簡易檢索 / 詳目顯示

研究生: 王振權
Cheng-Chuan Wang
論文名稱: 苯乙腈的區域選擇開關反應
The regioselective switching reaction of benzyl cyanide
指導教授: 姚清發
Yao, Ching-Fa
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 255
中文關鍵詞: 區域選擇開關反應苯乙腈咪唑啉酮融合異喹啉酮衍生物亞胺基異吲哚啉酮衍生物3-羥基-3-取代異吲哚啉酮衍生物
英文關鍵詞: regioselective switching reaction, benzyl cyanide
論文種類: 學術論文
相關次數: 點閱:149下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為兩個章節。第壹章先針對區域選擇開關反應的定義做簡單的介紹,並回顧近年來各種區域選擇開關反應的相關文獻;另外,由於本論文研究主體為苯乙腈的相關研究,亦探討其在反應中可扮演的角色。
    第貳章為開關反應之結果與討論。此章節共分為三個部分。第一部分為苯乙腈在強鹼 (叔丁醇鉀)的作用下作為親核性試劑的反應探討,利用碘化亞銅催化由胺基酸酯類合成的鄰碘苯醯胺類與苯乙腈進行反應而合成咪唑啉酮融合異喹啉酮的衍生物。
    第二部分為苯乙腈作為氰化試劑的反應探討,利用碘化亞銅催化由胺基酸酯類合成的鄰碘苯醯胺類與苯乙腈進行反應並在弱鹼 (磷酸鉀)的作用下而合成具有生物活性的亞胺基異吲哚啉酮衍生物。
    第三部分為苯乙腈作為苯甲醯化試劑的反應探討,此反應透過苯乙腈先作為親核性試劑與苯甲醯胺類起始物反應後再進行縮環,最後合成出在醫療研究上具有潛力的3-羥基-3-取代異吲哚啉酮衍生物。

    The thesis is mainly divided into two chapters. The first chapter is the preface of the thesis, which gives a simple introduction of the definition of regioselective switching reaction and the literature review of different regioselective switching reaction in recent years. Moreover, as a result of this thesis’s research emphasis is benzyl cyanide, we also make a brief introduction of its role in various reactions. Then we enclose our research motive and research goals at the end of the first chapter.

    Chapter II is the results and discussions for the switching reaction. This chapter is subdivided into three parts. The first part is about utilization of benzyl cyanide as a nucleophile. In this part, we synthesized imidazolinone fused isoquinolinone derivatives from the reaction between 2-iodobenzamides derived from amino acid esters and benzyl cyanide by using copper(I) iodide as a catalyst and strong base (potassium tert-butoxide).

    The second part of Chapter II describes the utilization of benzyl cyanide as a cyanating reagent. In this section, we synthesized the bioactive iminoisoindolinone derivatives from the reaction between 2-iodobenzamides derived from amino acid esters and benzyl cyanide by using copper(I) iodide as a catalyst and mild base (potassium phosphate).

    The third part of Chapter II deals with the utilization of benzyl cyanide as a benzoylating reagent. In this section, we synthesized 3-hydroxy-3-substituted isoindolinone derivatives from the reaction between 2-iodobenzamides derived from various amines and benzyl cyanide by using copper(I) iodide as a catalyst and cesium carbonate. The product was achieved in two steps.

