研究生: |
施登耀 Deng-Yao Shi |
---|---|
論文名稱: |
應用於音頻之低功率高效能三角積分調變器設計與實現 The Design and Implementation of Low-power High-performance Delta-Sigma Modulators for Audio Application |
指導教授: |
郭建宏
Kuo, Chien-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 類比數位轉換器 、三角積分調變器 、強健式多級雜訊頻移架構 、數位前饋架構 、逐次逼近暫存式類比數位轉換器 |
英文關鍵詞: | Analog-to-digital converter, delta-sigma modulator, Sturdy Multi-stage Noise Shaping, Digital feed-forward, successive approximation register ADC |
論文種類: | 學術論文 |
相關次數: | 點閱:215 下載:40 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今製程技術不斷的進步下,積體電路設計已進入了奈米時代,此進步不但大大的降低了電路的面積,相對上電源供應電壓也大幅的下降。高效能、低功率的晶片陸續地推陳出新,以及人們對於產品輕薄短小和電池的長時效性要求,低功率積體電路技術發展有愈來愈急迫的需要。然而,電源電壓的下降,雖可有效地節省數位電路的消耗功率,但卻反而增加類比數位轉換電路設計的困難。在許多應用當中,類比數位轉換器(Analog-to-digital converter)佔著舉足輕重的角色,而有許多種架構可以來完成。三角積分調變器(Delta Sigma Modulator)對類比電路的非理想特性並不敏感,這些特性包含元件之間的不匹配、運算放大器的增益等等。然而這些特性恰巧對低功率電路來說尤其重要。三角積分調變器這項技術基本上非常適合用來實現高解析度、高準確度、及窄頻要求的類比數位轉換器,因此在儀器、音頻及通信上的應用已相當的普遍。
在本論文中,提出了兩種新穎的架構並且實現,一是改良強健式多級雜訊頻移架構(Sturdy Multi-stage Noise Shaping, SMASH),降低運算放大器對電壓增益的需求,並結合數位前饋架構(Digital feed-forward),增加輸入動態範圍且降低失真;二為,三角積分調變器使用逐次逼近暫存式(Successive Approximation Register, SAR)類比數位轉換器,此架構可有效降低功率消耗和電路複雜度。兩架構實現所使用的製程技術分別為TSMC 90-nm 1P9M CMOS與TSMC 0.18-mm 1P6M CMOS;設計的供應電壓皆為1.2 V、頻寬為音頻應用的25 kHz;模擬結果分別達到的最大SNDR為63 dB與82 dB;電源功率消耗分別為813 mW與463 mW。
The fabrication of integrated circuit has entered the nano-grade with the improvement of modern technology. This progress not only reduces the circuit area greatly, but also lowers the supply voltage significantly. Chips with high-performance and low-power have been proposed constantly today, the main demand of these chips nowadays is more power saving for portability. Hence, the low power technology has become a trend in modern integrated circuit designs. Although the decreasing of the supply voltage can effectively save power consumption of digital circuits, it also increases the difficulty of designing analog-to-digital converters (ADCs) circuits, which plays an important role in many applications. Fortunately, Delta-sigma modulators are insensitive to the imperfections of the analog components, including the mismatch between elements, the gain of OPAMPs, etc… which are of great influence to low-power chips. Therefore, they’re usually designed and applied for high-resolution systems such as instruments, audio devices, and communication devices.
In this thesis, we propose and construct two new structures. The first one is an improved Sturdy Multi-stage Noise Shaping (SMASH) structure. Here are three key-points of SMASH: (a) it reduces the gain requirement of the operational amplifier (OPAMP) (b) analogy modulator adopting the Digital feed-forward (DFF) path (c)input dynamic range larger than conventional DSM with the distortion of modulator reduced. The second structure is a modulator using successive approximation register (SAR) ADC. This architecture reduces power consumption and simplifies circuit complexity. Two of the modulators are constructed in 90-nm 1P9M CMOS and 0.18-m 1P6M CMOS process technology, respectively. Both modulators process 25-KHz audio-band, with 63 dB and 82dB peak SNDR. Total power dissipations are 813 mW and 463 mW, respectively.
[1] R. Jacob Baker, CMOS: Mixed-Signal Circuit Design, Second Edition, Wiley, IEEE Press, 2008.
