簡易檢索 / 詳目顯示

研究生: 陳彥銘
Chen, Yan-Ming
論文名稱: 有機不對稱連鎖反應應用於動力學分割及去對稱反應
Organocascade Kinetic Resolution and Desymmetrization Reactions
指導教授: 陳焜銘
Chen, Kwun-Min
學位類別: 博士
Doctor
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 405
中文關鍵詞: 去對稱化反應連鎖反應動力學分割二氫惡嗪氧化物麥可加成反應
英文關鍵詞: desymmetrization, cascade reaction, kinetic resolution, dihydrooxazine N-oxides, Michael addition
DOI URL: https://doi.org/10.6345/NTNU202203974
論文種類: 學術論文
相關次數: 點閱:168下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文在探討有機不對稱連鎖反應應用於動力學分割及去對稱反應,本論文包含四個研究主題:第一部分探討有機不對稱催化應用於去對稱化 Michael 加成反應,藉由樟腦架構之L-脯胺酸衍生之有機催化劑 194 和金雞納霜辛可尼衍生之一級胺催化劑 186,使用環己酮衍生物 36 與1,1-雙(苯基磺酰基)乙烯 112 反應,進行去對稱化 Michael 加成反應。此研究利用烯胺分子的催化模式,使用有機催化劑 186 和 194 合成去對稱化產物 196 以及鏡像異構物 ent-196。利用金雞納霜辛可尼衍生之催化劑 186,得到產物的鏡像異構物 ent-196,具有高的選擇性 (產率高達 96%,93%的鏡像選擇性)。
第二部分探討有機去對稱化酸酐起始物,使用起始物環酸酐 212 和硝基苯烯丙醇 213,進行去對稱化反應。利用去對稱化反應,合成高產率以及高鏡像選擇性之半酸半酯產物 214-225 (高達90%之產率以及 99% ee的鏡像選擇性),由於半酸半酯產物分子之架構,常見於天然物以及藥物分子之中間體,有效建立立體選擇性於合成化學極為重要,另一方面,微調反應條件,發現利用辛可尼一級胺基催化劑 186,可得到鏡像異構物 ent-214-225。
第三部分進行有機不對稱催化連鎖反應,使用醛類化合物 103、2-(苯甲基)-銦烷-1,3-二酮 233,以及偶氮化合物 99,利用α,α-L-雙苯環脯胺醇矽醚 72 (10 mol%) 為催化劑,進行連鎖反應。所得到的環酮螺形架構衍生之產物分子 237a-l 具有高產率 (55-78%) 以及高鏡像選擇性 (51-93% ee )。
第四部分為分離出 Michael 加成產物之二氫惡嗪氧化物中間體 252 (Dihydrooxazine N-oxide),利用外消旋硝基烯丙胺 248、醛類化合物 103 為起始物,進行有機催化動力學分割連鎖反應,多官能基的硝基烯丙胺 248 進行反應。醛類化合物 103 與 (S)-硝基烯丙胺 248 (活性較好),以及α,α-L-雙苯環脯胺醇矽醚催化劑 72,進行動力學分割 Michael 加成反應,形成高選擇性產物之二氫惡嗪氧化物中間體 252 (高達50%的產率、非鏡像選擇性20:1以及98% ee的鏡像選擇性),並且回收高光學純度 (S)-硝基烯丙胺 248 (活性較小)。此外,利用中間體 252 進行水解反應,得到高產率以及高的選擇性的四氫吡啶 250 (高達50%的產率、非鏡像選擇性20:1以及98% ee的鏡像選擇性)。接著,由NMR的研究以及理論計算,瞭解反應機構之進行,包括酸添加劑所扮演的角色以及質子化中間體 252 的位置。提出合理的反應機構於 [4 + 2] Michael 環化加成反應、質子化/開環,以及最後的水解和脫水的過程。

The dissertation entitled “Organocascade Kinetic Resolution and Desymmetrization Reactions” comprises of four chapters. The first chapter describes the organocatalytic desymmetrization of prochiral cyclohexanones 36 derivatives through Michael addition of these nucleophiles to 1,1-bis(phenylsulfonyl)ethylene 112 employing pyrrolidinyl-linker-camphor 194 and cinchonidine derived primary amine 186. The study provides both antipodal stereoisomers through chiral enamine catalysis initiated by organocatalysts 186 and 194. The enantiomeric products were obtained with high to excellent levels of stereoselectivity when the cinchonidine-derived catalyst 186 was employed (up to 96% yield、93% ee).