    中文摘要 ........................................................................................................................ I Abstract ......................................................................................................................... II 第壹章、前言 一、 概觀區域選擇開關反應............................................................................ 1 1. 介紹................................................................................................................ 1 2. 文獻回顧........................................................................................................ 1 2-1. 添加劑開關反應.................................................................................... 1 2-2. 配位體開關反應.................................................................................... 2 2-3. 保護基開關反應.................................................................................... 3 2-4. 溶劑開關反應........................................................................................ 3 2-5. 溫度開關反應........................................................................................ 4 2-6. 氧化劑開關反應.................................................................................... 4 2-7. 催化劑開關反應.................................................................................... 5 2-7-1. 金屬催化........................................................................................ 5 2-7-2. 酸催化............................................................................................ 7 2-7-3. 鹼催化............................................................................................ 8 2-7-4. 促進劑催化.................................................................................... 8 2-7-5. 有機催化........................................................................................ 9 2-8. 鹼開關反應............................................................................................ 9 二、 苯乙腈和其在反應中的角色之簡介...................................................... 11 1. 親核性試劑 (nucleophile) .......................................................................... 11 2. 氰化試劑 (cyanating reagent)..................................................................... 12 3. 苯甲醯化試劑 (benzoylating reagent) ....................................................... 13 三、 研究動機與目標...................................................................................... 14 第貳章、開關反應之結果與討論 第一部分、 苯乙腈作為親核性試劑.............................................................. 15 1. 咪唑啉酮融合異喹啉酮的介紹.................................................................. 15 2. 文獻回顧...................................................................................................... 16 3. 結果與討論.................................................................................................. 18 3‐1. 最佳化條件探討.................................................................................. 18 3-2. 化合物3a 取代基效應的探討............................................................ 22 3-3. 合成方法的限制.................................................................................. 29 3-4. 反應機構.............................................................................................. 30 4. 結論.............................................................................................................. 31 第二部分、 苯乙腈作為氰化試劑.................................................................. 32 1. 亞胺基異吲哚啉酮的介紹.......................................................................... 32 2. 文獻回顧...................................................................................................... 33 3. 結果與討論.................................................................................................. 37 3‐1. 最佳化條件探討.................................................................................. 37 3-2. 化合物6a 取代基效應的探討............................................................ 39 3‐3. 反應機構.............................................................................................. 42 4. 結論.............................................................................................................. 43 第三部分、 苯乙腈作為苯甲醯化試劑.......................................................... 44 1. 3-羥基-3-取代異吲哚啉酮的介紹.............................................................. 44 2. 文獻回顧...................................................................................................... 46 3. 結果與討論.................................................................................................. 49 3‐1. 反應條件的確定.................................................................................. 49 3-2. 嘗試一鍋化進行反應.......................................................................... 51 3-3. 最佳化條件探討.................................................................................. 53 3-3-1. 第一步反應.................................................................................. 53 3-3-2. 第二步反應.................................................................................. 55 3-4. 化合物9c 取代基效應的探討 ............................................................ 56 4. 結論.............................................................................................................. 59 參考文獻.................................................................................................................. 60 實驗部分 分析儀器及基本實驗操作 ......................................................................................... 67 第一部分實驗步驟.................................................................................................. 68 緩衝溶液配置法.................................................................................................. 69 第二部分實驗步驟.................................................................................................. 70 第三部分實驗步驟.................................................................................................. 70 光譜資料 ..................................................................................................................... 72 1H-NMR 及 13C-NMR 光譜附圖 ............................................................................. 104 單晶繞射X-ray 結構圖 ............................................................................................ 205

    1. Mahatthananchai, J.; Dumas, A. M.; Bode, J. W. Angew. Chem. Int. Ed. 2012, 51, 10954–10990.
    2. Li, B.; Park, Y.; Chang, S. J. Am. Chem. Soc. 2014, 136, 1125–1131.
    3. (a) Tsvelikhovsky, D; Buchwald, S. L. J. Am. Chem. Soc. 2010, 132, 14048
    –14051. (b) Sasaki, Y.; Horita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem. Int. Ed. 2011, 50, 2778–2782.
    4. Beck, E. M.; Grimster, N. P.; Hatley, R.; Gaunt, M. J. J. Am. Chem. Soc. 2006, 128, 2528–2529.
    5. (a) Li, D. Y.; Shang, X. S.; Chen, G. R.; Liu, P. N. Org. Lett. 2013, 15, 3848–3851. (b) Albaladejo, M. J.; Alonso, F.; Yus, M. Chem. Eur. J. 2013, 19, 5242–5245.
