灣師範大學,臺北市。
扈尚善 (2003)。高三學生學習有機化合物與材料科學迷思概念、類型與成因之探討(未出版之碩士論文)。國立嘉義大學,嘉義市。
英文文獻:
Amman, K., & Knorr Cetina, K. (1990). The fixation of (visual) evidence, in: Representation in scientific practice, M. Lynch, and S. Woolgar, eds., MIT Press, Cambridge, MA, pp. 85-122.
Bodner, G. M., & McMillen, T. L. B. (1986). Cognitive restructuring as an early stage in problem solving. Journal of Research in Science Teaching, 23(8), 727-737.
Barnea, N. (2000). Teaching and learning about chemistry and modelling with a computer managed modelling system, In J.K. Gilbert & C. Boulter (Eds.). Developing Models in Science Education. Dordrecht: Kluwer Academic.
Briggs, M., & G. Bodner (2007) A model of molecular visualization. In J. K. Gilbert (Ed.). Visualization in science education. (2nd ed.). Dordrecht: Springer.
Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices, Cognitive Science, 5, 121-152.
Copolo, C. F., & Hounshell, P. B. (1995). Using three-dimensional models to teach molecular structures in high school chemistry. Journal of Science Education and Technology, 4, 295-305.
Coll, R. K., & Treagust, D. F. (2001). Learner’s mental models of chemical bonding. Research in Science Education, 31(3), 357-382.
Chiu, M. H. (2012). Localization, Regionalization, and Globalization of Chemistry Education. Australian of Chemical Education.
Driver, R., Guesne, E., & Tiberghien, A. (Eds.). (1985). Children’s ideas in science. Milton Keynes: Open University Press.
diSessa, A., Hammer, D., Sherin, B., & Kolpakowski, T. (1991). Inventing graphing: Meta-representational expertise in children, Journal of Mathematical Behavior, 10(2), 117-160.
Dunbar, K. (1997). How scientists really reason: Scientific reasoning in real-world laboratories, in: The nature of insight, R. Sternberg and J. Davidson, eds., MIT Press, Cambridge, MA, pp. 365-396.
Domin, D. S., Al-Masum, M., & Mensah, J. (2008). Students’ categorizations of organic compounds. Chemistry Education Research and Practice, 9(2), 114-121.
Ferk, V., Vrtacnik, M., Blejec A. & Gril A. (2003). Student' understanding of molecular structure representations. International Journal of Science Education, 25(10), 1227-1245.
Glaser, R., and Chi, M. (1998). Overview, in: The nature of expertise, M. Chi, R. Glaser, and M. Farr, eds., Lawrence Erlbaum Associates, Hillsdale, NJ, pp. xv-xxviii.
Goodwin, C. (1995). Seeing in depth, Social Studies of Science, 25, 237-274.
Gable, D., (1998). The complexity of chemistry and implications for teaching, in : International handbook of science education, B. Fraser, and K. Tobin, eds., Kluwer Academic Publishers, Dordrecht/Boston/London, pp. 233-248.
Gilbert, J. K. (2007). Visualization: a Metacognitive Skill in Science and Science Education. In John K. Gilbert (ed.) Visualization in Science Education, pp. 9-27.
Gilbert, J. K., Nakhleh, M., & Reiner, M. (2008). Visualization: Theory and Practice in Science Education. Models and Modeling in Science Education.
Gilbert J. K. & Treagust D. (2009). Multiple representations in chemical education. Dordrecht: Springer-Verlag.
Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in Grade 11 chemistry. Science Education, 84(3), 352-381.
Huddle, P. A., White, M. D., & Rogers, F. (2000). Using a teaching model to correct known misconceptions in electrochemistry. Journal of Chemical Education, 77(1), 104-110.
Hofstein, A., Levy Nahum, T., Mamlok-Naaman, R., & Taber, K. S. (2010). Teaching and learning the concept of chemical bonding. Studies in Science Education, 46(2), 179-207.
Ingham, A.M., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 22(9), 1011-1026.
