簡易檢索 / 詳目顯示

研究生: 柯明志
論文名稱: 從心智模式的角度分析模型教學成效—以電流化學效應為例
指導教授: 林如章
Lin, Ru-Jang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 136
中文關鍵詞: 心智模式模型教學電流化學效應
英文關鍵詞: mental model, model instruction, chemical effect of current
論文種類: 學術論文
相關次數: 點閱:219下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在化學教學中探求巨觀現象的機制時注重的是微觀的變化,而在呈現的過程中符號的運用常是不可或缺的一部分,而以模型來進行教學時會涉及到這三個面向的整合,本研究以電流的化學效應為主題,設計以引導式探究為理念的實驗教學活動配合微觀模擬動畫,導引學生建構電流的化學效應的模型,探討國三學生對此現象,心智模式建立與改變的過程,以自製的紙筆測驗與訪談為診斷工具評量學生的先備知識後,在施實教學活動的過程中,觀察學生在型模化過程時注重的要點。研究對象分為實驗組與控制組,共計49人。本研究發現:
    一、 學生在電解方面迷思概念的成因與教材和教法有相當大的關連性,學生常會對這教材和教法的內容作過度地延伸,此外在解決以符號呈現的問題時若不了解其確實意義,會傾向以表面的相似性作為解題的依據。
    二、 比較實驗組與控制組在教學前後概念改變的情況,証實本研究採用的實驗教學活動與微觀模擬動畫對於引導學生建構電解模型有顯著的成效(p=.018),對學生答題時的信心也有幫助。
    三、 分析學生在電流化學效應的表現,顯示部分學生在不同題目型式下的心智模式不具一貫性,從心智模式組成元素中可以發現這些元素並非隨意連結,如學生要在電流與離子移動方向上達到科學模式,才能和正確的水溶液導電方式連結。
    四、 從心智模式的觀點來看,在教學前實驗組與對照組其實有很大的差異,本研究的教學法可以讓實驗組的學生有機會運用自己原有的概念,造成認知衝突的契機,使學生在後測時呈現較大幅度的成長。

    In chemical education, we usually put our focus on the changes of materials at the microscopic level from the macroscopic level. One indispensable part in the process of the presentation is chemical symbols. Using models to perform our teaching activities involves integration of three aspects. This research is designed to find out the way to help students comprehend the process of the electro-analysis in electrolyte containing aqueous solutions and to observe how the mental models of ninth-graders are constructed and changed. We put guided inquiries and animated simulations together with regular textbooks to assist students to construct their mental models in the field of electro-analysis. When we diagnosed the preliminary knowledge of students, we also observed where students put their focuses on in modeling. The subjects of this research, consisting of forty-nine students, are divided into one test group and one control group.

    The results of our study indicate that:
    1. Students’ misconceptions about electro-analysis are highly influenced by the descriptions in their textbooks and the pedagogies that their teachers have applied on them. Besides, if students do not understand the actual meaning of chemical symbols, they tend to overextend their understanding to these symbols and solve problems only according to surface similarities of questions.

    2. Comparing the conception changes of the test group and the control group, we found that the experiment activities and animated simulations significantly effected (p= .018) on helping students build electro-analysis models as well as enhancing the confidence when answering questions.

    3. After analyzed students’ mental model in the field of chemical effect on electric current, the results show that some students’ mental model are not consistent in different expressions of the same questions. The elements in mental model cannot be randomly linked together. For example, mental model of electron and ion movement must belong to science model first, then the model of electron conductive method in solution phase can be linked to the same science model too.

    4. From the view of mental model, the test group and the control group showed a big difference after the instruction. The instruction method of this research is considered to be able to offer students opportunity to operate according to their original conception and to create a chance of conception conflict that made the test group show better performance in post-test.