    6. Young, P. C.; Hadfield, M. S.; Arrowsmith, L.; Macleod, K. M.; Mudd, R. J.; Jordan-Hore, J. A.; Lee, A.-L. Org. Lett. 2012, 14, 898–901.
    7. (a) Song, G.; Gong, X.; Li, X. J. Org. Chem. 2011, 76, 7583–7589. (b) Samala, S.; Arigela, R. K.; Kant, R.; Kundu, B. J. Org. Chem. 2014, 79, 2491–2500.
    8. (a) Zhu, L.-L.; Wang, Y.-H.; Zhang,Y.-X.; Li, X.-X.; Liu, H.; Chen, Z. J. Org. Chem. 2011, 76, 441–449. (b) Modha, S. G.; Kumar, A.; Vachhani, D. D.; Sharma, S. K.; Parmar, V. S.; Van der Eycken, E. V. Chem. Commun. 2012, 48, 10916–10918. (c) Chen, F.; Shen, T.; Cui, Y.; Jiao, N. Org. Lett. 2012, 14, 4926–4929.
    9. (a) Wang, H.; Huang, D.; Cheng, D.; Li, L.; Shi, Y. Org. Lett. 2011, 13, 1650–1653. (b) Reddy, B. V. S.; Venkateswarlu, A.; Borkar, P.; Yadav, J. S.; Sridhar, B.; Grée, R. J. Org. Chem. 2014, 79, 2716–2722.
    10. Wang, Y.; Yu, Z. -H.; Zheng, H. -F.; Shi, D. -Q. Org. Biomol. Chem. 2012, 10, 7739–7746.
    11. Gupta, S.; Koley, D.; Ravikumar, K.; Kundu, B. J. Org. Chem. 2013, 78, 8624–8633.
    12. Jin, M. Y.; Kim, S. M.; Han, H.; Ryu, D. H.; Yang, J. W. Org. Lett. 2011, 13, 880–883.
    13. (a) Sheng, J.; Chao, B.; Chen, H.; Hu, Y. Org. Lett. 2013, 15, 4508–4511.
    (b) Chao, B.; Lin, S.; Ma, Q.; Lu, D.; Hu, Y. Org. Lett. 2012, 14, 2398–2401.
    (c) Blay, G.; Girón, R. M.; Montesinos-Magraner, M.; Pedro, J. R. Eur. J. Org. Chem. 2013, 18, 3885–3895.
    14. (a) Myers, R. L. 2007, The 100 Most Important Chemical Compounds: A Reference Guide. (b) Deutsch, H. M.; Shi, Q.; Gruszecka-Kowalik, E.; Schweri, M. M. J. Med. Chem. 1996, 39, 1201–1209.
    15. Vardanyan, R. S.; Hruby, V. J. 2006, Synthesis of Essential Drugs.
    16. (a) Casy, A. F.; Parfitt, R. T. 1986, Opioid Analgesics. (b) Mercer, S. L. 2009, Synthesis and Characterization of Meperidine Analogs at the P-glycoprotein Efflux Transporter
    17. (a) Balboni, G.; Congiu, C.; Onnis, V.; Maresca, A.; Scozzafava, A.; Supuran, C. T.; Winum, J.-Y.; Maietti, A. Bioorg. Med. Chem. Lett. 2012, 22, 3063–3066.
    (b) Ebitani, K.; Kaneda, K.; Mizugaki, T.; Mori, K.; Motokura, K.; Nishimura, D. J. Am. Chem. Soc. 2004, 126, 5662–5663. (c) Ji, Y.; Trenkle, W. C.; Vowles, J. V. Org. Lett. 2006, 8, 1161–1163. (d) Verkade, J. G.; You, J. Angew. Chem. Int. Ed. 2003, 42, 5051–5053. (e) DeGraffenreid, M. R.; Bennett, S.; Caille, S.; de Turiso, F. G-L.; Hungate, R. W.; Julian, L. D.; Kaizerman, J. A.; McMinn, D. L.; Rew, Y.; Sun, D.; Yan, S.; Powers, J. P. J. Org. Chem. 2007, 72, 7455–7458.