Johnson-Laird, P.N. (1985). Mental models. In A. Aitken, and J. Slack (Eds.), Issues in cognitive modelling. London: LEA Publishers.
Johnstone, A. H. (1993). The development of chemistry teaching. Journal of Chemical Education, 70(9), 701-705.
Johnstone A. H. (2010), You can’t get there from here. Journal of Chemical Education, 87, 22-29.
Krajcik, J. S. (1991). Developing students’ understanding of chemical concepts, in: The psychology of learning science, S. Glynn, R. Yeany, and B. Britton, eds., Erlbaun, Hillsdale, NJ, pp. 117-147.
Mahaffy, P. (2006). Moving Chemistry Education into 3D: A Tetrahedral Metaphor for Understanding Chemistry. Journal of Chemical Education, 83(1), 49-56.
Nakhleh, M. B. (1992). Why some students don’t learn chemistry: Chemical misconceptions, Journal of Chemical Education, 69, 191-196.
Kozma, R. (2000a). Representation and language: The case for representational competence in the chemistry curriculum. Paper presented at the Biennial Conference on Chemical Education, Ann Arbor, MI.
Kozma, R. (2000b). Students collaborating with computer models and physical experiments, in: Proceedings of the Conference on Computer-Supported Collaborative Learning 1999, J. Roschelle, and C. Hoadley, eds., Erlbaum, Mahwah, NJ.
Kozma, R. (2000c). The use of multiple representations and the social construction of understanding in chemistry, in: Innovations in science and mathematics education: Advanced designs for technologies of learning, M. Jacobson, and R. Kozma, eds., Erlbaum, Mahwah, NJ, pp. 11-45.
Kozma, R. (2003). Material and social affordances of multiple representations for science understanding, Learning and Instruction, 13(2), 205-226.
Kozma, R, Chin, E., Russell, J., & Marx, N. (2000). The role of representations and tools in the chemistry laboratory and their implications for chemistry learning, Journal of the Learning Sciences, 9(2), 105-143.
Kozma, R., & Russell, J. (1997). Multimedia and Understanding: Expert and Novice Responses to Different Representations of Chemical Phenomena, Journal of Research in Science Teaching, 43(9), 949-968.
Kozma, R. & Russell J., (2005). Student becoming chemists: Developing representational competence. In J. Gilbert (Ed.), Visualization in science education. London: Kluwer. pp. 121-146.
Larkin, J. (1983). The role of problem representation in physics, in: Mental models, D. Gentner, and A. Stevens, eds., Erlbaum, Hillsdale, NJ, pp. 75-98.
Larkin, J., McDermott, J., Simon, D., & Simon, H. (1980). Expert and novice performance in solving physics problems, Science, 208: 1335-1342.
Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human Development, 15(1), 1-12.
Roth, W-M., & McGinn, M. (1998). Inscriptions: a social practice approach to representations, Review of Educational Research, 68, 35-59.
Rapp, D. (2007) Mental models: Theoretical issues for visualizations in science education. In Gilbert, J. K. (Ed.). Visualization in science education. Dordrecht: Springer.
Seddon, G. M., and Moore, R. G. (1986). An unexpected effect in the use of models for teaching the visualization of rotation in molecular structures. European Journal of Science Education, 8, 79-86.
Tuckey, H. S., M. (1993). Studies involving three-dimensional visualisation skills in chemistry: a review. Studies in Science Education, 21, 99-121.
Taber, K. (2002). Chemical misconceptions – prevention, diagnosis and cure. Volume1: Theoretical background. London: Royal Society of Chemistry.
Talanquer V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry “triplet”. International Journal of Science Education, 33, 179-195.
Vygotsky, L., & Vygotsky, S. (1980). Mind in Society: The development of higher psychological processes. Cambridge, MA: Harvard university Press.
Vygotsky, L. (1986). Thought and language, MIT Press, Boston.
Wu, H.-K., Krajcik, J. S., & Soloway, E. (2001). Promoting conceptual understanding of chemical representations: students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38, 821-842.