[2] D. A. Johns, K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc., 1997.
[3] J. Silva, U. K. Moon, J. Steensgaard, and G. C. Temes, “Wideband Low-Distortion Delta-Sigma ADC Topology,” Electron. Lett., vol. 37, pp. 737-738, Jun. 2001
[4] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma Data Converters: Theory, Design, and Simulation. New York: IEEE Press, 1996
[5] R. Schreier and G. C. Temes, Understanding Delta–Sigma Data Con verters: New York: Wiley, 2004.
[6] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, “A Higher-Order Topology for Interpolative Modulators for Oversampling A/D Converters,” IEEE Trans. Circuits Syst., vol. 37, no. 3, pp. 309-318, Mar. 1990.
[7] W. L. Lee and C. G. Sodini, “A Topology for Higher-Order Interpolative Coders,” in Proc. IEEE Intel. Symp. Circuits Syst., 1987, pp.459-462.
[8] B. DelSignore, D. Kerth, N. Sooch, anf E. Swansooon, “ A Monolithic 20-B Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. 1311-1317, Dec. 1990.
[9] T. Ritoniemi, T. Karema, and H. Tenhunen, “The Design of Stable High Order 1-Bit Sigma-Delta Modulators,” in Proc. IEEE Intel. Symp. Circuits Syst., May 1990, pp. 3267-3270.
[10] P. Ferguson, A. Ganesan, R. Adarns, S. Vincelette, R. Libert, A. Volpe, D. Andreas, A.Charpentier, and J. Dattorro, “An 18b 20KHz Dual SD A/D Converter,” in Proc. ISSCC, Feb. 1991, pp. 68-292.
[11] T. Tille, J. Sauerbrey, and D. Schmitt-Landsiedel,” A Low-Voltage MOSFET-Only SD Modulator for Speech Band Applications Using Depletion-Mode MOS-Capacitors in Combined Series and Parallel Compensation,” in Proc. IEEE Intel. Symp. Circuits Syst., May 2001, pp. 376-379.
[12] J. Sauerbrey, T. Tille, D. S. Landsiedel, and R. Thewes, “A 0.7-V MOSFET-Only Switched-Opamp SD Modulator in Standard Digital CMOS Technology,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1662-1669 Dec. 2002
[13] P. Favrat, P. Deval, and M. J. Declercq, “An improved voltage doubler in a standard CMOS technology,” in Proc. IEEE Intel. Symp. Circuits Syst., Hong Kong, June 1997, pp. 249-252
[14] P. Favrat, P. Deval, and M. J. Declercq, “A high-efficiency CMOS voltage doubler,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 410-416, Mar. 1998.
[15] M. Dessouky and A. Kaiser, “Input switch configuration suitable for rail-to-rail operation of switched op amp circuits,” Electron. Lett., vol. 35, no. 1, pp. 8-10, Jan. 1999
[16] G. Ahn, D. Chang, M. Brown, N. Ozaki, H. Youra, K. Hamashita, K. Takasuka, G.Temes, and U. K. Moon, “0.6-V 82-dB Delta-Sigma Audio ADC using Switched-RCIntegrators,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2398-2461, Dec. 2005.
[17] L. Yao, M. S. J. Steyaert, and W. Sansen, “A 1-V 140-μW 88-dB audio sigma-delta modulator in 90-nm CMOS,” IEEE J. Solid-State Circuits, vol.39, no.11, pp.1809-1818, Nov. 2004
[18] R. Jacob Baker, CMOS: Circuit Design, Layout, and Simulation, Revised Second Edition, Wiley, IEEE Press, 2008.
[19] A. Lopez-Martin, S. Baswa, J. Ramírez-Angulo, and R. G. Carvajal, “Low-voltage super Class-AB CMOS OTA cells with very high slew rate and power efficiency,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1068-1077, May 2005.
[20] C.-H. Kuo, D.-Y. Shi, and K.-S. Chang, “Low-Voltage Fourth-Order Cascade Delta–Sigma Modulator in 0.18-μm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 9, pp. 2450-2461, Sep. 2010.
[21] P. M. Figueiredo, and J. C. Vital, “Kickback Noise Reduction Techniques for CMOS Latched Comparators” , IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006.