    (f) Alam, M. S.; Nam, Y.-J. ; Lee, D.-U. Eur. J. Med. Chem. 2013, 69, 790–797.
    18. (a) Luo,Y.; Wen, Q.; Wu, Z.; Jin, J.; Lu, P.; Wang, Y. Tetrahedron 2013, 69, 8400–8404. (b) Wen, Q.; Jin, J.; Mei, Y.; Lu, P.; Wang, Y. Eur. J. Org. Chem. 2013, 19, 4032–4036. (c) Jin, J.; Wen, Q.; Lu, P.; Wang, Y. Chem. Commun. 2012, 48, 9933–9935. (d) Yuen, O. Y.; Choy, P. Y.; Chow, W. K.; Wong, W. T.; Kwong, F. Y. J. Org. Chem. 2013, 78, 3374–3378.
    19. (a) Prasad, A. K.; Kumar, V.; Maity, J.; Sanghvi, Y. S.; Ravikumar, V. T.; Parmar, V. S. Nucleos. Nucleot. Nucl. 2005, 24, 747–751. (b) Duplais, C.; Bures, F.; Sapountzis, I.; Korn, T. J.; Cahiez, G.; Knochel, P. Angew. Chem. Int. Ed. 2004, 43, 2968–2970. (c) Kandre, S.; Bhagat, P. R.; Sharma, R.; Gupte, A. Tetrahedron Lett. 2013, 54, 3526–3529. (d) Esmaeili, A. A.; Ghalandarabad, S. A.; Zangouei, M. Tetrahedron Lett. 2012, 53, 5605–5607. (e) Lazny, R.; Sienkiewicz, M.; Olenski, T.; Urbanczyk-Lipkowska, Z.; Kalicki, P. Tetrahedron 2012, 68, 8236–8244. (f) Watahiki, T.; Ohba, S.; Oriyama, T. Org. Lett. 2003, 5, 2679–2681.
    20. (a) Adepu, R.; Sunke, R.; Meda, C. L. T.; Rambabu, D.; Krishna, G. R.; Reddy, C. M.; Deora, G. S.; Parsa, K. V. L.; Pal, M. Chem. Commun. 2013, 49, 190–192. (b) Chen, D.; Chen, Q.; Dai, S.; Huang, L.; Yang, J.; Chen, D.; Liu, M.; Bao, W. Tetrahedron 2013, 69, 6461–6467. (c) Fei, X.-D.; Ge, Z.-Y.; Tang, T.; Xu, Q.-M.; Zhu, Y.-M.; Ji, S.-J. J.Org. Chem. 2013, 78, 4524–4529. (d) Fu, H.; Liu, T.; Wang, Y.; Yang, D.; Yang, H. Adv. Synth. Catal. 2012, 354, 477–482. (e) Balkrishna, S. J.; Bhakuni, B. S.; Konar, S.; Kumar, A.; Kumar, S.; Sheikh, J. A. Org. Lett. 2012, 14, 2838–2841. (f) Xu, L.; Jiang, Y.; Ma, D.; Org. Lett. 2012, 14, 1150–1153. (g) Fu, H.; Liu, T.; Yang, H.; Zhu, C. Adv.Synth. Catal. 2012, 354, 1579–1584. (h) Lesaki, Y.; Kirihata, M.; Kobayashi, Y.; Ozaki, Y.; Tanimori, S. Org. Biomol. Chem. 2012, 10, 1381–1387. (i) Chen, C.; Deng, G.; Wang, F.; Xi, C. J. Org. Chem. 2012, 77, 4148–4151. (j) Fu, H.; Lu, J.; Jiang, Y.; Jin, Y.; Liu, H. Org. Lett. 2011, 13, 3694–3697. (k) Diao, X.; Xu, L.; Guo, Y.; Jiang, Y.; Ma, D.; Wang, H.; Zhu, W. Org.Lett. 2011, 13, 6422–6425. (l) Balkrishna, S. J.; Bhakuni, B. S.; Chopra, D.; Kumar, S. Org. Lett. 2010, 12, 5394–5397.
