簡易檢索 / 詳目顯示

研究生: 顏元奕
Yen, Yuan-Yi
論文名稱: 臺灣中央山脈南段長微震的定位誤差分析及改進
Analysis and Improvement of Tremor Location Errors in the Southern Central Range of Taiwan
指導教授: 陳卉瑄
Chen, Hui-Hsuan
黃信樺
Huang, Hsin-Hua
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 99
中文關鍵詞: 中央山脈南段長微震定位誤差分析
英文關鍵詞: Southern Central Range, Tremor, Location, Error Analysis
DOI URL: http://doi.org/10.6345/NTNU202000186
論文種類: 學術論文
相關次數: 點閱:136下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 非火山長微震( Non-volcanic tremor )為常見於世界上主要的板塊邊界、對應著慢速滑移的一種特殊地震訊號,主要分布於環太平洋隱沒帶,多呈現深度集中、平行隱沒板塊的帶狀分布,大多發生於孕震帶更深處,其特徵主要為:(1)持續時間長,可以持續數分鐘至數小時;(2)振幅較小,無明顯的P波和S波;(3)主要頻段介於2-8 Hz之間。由於無明顯的體波波相,難以用傳統的P波與S波的到時來做定位,因此許多不同於傳統的地震定位方法紛紛被提出,常見的主要有Hypoecc ( Ide et al., 2010 )以及WECC ( Wech et al., 2008 )等,主要手段為利用波形包絡化後的相似度以決定各測站的相對走時差。在台灣,長微震大多發生在中央山脈南段下方,由於定位誤差大,對應的孕震構造仍有諸多爭論。本研究以WECC的定位方式為基礎,改變其網格搜索的方式,並使其能套用三維速度模型( Huang et al., 2014 ), 期能獲取更佳定位結果。我們利用 2016年1月1日到2016年9月15日BATS、CWB (寬頻及短周期) 以及在中央山脈南段新架設的三個測站的連續資料,本研究開發新的定位方法,並和傳統的WECC和Hypoecc定位結果比較。為了釐清定位誤差來來,我們更利用不同震源機制、不同子震源組成所得之合成波形,擬合長微震之波形特徵和持續時間,以討論(1)包絡化 (或平方)之波形形貌 (2)濾波頻段的選擇 (3)測站的包覆性與幾何形貌 (4)速度模型幾種因素對定位結果的影響。本研究發現,以新方法得到最小的定位誤差,水平和垂直方向分別為1.5-3.5 km以及7-14 km之間,比傳統的長微震定位方法少了約1 km的誤差,此定位結果配合最小平方差之回歸線性,顯示了長微震震源區為一東北-西南走向(70-80°)及向東南傾沒約40-55°之構造,和前人研究相比,在走向的定義上更為明確,這一個深部構造和過去Huang and Byne (2014) 提出的地質邊界-土隴灣斷層的走向一致,顯示此斷層可能為長微震在地表的地形地貌表現。

    Non-volcanic tremor is a slow earthquake phenomenon commonly found in the plate boundary zones. They usually occur below the seismogenic zones with seismic characteristics of long duration of several minutes to hours, small amplitude without obvious P wave and S wave, and the main frequency band of 2-8 Hz. Given no obvious body wave phase, it is difficult to apply the traditional location scheme using P-wave and S-wave arrivals. Many relocation methods were proposed including Hypoecc (Ide et al., 2010) and WECC (Wech et al., 2008). These two methods consider envelope cross-correlation to determine the time lagses between stations. Previous studies indicate that tremors in Taiwan occurred at the depth of 25-45 km below the southern Central Range. The tectonic origin of the tremors, however, are still under debate due to the large locating errors > 7 km based on Chunag et al. (2014). The goal of this study is to develop a location scheme that allows the implement of three-dimensional velocity model and grid search method, to better understand the fault geometry of tremor sources. Instead of cross-correlation coeffificent, the new location method is weighted by the envelope cross-correlation derived time lapses. We simulate synthetic tremor waveforms with a variety of focal mechanisms and initial locations, to further discuss how the following factors influence the location error: (1) the shape of the envelope (or square) waveform (2) the selection of filtering frequency bands (3) the station coverage (4) choice of velocity model. The resulting location uncertainty is found to be smallest using the new location method, as 1.5-3.5 km and 7-14 km in horizontal and vertical, respectively. Applying this time-lapse-weighted location method on the continuous data from January 1st to 15th September 2016 (recorded at three different seismic networks including a small array deployed above the tremor zone), a linear structure with northeast-southwest trending and southeasting dripping is obtained. This structure is consistent with the Tulungwan-Chaochou fault system that was recognized as thegeological boundary between a slate belt and unmetamorphosed fold-and-thrust belt by Huang and Byne (2014).