[22] Da-Huei Lee and Tai-Haur Kuo, “Advancing Data Weighted Averaging Technique for Multi-Bit Sigma-Delta Modulators” , IEEE Trans. Circuits Syst. II, Express Briefs, vol. 54, no. 10, pp. 838-842, Oct. 2007.
[23] N. Maghari, S. Kwon, G.C. Temes and U. Moon, “Sturdy MASH D-S modulator,” Electron. Lett., vol. 42, no. 22, pp. 1269-1270, Oct. 26, 2006.
[24] N. Maghari, S. Kwon and U. Moon, “74 dB SNDR Multi-Loop Sturdy-MASH Delta-Sigma Modulator Using 35 dB Open-Loop Opamp Gain,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2212-2221, Aug. 2009.
[25] N. Maghari, S. Kwon, G. C. Temes, and U. Moon, “Mixed-Order Sturdy MASH D-S Modulator,” in Proc. IEEE Intel. Symp. Circuits Syst., New Orleans, LA, May 2007, pp. 257-260.
[26] A. A. Hamoui, M. Sukhon, and F. Maloberti, “Digitally-Enhanced 2nd-Order SD Modulator with Unity-Gain Signal Transfer Function,” in Proc. IEEE Intel. Symp. Circuits Syst., Seattle, WA, May 2008, pp.1664-1667.
[27] A. A. Hamoui, M. Sukhon, and F. Maloberti, “Digitally-Enhanced High-Order DS Modulators,” in Proc. IEEE Intel. Conf. Electron. Circuits Syst., St. Julien's, Aug. 31 2008-Sept. 3 2008, pp. 1115-1118.
[28] A. Gharbiya, and D. A. Johns, “On the implementation of input feedforward delta-sigma modulators,” IEEE Trans. Circuits Syst. II, Express Briefs, vol. 53, no. 6, pp. 453-457, June 2006.
[29] Behzad Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, Inc. New York, NY, USA, 2001.
[30] H. Park, K.g Nam, D. K. Su, K. Vleugels, and B. A. Wooley, “A 0.7-V 870-uW Digital-Audio CMOS Sigma-Delta Modulator,” IEEE J. Solid-State Circuits, vol. 44, no. 4, pp. 1078-1088, Apr. 2009.
[31] V. Peluso, P. Vancorenland, A. M. Marques, M. S. Steyaert, and W. Sansen, “A 900-mV low-power DS A/D converter with 77-dB dynamic range,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp.1887-1897, Dec. 1998.
[32] J. Sauerbrey, T. Tille, D. Schmitt-Landsiedel, and R. Thewes, “A 0.7V MOSFET-only switched opamp DS modulator in Standard Digital CMOS technology,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1662-1669, Dec. 2002.
[33] J. Goes, B. Vaz, R. Monteiro, and N. Paulino, “A 0.9 V DS modulator with 80 dB SNDR and 83 dB DR using a single-phase technique,” in Proc. ISSCC, Feb. 2006, pp. 74-75.
[34] S. Kwo and F. Maloberti, “A 14mW Multi-bit SD Modulator with 82dB SNR and 86dB DR for ADSL2+,” in Proc. ISSCC, Feb. 2006, pp. 161-170.
[35] K.-P. Pun, S. Chatterjee, and P. R. Kinget, “A 0.5-V 74-dB SNDR 25-kHz continuous-time delta-sigma modulator with a return-to-open DAC,” IEEE J. Solid-State Circuits, vol. 42, no. 3, pp. 496-507, Mar. 2007.
[36] J. Roh, S. Byun, Y. Choi, H. Roh, Y.G. Kim, and J.K. Kwon, “A 0.9-V 60-μW 1-Bit Fourth-Order Delta-Sigma Modulator With 83-dB Dynamic Range,” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 361-370, Feb. 2008.
[37] A. Gharbiya, and D. A. Johns, “A 12-bit 3.125 MHz Bandwidth 0–3 MASH Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 44, no. 7, pp. 2010-2018, July 2009.
[38] Y. Chae, and G. Han, “Low Voltage, Low Power, Inverter-Based Switched-Capacitor Delta-Sigma Modulator,” IEEE J. Solid-State Circuits, vol. 44, no. 2, pp. 458-472 Feb. 2009.
[39] C.-C. Liu, S.-J. Chang, G.-Y. Huang, and Ying-Zu Lin, “A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure” , IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740 Apr. 2010.