    21. (a) Kotipalli, T.; Kavala,V.; Janreddy, D.; Kuo, C.-W.; Kuo, T.-S.; Huang, H.-N.; He, C.-H.; Yao, C.-F.; RSC Adv. 2013, 5, 2274–2283. (b) Kavala, V.; Janreddy, D.; Raihan, M. J.; Kuo, C.-W.; Ramesh, C.; Yao, C.-F. Adv. Synth. Catal. 2012, 354, 2229–2240. (c) Kavala, V.; Wang, C.-C.; Barange, D. K.; Kuo, C.-W.; Lei, P.-M.; Yao, C.-F. J. Org. Chem. 2012, 77, 5022–5029.
    22. (a) Liu, C.C.; Parthasarathy, K.; Cheng, C.H. Org. Lett. 2010, 12, 3518–3521.
    (b) Wang, F.; Liu, H.; Fu, H.; Jiang, Y.; Zhao, Y. Org. Lett. 2009, 11, 2469–2472.
    23. Tan, S.; Evans, R. R.; Dahmer, M. L.; Singh, B. K.; Shaner, D. L. Pest. Manag. Sci. 2005, 61, 246–257.
    24. (a) Nagarajan, K.; Rao, V. R.; Shah, R. K.; Shenoy, S. J.; Fritz, H.; Richter, W. J.; Muller, D. Helv. Chim. Acta 1988, 71, 77–92. (b) Kubo, K.; Ito, N.; Isomura, Y.; Sozu, I.; Homma, H.; Murakami, M. Chem. Pharm. Bull. 1979, 27, 2372–2381. (c) Bollini, M.; Asis, S. E.; Bruno, A. M. Synthesis 2006, 2, 237–242. (d) Bollini, M.; Gonzalez, M.; Bruno, A. M. Tetrahedron Letters 2009, 50, 1507–1509.
    (e) Bollini, M.; Casal, J. J.; Alvarez, D. E.; Boiani, L.; Gonzalez, M.; Cerecetto, H.; Bruno, A. M. Bioorg. Med. Chem. 2009, 17, 1437–1444.
    25. (a) Schefczik, E. Liebigs Ann. Chem. 1969, 729, 83–96. (b) Grinberg, H.; Lamdan, S.; Gaozza, C. H. Org. Prep. Proced. Int. 1976, 8, 287–292. (c) Liu, T.; Wang, R.; Yang, H.; Fu, H. Chem. Eur. J. 2011, 17, 6765–6771.
    26. (a) Butner, L.; Huang, Y.; Tse, E.; Hall, I. H. Biomed. Pharmacother. 1996, 50, 290–296. (b) Hall, I. H.; Barnes, B. J.; Ward, E. S.; Wheaton, J. R.; Shaffer, K. A.; Cho, S. E.; Warren, A. E. Arch. Pharm. Pharm. Med. Chem. 2001, 334, 229–234. (c) Murthy, A. R. K.; Wong, O. T.; Reynolds, D. J.; Hall, I. H. Pharm. Res. 1987, 4, 21–27. (d) Luo, W.; Yu, Q.; Salcedo, I.; Holloway, H. W.; Lahiri, D. K.; Brossi, A.; Tweedie, D.; Greig, N. H. Bioorg. Med. Chem. 2011, 19 , 3965–3972. (e) Miyachi, H.; Azuma, A.; Ogasawara, A.; Uchimura, E.; Watanabe, N.; Kobayashi, Y.; Kato, F.; Kato, M.; Hashimoto, Y. J. Med. Chem. 1997, 40, 2858–2865.