The organocatalytic desymmetrization of cyclic meso-anhydrides 212 with functionalized nitroallylic alcohols 213 was discussed in second chapter. The alcoholysis of meso-anhydrides provides the corresponding hemiesters 214-225 in high chemical yields with high to excellent enatioselectivities (up to 90% yield and 99% ee). The hemiesters are valuable precursors in organic synthesis as theses can provide numerous naturally occurring biologically active complex motifs. On the other hand, the reversal of enantioselectivity was observed when an amine cinchonidine derived organocatalyst 186 was used under the similar reaction conditions.
The third chapter deals with the synthesis the hexahydropyridazine dervatives 237a-l via a one-pot three components triple organocascade reaction of 2-arylidene-1,3–indandiones 233, aldehydes 103 and azodicarboxylates 99 by the privileged organocatalyst α,α-L-diphenylprolinol trimethylsilyl ether 72 (10 mol%). A library of substituted hexahydropyridazines 237a-l were obtained in good to high chemical yields (55-78%) with moderate to high enatioselectivities (51-93% ee).
Isolation of critical dihydrooxazine N-oxide intermediary species 252 in Michael addition of aldehydes 103 to nitroolefins 248 and their hydrolysis along with organocatalytic kinetic resolution of densely functionalized nitroallylic amines 248 was demonstrated in the fourth chapter. The α,α-L-diphenylprolinol silyl ether 72 derived resting states were isolated in excellent chemical yields with high diastereo- and enantioselectivities (up to 50% yield, 20:1 d.r.; 98 ee) in Michael addition of aldehydes 103 to kinetically (R)-nitroallylic amines 248 (more reactive). The less reactive (S)-nitroallylic amines 248 were resolved with high optical purities. Further, hydrolysis of the intermediates 252 produced the enantioenriched tetrahydropyridines 250 with high chemical yields with high to excellent levels of diastereo- and enantioselectivities (up to >20:1 dr and 99:1 er). And then, detailed NMR studies and computational studies were probed to understand the mechanism which includes the role of acid additive and site of protonation in oxazine intermediate 252. A reasonable mechanism was proposed that undergo sequential Michael addition initiated [4+2] cycloaddition, protonation/ring opening, followed by hydrolysis and dehydration process.

有機不對稱連鎖反應應用於動力學分割及去對稱反應 第一章 導論.............................................................................................................1 1-1 序論.................................................................................................................1 1-2 有機催化劑的發展.........................................................................................2 1-2-1 共價催化.............................................................................................3 1-2-2 非共價催化.........................................................................................6 1-3 利用去對稱反應製備高光學活性藥物之方法.............................................7 1-3-1 生物酵素應用去對稱化反應之探討.................................................8 1-3-2 金屬催化劑應用去對稱化反應之探討.............................................9 1-3-3 有機催化劑應用於去對稱反應之探討...........................................11 1-4 有機催化劑應用於不對稱連鎖反應之探討..............................................17 1-4-1 以胺基催化劑催化不對稱連鎖反應...............................................17 1-4-2 以布忍斯特鹼催化不對稱連鎖反應...............................................23 1-5 有機催化劑應用於不對稱動力學分割之探討..........................................28 1-6 研究動機......................................................................................................34 第二章 實驗結果與討論..........................................................................................35 2-1 有機催化劑應用於去對稱 Michael 加成反應.........................................35 2-1-1 溶劑及催化劑篩選...........................................................................36 2-1-2 酸鹼添加劑效應...............................................................................38 2-1-3 取代基探討.......................................................................................39 2-1-4 反應機構探討...................................................................................42 2-1-5 結論...................................................................................................43 2-2 有機催化劑應用於去對稱化反應…………….......................................45 2-2-1 溶劑及催化劑篩選...........................................................................46 2-2-2 取代基探討.......................................................................................47 2-2-3 