    第壹章 緒 論………………………………………………………………1 第一節 研究動機…………………………………………………………1 第二節 研究目的與問題…………………………………………………2 第三節 研究的限制與範圍………………………………………………2 第貳章 文獻探討………………………………………………………………5 第一節 模型與型模化……………………………………………………5 第二節 模型在科學教育上的應用………………………………………10 第三節 心智模式與概念改變……………………………………………19 第四節 電流化學效應迷思概念…………………………………………29 第參章 研究方法與步驟………………………………………………………33 第一節 研究設計…………………………………………………………33 第二節 研究對象…………………………………………………………34 第三節 研究工具…………………………………………………………34 第四節 研究步驟…………………………………………………………42 第五節 資料處理與分析…………………………………………………45 第肆章 研究結果與討論………………………………………………………49 第一節 學生對電解現象的先備概念……………………………………49 第二節 實驗組學生對課程的看法………………………………………65 第三節 各組教學成效比較……………………………………………78 第四節 心智模式與概念改變歷程……………………………………82 第伍章 結論與建議…………………………………………………………111 第一節 結論……………………………………………………………111 第二節 建議與展望……………………………………………………113 參考文獻………………………………………………………………………117 中文部分…………………………………………………………………117 英文部分…………………………………………………………………117 附錄……………………………………………………………………………124 附錄一:電流化學效應前測—試題內容及試題分析編號……………124 附錄二:電流化學效應後測試題內容…………………………………126 附錄三:電流化學效應延宕後測試題內容……………………………129 附錄四:工作單試題內容及試題分析編號……………………………131 附錄五:教學活動內容與教具設計……………………………………135 表次 表2-1-1:現象、理論、模型間的關係………………………………………6 表2-2-1:FAR教學策略要注意的三個面向…………………………………15 表2-4-1:電流化學效應的迷思概念…………………………………………31 表3_3_1:工具設計與化學解題相關變數對照表……………………………34 表3_3_2:概念分類和試題類型對照表………………………………………36 表4-1-1:前測時「離子和原子差異」概念題目與答題人數統計…………50 表4-1-2:前測「通電前溶液中的粒子」概念題目與答題人數統計………52 表4-1-3:前測「導線和溶液中各粒子的流向」概念題目與答題人數統計…55 表4-1-4:「電解質水溶液導電方式」各模式人數分佈……………………59 表4-1-5:「電極產物與離子濃度」題目及答案群…………………………60 表4-1-6:「電解水和硫酸銅時兩極產物」各類人數分佈圖………………61 表4-1-7:「電解硝酸銀及氯化鈉時兩極產物」各類人數分佈圖…………62 表4-1-8:後測時「離子濃度變化」人數統計………………………………62 表4-2-1:「電解質導電原因」答題人數統計………………………………66 表4-2-2:洋菜膠體通電時的現象預測………………………………………67 表4-2-3:洋菜膠體通電時的現象觀察………………………………………67 表4-2-4:洋菜膠體通電時的現象解釋………………………………………68 表4-2-5:通電時電極反應說明………………………………………………69 表4-2-6:「水溶液中電子導電方式」答題人數統計…………………………70 表4-2-7:「學生對動畫模型使用的看法」量表………………………………74 表4-2-8:「課程接受度」量表…………………………………………………76 表4-3-1:實驗組與對照組在各類概念得分比較表…………………………79 表4-3-2:前、後測信心指數比較表…………………………………………81 表4-4-1:「離子和原子結構上的差異」分類表…………………………84 表4-4-2:「離子和原子關係」的心智模式變化………………………………85 表4-4-3:「電解質溶液中的粒子」繪圖題說明與舉列………………………88 表4-4-4:「電解質溶液中的粒子」繪圖題各類別人數統計…………………89 表4-4-5:「電解質溶液中的粒子」填充題各類別人數統計…………………90 表4-4-6:「電解質溶液中的粒子」繪圖題表達形式說明與舉列……………92 表4-4-7:「電解質溶液中的粒子」繪圖題表達形式各類別人數統計………93 表4-4-8:「通電前溶液中的粒子」的心智模式列表…………………………95 表4-4-9:「通電前溶液中的粒子」的心智模式變化表………………………96 表4-4-10:「電子在兩電極間的行徑」各類人數統計表………………………98 表4-4-11:「電子和離子移動的關連性」各類人數統計表…………………99 表4-4-12:「導線上電流的組成粒子」各類人數統計表………………………101 表4-4-13:「電流組成和溶液中粒子移動」心智模式的分類……………………103 表4-4-14:「電流組成和溶液中粒子移動」的概念改變統計表………………104 表4-4-15:「電解後電極產物」各類人數統計表………………………………105 表4-4-16:「離子濃度變化」各類人數統計表…………………………………106 表4-4-17:「電解後電極產物與離子濃度變化」心智模式的分類…………108