    27. (a) Wada, K.; Gomibuchi, T.;Yoneta, Y.; Otsu, Y.; Shibuya, K.; Okuya, H. (Bayer CropScience LP).US 2007/0031514 A1, Feburary 8, 2007. (b) Luzyanin, K. V.; Kukushkin, V. Y.; Kopylovich, M. N.; Nazarov, A. A.; Galanski, M.; Pombeiro, A. J. L. Adv. Synth. Catal. 2008, 350, 135–142. (c) Gushchin, P. V.; Luzyanin, K. V.; Kopylovich, M. N.; Haukka, M.; Pombeiro, A. J. L.; Kukushkin, V. Yu. Inorg. Chem. 2008, 47, 3088–3094. (d) Luzyanin, K. V.; Pombeiro, A. J. L.; Haukka, M.; Kukushkin, V. Y. Organometallics 2008, 27, 5379–5389. (e) Sueki, S.; Guo, Y.; Kanai, M.; Kuninobu, Y. Angew. Chem. Int. Ed. 2013, 52, 11879–11883. (f) Jaffe, E. E.; Hilfiker, F. R.; Misogianes, M. J. (Ciba Specialty Chemicals Holding Inc.) EP0813911 A2, 1997. (g) Bitterli, P.; Basel-Land, R.; Kehrer, F. (Sandoz Ltd., Basel, Switzerland) US3816448, 1974.
    28. (a) Byrne, G. T.; Linstead, R. P.; Lowe, A. R. J. Chem. Soc. 1934, 1017–1022.
    (b) Voorstad, P. J.; Cocolas, G. H.; Hall, I. H. Pharm. Res. 1984, 1, 250–255.
    (c) Wrobel, J.; Dietrich, A.; Woolson, S. A.; Millen, J.; McCaleb, M.; Harrison, M. C.; Hohman, T. C.; Sredy, J.; Sullivan, D. J. Med. Chem. 1992,35, 4613–4627. (d) Nan’ya, S.; Tange, T.; Maekewa, E. J. Heterocycl. Chem. 1985, 22, 449–451. (e) Miura, T.; Nishida, Y.; Morimoto, M.; Yamauchi, M.; Murakami, M. Org. Lett. 2011,13, 1429–1431. (f) Zhu, C.; Xie, W.; Falck, J. R. Chem. Eur. J. 2011, 17, 12591–12595. (g) Liu, B.; Li, Y.; Jiang, H.; Yin, M.; Huanga, H. Adv. Synth. Catal. 2012, 354, 2288–2300.
    29. Abu Zarga, M. H.; Sabri, S. S.; Firdous, S.; Shamma, M. Phytochemistry 1987, 26, 1233–1234.
    30. (a) Neumann, H.; Strubing, D.; Lalk, M.; Klaus, S.; Hubner, S.; Spannenberg, A.; Lindequist, U.; Beller, M. Org. Biomol. Chem. 2006, 4, 1365–1375.
    (b) Mikolasch, A.; Hessel, S.; Gesell-Salazar, M.; Neumann, H.; Manda, K.; Gōrdes, D.; Schmidt, E.; Thurow, K.; Hammer, E.; Lindequist, U.; Beller, M.; Schauer, F. Chem. Pharm. Bull. 2008, 56, 781—786.
    31. (a) Fajardo, V.; Elango, V.; Cassels, B. K.; Shamma, M. Tetrahedron Lett. 1982, 23, 39–42. (b) Fang, F. G.; Danishefsky, S. J. Tetrahedron Lett. 1989, 30, 2747–2750.
    32. (a) Topliss, J. G.; Konzelman, L. M.; Sperber, N.; Roth, F. E. J. Med. Chem. 1964, 7, 453–456. (b) Davis, B. R.; Cutler, J. A.; Furberg, C. D.; Wright, J. T., Jr.; Farber, M. A.; Felicetta, J. V.; Stokes, J. D. Ann. Intern. Med. 2002, 137, 313–320.