反應機構探討...................................................................................51 2-2-4 結論...................................................................................................52 2-3 有機催化劑應用於不對稱連鎖反應...........................................................53 2-3-1 添加劑效應.......................................................................................55 2-3-2 溶劑效應...........................................................................................56 2-3-3 取代基探討.......................................................................................57 2-3-4 反應機構探討...................................................................................59 2-3-5 結論...................................................................................................61 2-4 α,α-L-雙苯環脯胺醇矽醚應於動力學分割連鎖反應................................62 2-4-1 催化劑之篩選...................................................................................65 2-4-2 鹼添加劑之篩選...............................................................................67 2-4-3 溶劑之篩選.......................................................................................68 2-4-4 一鍋化 (One Pot) 取代基之篩選....................................................69 2-4-5 酸添加劑對中間體水解進行篩選...................................................72 2-4-6 進行逐步式 (Stepwise) 反應取代基的探討..................................73 2-4-7 利用NMR了解反應機構之探討.....................................................80 2-4-8 利用理論計算產物以及中間體彼此之間的關係...........................84 2-4-9 反應機構探討...................................................................................86 2-4-10 結論.................................................................................................87 第三章 實驗部分......................................................................................................89 3-1 有機催化劑應用於去對稱 Michael 加成反應.........................................89 3-1-1 分析儀器及基本實驗操作...............................................................89 3-1-2 去對稱Michael加成反應之實驗步驟.............................................91 3-1-3 光譜數據...........................................................................................93 3-2 有機催化劑應用於酸酐去對稱化反應.....................................................105 3-2-1 分析儀器及基本實驗操作.............................................................105 3-2-2 有機催化劑應用於酸酐去對稱化反應之實驗步驟.....................107 3-2-3 光譜數據.........................................................................................109 3-3 有機催化劑應用於 Michael/Amination/aldol 連鎖反應.......................122 3-3-1 分析儀器及基本實驗操作.............................................................122 3-3-2 有機催化劑應用於 Michael/Amination/aldol 連鎖反應之實驗步驟....................................................................................................124 3-3-3 光譜數據.........................................................................................125 3-4 有機催化劑應用於動力學分割連鎖反應.................................................137 3-4-1 分析儀器及基本實驗操作.............................................................137 3-4-2 有機催化劑應用於動力學反應之實驗步驟.................................139 3-4-3 光譜數據.........................................................................................144 第四章 參考文獻......................................................................................................180 附錄一、 1H-NMR及13C-NMR光譜圖....................................................186 附錄二、 X-ray 單晶繞射結構解析與數據.............................................328 附錄三、 論文發表期刊............................................................................405

1. The article of ’’Information for the Public “ for the Nobel Prize in Chemistry 2001.
2. Aleman, J.; Cabrera, S. Chem. Soc. Rev. 2013, 42, 774.
3. List, B.; Lerner, R. A.; Barbas, C. F. III J. Am. Chem. Soc. 2000, 122, 2395.
4. Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2000, 122, 4243.
5. (a) Alema´n, J.; Cabrera, S. Chem. Soc. Rev. 2013, 42, 774. (b) Dalko,P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138. (c) Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed., 2008, 47, 6138. (d) Blaser, H. U.; Schmidt, E. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2004.
6. Riant, O.; Kagan, H. B. Tetrahedron Lett. 1989, 30, 7403.
7. Akiyama, T.; Itoh, J.; Yokota, K.; Fuchibe, K. Angew. Chem. Int. Ed. 2004, 43, 1566.
8. (a) Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672. (b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119.
9. (a) Izquierdo, I.; Plaza, M. T.; Rodríguez, M.; Tamayo, J. Tetrahedron: Asymmetry,1999, 10, 449.10. (b) Neri, C.; Williams, J. M. J. Adv. Synth. Catal. 2003, 345, 835.