    摘要 I Abstract II 目錄 III 表目錄 V 圖目錄 VI 第一章、前人研究 1 1.1 長微震的特徵及重要性 1 1.2 台灣自發型長微震的研究 2 1.3 長微震的定位方法以及在台灣之應用 14 1.4 台灣長微震主要震源區的可能構造解釋 24 第二章、研究動機 26 第三章、研究資料與方法 27 3.1 測站資訊 27 3.2 偵測方法 29 3.3 定位方法 32 3.4 長微震波形模擬 36 第四章、長微震的偵測及定位誤差測試 40 4.1 2016年長微震的偵測及定位 40 4.2 誤差測試:使用模擬波形 48 第五章、討論 73 5.1 長微震可能的定位誤差來源 73 5.2 2016年長微震的時空分布 84 5.3 中央南段長微震之可能構造討論 92 第六章、結論 95 參考文獻 97

    Aguiar, A. C., Chao, K., & Beroza, G. C. (2017). Tectonic tremor and LFEs on a reverse fault in Taiwan. Geophysical Research Letters, 44, 6683–6691. https://doi.org/10.1002/2016GL072148
    Aguiar, A. C., and G. C. Beroza (2014), PageRank for earthquakes, Seismol. Res. Lett., 85(2), 344–350.
    Beroza, G.C. and Ide, S. (2011). Slow Earthquakes and Nonvolcanic Tremor. Annual review of Earth and planetary sciences, 39: 271-296.
    Chao, K., Peng, Z., Wu, C., Tang, C.-C. and Lin, C.-H. (2012). Remote Triggering of Non-Volcanic Tremor around Taiwan. Geophysical Journal International, 188(1): 301-324.
    Chao, K., Peng, Z., Hsu, Y. J., Obara, K., Wu, C., Ching, K. E., et al. (2017). Temporal variation of tectonic tremor activity in southern Taiwan around the 2010 ML6.4 Jiashian earthquake. Journal of Geophysical Research: Solid Earth, 122, 5417–5434. https://doi.org/10.1002/ 2016JB013925
    Chen, K.H., Tai, H.-J., Ide, S., Byrne, T.B. and Johnson, C.W., 2018a. Tidal Modulation and Tectonic Implications of Tremors in Taiwan. Journal of Geophysical Research: Solid Earth, 123(7): 5945-5964.
    Chuang, L. Y., Chen, K. H., Wech, A., Byrne, T., Peng, W. (2013), Ambient tremors in a collisional orogenic belt, Geophys. Res. Lett., 41, 1485– 1491,doi:10.1002/2014GL059476.
    Huang, C., & Byrne, T. (2014). Tectonic evolution of an active tectonostratigraphic boundary inaccretionary wedge: An example from the Tulungwan-Chaochou fault, system, southern Taiwan. Journal of Structural Geology, 69, 320–333. https://doi.org/10.1016/j.jsg.2014.06.007
    Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M. and Hsieh, H.-H. (2014). Joint Vp and Vs Tomography of Taiwan: Implications for Subduction-Collision Orogeny. Earth and Planetary Science Letters, 392: 177-191.
    Ide, S., Beroza, G. C., Shelly, D. R., and Uchide, T. (2007). A scaling law for slowearthquakes. Nature, 447(7140), 76-79.
    Ide, S. (2010). Striations, Duration, Migration and Tidal Response in Deep Tremor. Nature, 466(7304): 356.
    Ide, S. (2012). Variety and Spatial Heterogeneity of Tectonic Tremor Worldwide. Journal of Geophysical Research: Solid Earth, 117(B3).