    33. (a) Hardcastle, I. R.; Ahmed, S. U.; Atkins, H.; Calvert, A. H.; Curtin, N. J.; Farnie, G.; Golding, B. T.; Griffin, R. J.; Guyenne, S.; Hutton, C.; Kallblad, P.; Kemp, S. J.; Kitching, M. S.; Newell, D. R.; Norbedo, S.; Northen, J. S.; Reid, R. J.; Saravanan, K.; Willems, H. M. G.; Lunec, J. Bioorg. Med. Chem. Lett. 2005, 15, 1515–1520. (b) Hardcastle, I. R.; Ahmed, S. U.; Atkins, H.; Farnie, G.; Golding, B. T.; Griffin, R. J.; Guyenne, S.; Hutton, C.; Källblad, P.; Kemp, S. J.; Kitching, M. S.; Newell, D. R.; Norbedo, S.; Northen, J. S.; Reid, R. J.; Saravanan, K.; Willems, H. M. G.; Lunec, J. J. Med. Chem. 2006, 49, 6209–6221. (c) Hardcastle, I. R.; Valeur, E.; Watson, A.; Blackburn, T. J.; Clegg, W.; Golding, B. T.; Griffin, R. J.; Haggerty, K.; Harrington, R. W.; Kemp, S.; Payne, S. L.; Revill, C. H.; Liu, J.; Ahmed, S. U.; Bennaceur, K.; Drummond, C.; Hutton, C.; Lu, X.; Newell, D. R.; Xu, Q.; Lunec, J.; Endicott, J. A.; Gruber, J.; McDonnell, J. M.; Noble, M. E. M.; Riedinger, C. J. Med. Chem. 2011, 54, 1233−1243.
    (d) Golding, B. T.; Riedinger, C.; Griffin, R. J.; Hardcasctle, I. R.; Valeur, E.; Watson, A. F.; Noble, M. US2011224274A1, 2011. (e) Willems, H. M. G.; Kallblad, P.; Hardcastel, I. R.; Griffin, R. J.; Golding ,B. T.; Lunec, J.; Nobel, M. E. M.; Newell, D. R.; Calvert, A. H. WO2006024837A1, 2006.
    34. (a) Comte, M.-T.; Gueremy, C.; Ponsinet, G. (Rhone-poulenc) US 4999355, 1991. (b) Schindler, U.; Schoenafinger, K.; Strobel, H.; Groehn, V. (Aventis Pharma Deutschland GmbH) US6344468B1, 2002.
    35. (a) Epsztajn, J.; Jóźwiak, A.; Czech, K.; Szcześniak, A. K. Monatsh. Chem. 1990, 121, 909–921. (b) Bousquet, T.; Fleury, J.-F.; Daïch, A.; Netchaitaïlo, P. Tetrahedron 2006, 62, 706–715. (c) Zhou, Y.; Zhai, Y.; Li, J.; Ye, D.; Jiang, H.; Liu, H. Green Chem. 2010, 12, 1397–1404. (d) Griesbeck, A. G.; Nazarov, N.; Neudörfl, J. M.; Heffen, M. Green Chem. 2012, 14, 3004–3006. (e) Sharma, S.; Park, E.; Park, J.; Kim, I. S. Org. Lett. 2012, 14, 906–909. (f) Yu, Q.; Zhang, N.; Huang, J.; Lu, S.; Zhu, Y.; Yu, X.; Zhao, K. Chem. Eur. J. 2013, 19, 11184–11188. (g) DeGlopper, K. S.; Dennis, J. M.; Johnson, J. B. Tetrahedron Lett. 2014, 55, 1843–1845.
    36. (a) Yu, L.; Cui, J.; Padakanti, P. K.; Engel, L.; Bagchi, D. P.; Kotzbauer, P. T.; Tu, Z. Bioorg. Med. Chem. 2012, 20, 4625–4634. (b) Guo, L.; Li, B.; Huang, W.; Pei, G.; Ma, D. Synlett 2008, 12, 1833–1836. (c) Browne, K. A.; Deheyn, D. D.; El-Hiti, G. A.; Smith, K.; Weeks, I. J. Am. Chem. Soc. 2011, 133, 14637–14648. (d) Huang, Y.-B.; Yang, C.-T.; Yi, J.; Deng, X.-J.; Fu, Y.; Liu, L. J. Org. Chem. 2011, 76, 800–810.

    下載圖示
    QR CODE