11. Zhou, L.; Liu, X.; Ji, J.; Zhang, Y.; Hu, X.; Lin, L.; Feng X. J. Am. Chem. Soc. 2012, 134, 17023.
12. Zhou, F.; Guo, J.; Liu, J.; Ding, Ke; Yu, S.; Cai, Q. J. Am. Chem. Soc. 2012, 134, 14326.
13. Company,o, X.; Valero, G.; Crovetto, L. ; Moyano, A.; Rios, R. Chem. Eur. J. 2009, 15, 6564.
14. Mori, K.; Katoh, T.; Suzuki, T.; Noji, T.; Yamanaka, M.; Akiyama, T. Angew. Chem. Int. Ed. 2009, 48, 9652.
15. Gu, Q.; You, S.-L. Org. Lett. 2011, 13, 5192.
16. Rubush, D. M.; Morges, M. A.; Rose, B. J.; Thamm, D. H.; Rovis, T. J. Am. Chem. Soc. 2012, 134, 13554.
17. Ikeuchi, K.; Ido, S.; Yoshimura, S.; Asakawa, T.; Inai, M.; Hamashima, Y.; Kan, T. Org. Lett. 2012, 14, 6016.
18. Ke, Z.; Tan, C. K.; Chen, F.; Yeung, Y. Y. J. Am. Chem. Soc. 2014, 136, 5627.
19. Pantaine, L.; Coeffard, V.; Moreau, X.; Greck C. Org. Lett. 2015, 17, 3674.
20. Chen, Y.; Tian, S.-K. ; Deng, L. J. Am. Chem. Soc. 2000, 122, 9542.
21. Peschiulli, A.; Gun’ko, Y.; Connon, S. J. J. Org. Chem. 2008, 73, 2454.
22. (a) Rodriguez-Docampo, Z.; Connon, S. J. ChemCatChem. 2012, 4, 151. (b) Rho,
H. S.; Oh, S. H.; Lee, J. W.; Lee, J. Y.; Chin, J.; Song, C. E. Chem. Commun.
2008, 1208. (c) Oh, S. H.; Rho, H. S.; Lee, J. W.; Lee, J. E.; Youk, S. H.; Chin, J.;
Song, C. E. Angew. Chem. Int. Ed. 2008, 47, 7872.
23. Oh, S. H.; Rho, H. S.; Lee, J. W.; Lee, J. E.; Youk, S. H.; Chin, J.; Song, C. E.
Angew. Chem. 2008, 120, 7990.
24. Schmitt, E.; Schiffers, I.; Bolm, C. Tetrahedron 2010, 66, 6349.
25. Strecker, A. Justus Liebigs Ann. Chem. 1850, 75, 27.
26. Bui, T.; Barbas, C. F. III Tetrahedron Lett. 2000, 41, 6951.
27. Pulkkinen, J.; Aburel, P. S.; Halland, N.; Jørgensen, K. A. Adv. Synth. Catal. 2004, 346, 1077.
28. Marigo, M.; Schulte, T.; Franze´n, J.; Jørgensen, K. A. J. Am. Chem. Soc. 2005, 127, 15710.
29. (a) Enders, D.; Huttl, M. R. M.; Grondal, C.; Raabe, G. Nature 2006, 441, 861.
30. (a) Cassani, C.; Tian, X.; Escudero-Ada’ E.-C.; Melchiorre, P. Chem. Commun.
2011, 47, 233. (b) Quintard, A.; Alexakis, A. Chem. Commun. 2011, 47, 7212.
31. Lin, H.; Sun, X.-W.; Lin, G.-Q. Org. Lett. 2014, 16, 752.
32. (a) Hoashi, Y.; Yabuta, T.; Takemoto, Y. Tetrahedron Lett. 2004, 45, 9185. (b)
Srikrishna, A.; Satyanarayana, G.; Kumar, P. R. Tetrahedron Lett. 2006, 47, 363.
33. Zu, L.; Wang, J.; Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036.
34. Basle´, O.; Raimondi, W.; Duque, M. M. S.; Bonne, D.; Constantieux, T.; Rodriguez, J. Org. Lett. 2010, 12, 5246.
35. Enders, D.; Urbanietz, G.; Cassens-Sasse, E.; Kees, S.; Raabe, G. Adv. Synth. Catal. 2012, 354, 1481.
36. Ling, J.-B.; Su,Y.; Zhu, H.-L.; Wang, G.-Y.; Xu, P.-F. Org. Lett. 2012, 14, 1090.
37. Chauhan, P.; Mahajan, S.; Raabe, G.; Enders, D. Chem. Commun. 2015, 51, 2270.
38. Sun, Q.-S.; Zhu, H.; Chen, Y.-J.; Yang, X.-D.; Sun, X.-W.; Lin, G.-Q. Angew. Chem. Int. Ed. 2015, 54, 13253.
39. (a) Pasteur, L. C. R.;Se,ance, H. Acad. Sci. Paris 1848, 26, 535. (b) Vedejs, E.;
Jure, M. Angew. Chem. Int. Ed. 2005, 44, 3974. (c) Keith, J. M.; Larrow, J. F.;
Jacobsen, E. N. Adv. Synth. Catal. 2001, 343, 5.
40. Marckwald, W.; McKenzie, A. Chem. Ber. 1899, 32B, 2130.
41. Sano, T.; Imai, K.; Ohashi, K.; Oriyama, T. Chem. Lett. 1999, 265.
42. Birman, V. B.; Uffman, E. W.; Jiang, H.; Li, X.; Kilbane, C. J. J. Am. Chem. Soc. 2004, 126, 12226.
43. (a) De, C. K.; Klauber, E. G.; Seidel, D. J. Am. Chem. Soc. 2009, 131, 17060.