    Ide, S., Yabe, S., Tai, H.J. and Chen, K.H. (2015). Thrust‐Type Focal Mechanisms of Tectonic Tremors in Taiwan: Evidence of Subduction. Geophysical Research Letters, 42(9): 3248-3256.
    Ito, Y., Obara, K., Shiomi, K., Sekine, S., and Hirose, H. (2007). Slow earthquakes coincident with episodic tremors and slow slip events. Science, 315(5811), 503-506.
    Kao, H., Shao-Ju Shan, Dragert, H., Rogers, G., Cassidy, J. F., and Ramachandran, K. (2005). A wide depth distribution of seismic tremors along the northern cascadia margin. Nature, 436(7052), 841-844.
    Obara, K. (2002). Nonvolcanic Deep Tremor Associated with Subduction in Southwest Japan. Science, 296(5573): 1679-1681.
    Peng, Z. and Chao, K. (2008). Non-Volcanic Tremor beneath the Central Range in Taiwan Triggered by the 2001 M W 7.8 Kunlun Earthquake. Geophysical Journal International, 175(2): 825-829.
    Rogers, G. and Dragert, H. (2003). Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip. Science, 300(5627): 1942-1943.
    Rost, S., and C. Thomas (2002). Array seismology: Methods and applications, Rev. Geophys. 40, no. 3, 2-1–2-27, doi: 10.1029/2000RG000100.
    Shelly, D. R., G. C. Beroza, S. Ide, and S. Nakamula (2006), Lowfrequency earthquakes 79 in Shikoku, Japan, and their relationship to episodic tremor and slip, Nature, 442, 188 – 191, doi:10.1038/nature04931.
    Shelly, D.R., Beroza, G.C. and Ide, S. (2007). Non-Volcanic Tremor and Low-Frequency Earthquake Swarms. Nature, 446(7133): 305.
    Sun, W. F., Peng, Z., Lin, C. H., & Chao, K. (2015). Detecting deep tectonic tremor in Taiwan with a dense Array. Bulletin of the Seismological Society of America, 105(3), 1349–1358. https://doi.org/10.1785/0120140258
    Tang, C., Peng, Z., Chao, K., Chen, C., and Lin, C. (2010). Detecting low-frequency earthquakes within non-volcanic tremor in southern taiwan triggered by the 2005 Mw8.6 nias earthquake. Geophysical Research Letters, 37(16), L16307.
    Wech, A.G. and Creager, K.C. (2008). Automated Detection and Location of Cascadia Tremor. Geophysical Research Letters, 35(20).
    Yabe, S., Tanaka, Y., Houston, H. and Ide, S. (2015). Tidal Sensitivity of Tectonic Tremors in Nankai and Cascadia Subduction Zones. Journal of Geophysical Research: Solid Earth, 120(11): 7587-7605.
    Zhu, L. & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media, Geophys. J. Int., 148,619–627.
    莊育菱,2012,台灣非火山長微震半自動化偵測系統,國立臺灣師範大學地球科學所碩士論文,共93 頁。
    陳燕玲,1995,台灣地區三維速度構造與隱沒構造之相關探討,國立中央大學地球物理研究所碩士論文,共172 頁。
    陳璽安,2017,OpenACC 平行化語言用於網格式定位程式之開發及其在地震預警之應用,國立台灣大學地質科學所碩士論文,共39頁。
    葉庭禎,2011,台灣地震與長微震之動態誘發,國立台灣大學地質科學所碩士論文,共102頁。
    戴心如,2016,臺灣非火山長微震之活動特徵及可能孕構造和機制,國立臺灣師範大學地球科學所碩士論文,共80頁。

    下載圖示
    QR CODE