(b) Muller, C. E.; Schreiner, P. R. Angew. Chem. Int. Ed. 2011, 50, 6012.
44. Peschiulli, A.; Procuranti, B.; O,Connor, C.; Connon, S. J. Nature Chemistry 2010, 2, 380.
45. Sheppard, C. I.; Taylor, J. L.; Wiskur, S. L. Org. Lett. 2011, 13, 3794.
46. (a) Reddy, R. J.; Chen, K. Org. Lett. 2011, 13, 1458.
(b) Roy, S.; Chen, K. Org. Lett. 2012, 14, 2496.
(c) Roy, S.; Chen, K.-F.; Gurubrahamam, R.; Chen K. J. Org. Chem. 2014, 79, 8955.
(d) Chang, Y.-P.; Gurubrahamam, R.; Chen, K. Org. Lett. 2015, 17, 2908.
47. Zhu, Q.; Cheng, L.; Lu Y. Chem. Commun. 2008, 6315.
48.Sulzer-Mosse,, S.; Alexakis, A.; Mareda, J.; Bollot, G.; Bernardinelli, G.; Filinchuk, Y. Chem. Eur. J. 2009, 15, 3204.
49. Quintard, A.; Langlois, J. B.; Emery, D.; Mareda, J.; Guenee, L.; Alexakis, A. Chem. Eur. J. 2011, 17, 13433.
50. Quintard, A.; Alexakis, A. Chem. Commun. 2010, 46, 4085.
51. Hiratake, J.; Yamamoto, Y.; Oda, J. J. Chem. Soc. Chem. Commun. 1985, 1717.
52. Park, S. F.; Nam, E. H.; Jang, H. B.; Oh, J. S.; Some, S.; Lee, Y. S.; Songa, C. E. Adv. Synth. Catal. 2010, 352, 2211.
53. Ramachary, D.B.; Anebouselvy, K.; Chowdari, N. S.; Barbas, C. F. III J. Org. Chem. 2004, 69, 5838.
54. Ramachary, D. B.; Venkaiah, C.; Krishna, P. M. Chem. Commun. 2012, 48, 2252.
55. Kuan, H.-H.; Chien, C.-H.; Chen, K. Org. Lett. 2013, 15, 2880.
56. Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212.
57. (a) Sahoo, G.; Rahaman, H.; Madarasz, A.; Papai, I.; Melarto, M.; Valkonen, A.; Pihko, P. M. Angew. Chem. Int. Ed. 2012, 51, 13144.
(b) Seebach, D.; Sun, X.; Sparr, C.; Ebert, M.-O.; Schweizer, W. B.; Beck, A. K.; Helv. Chim. Acta. 2012, 95, 1064.
(c) Seebach, D.; Sun, X.; Ebert, M.-O.; Schweizer, W. B.; Purkayastha, N.; Beck, A. K.; Duschmalé, J.; Wennemers, H.; Mukaiyama, T.; Benohoud, M.; Hayashi, Y.; Reiher, M. Helv. Chim. Acta. 2013, 96, 799.
(d) Moberg, C. Angew. Chem. Int. Ed. 2013, 52, 2160.
(e) Burés, J.; Armstrong, A.; Blackmond, D. G. J. Am. Chem. Soc. 2011, 133, 8822.
58. Han, B.; Huang, W.; Ren, W.; He, G.; Wang, J. H.; Peng, C. Adv. Synth. Catal. 2015, 357, 561.
59. Gurubrahamam, R.; Cheng, Y.-S.; Chen, K. Org. Lett. 2015, 17, 430.
60. Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. Nature, 1999, 397, 601.
61. For B97D functional, see: Grimme, S. J. Comp. Chem. 2006, 27, 1787. For 6-31G basis set, see: (a) Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257. (b) Dill, J. D.; Pople, J. A. J. Chem. Phys. 1975, 62, 2921. (c) Francl, M. M.; Petro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
62. Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
63. (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650.
(b) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
64. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev. 2005, 105, 2999.
65. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.;. Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09; Gaussian Inc: Wallingford CT, 2009.
66. 國立臺灣師範大學博士論文,管軒浩
67. 國立臺灣師範大學博士論文,陳蓉萱
68. 國立臺灣師範大學碩士論文,葉倫輔
69. 國立臺灣師範大學碩士論文,張芸菩
70. 國立臺灣師範大學碩士論文,張怡雅

無法下載圖示 本全文未授權公開
QR CODE