    一、中文部分:
    林香岑(2001):高中「電化學」概念媒體教學與教師教學策略之研究。國立台灣師範大學碩士論文(未出版)。
    郭順利(1998)高中學生在電化學的錯誤概念。國立台灣師範大學化學研究所碩士論文(未出版)。
    陳珊珊(1993) 我國國三學生酸鹼概念之研究。國立臺灣師範大學化學研究所碩士論文(未出版)。
    國立編譯館(2001) 國民中學理化教科書第三冊。台北市:國立編譯館。
    張榮耀(2000) 以科學史與本體論的觀點探討概念改變之機制。國立台灣師範大學化研究所碩士論文(未出版)。
    楊純珠(1999)「溶液」多媒體CAL之概念學習研究。台北:國立台灣師範大學碩士論文(未出版)。
    劉寶元 & 劉嘉茹(2002) 由心智模式精鍊的變化探討國小學童氣體壓力概念之學習過程。發表於2002年6月中華民國第三屆化學教育學術研討會,彰化。
    英文部分:
    Au, T.K., Sidle, A.L. & Rollins, K.B.(1993). Developing an intuitive understanding of conservation and contamination: Invisible particles as a plausible mechanism. Developmental Psychology 29, 286-299.
    Bent, H. A. (1984). Uses (and abuses) of models in teaching chemistry. Journal of Chemical Education, 61, 774-777
    Bhaskar, R. (1978). A realist in theory of science. (London: Harvester Wheatsheaf.)
    Boulter, C. J. & Buckley, B. C. (2000). Constructing a typology of models for science education in J. K. Gilbert & C. J. Boulter (eds.), Developing models in science education (Netherlands: Kluwer Academic Publishers) 41-57.
    Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22, 895-935
    Bunge, M. (1973). Philosophy of physics. (Dordrecht: Reidel.)
    Bunge, M. (1974). Theory and reality. (Sao Paolo, Brazil: Editora Perspectiva.)
    Caramazza, A., McCLosky, M. & Green ,B.(1981). Naïve beliefs in “sophisticated” subjects: Misconceptions about trajectories of objects. Cognition, 9, 117-123
    Carey, S. (1985). Conceptual change in childhood. (Cambridge, MA: MIT Press.)
    Carr, M. (1984). Model confusion in chemistry. Research in Science Education, 14, 97-103
    Chi, M. T. H., Feltovich, P. & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-152.
    Collins, A., & Gentner, D. (1987). How people construct mental models. In D. Holland & Quinn (Eds.), Cultural Models in Language and Thought. (Cambridge University Press.) , 243-265.
    Craik, K. (1943). The Nature of Explanation. (Cambridge, UK: Cambridge University Press.)
    diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 249-260.
    Duit, R. & Glynn, S. (1996). Mental Modelling in G. Welford; J. Osborne & P. Scott (eds) Research in Science education in Europe: current issues and themes (London ; Washington, D.C. : Falmer Press), 166-176.
    Driver, R. & Easley, J. (1978). Pupils and paradigms: A review of literature related to concept development in adolescent science studies. Studies in Science Education, 5, 61-84
    Finster, D. C. (1989) Developmental instruction. Part 1. Perry’s model of intellectual development. Journal of Chemical Education, 68, 659-661.
    Finster, D. C. (1991) Developmental instruction. Part 2. Application of the Perry model to general chemistry. Journal of Chemical Education, 70, 752-756.
    Fisher, K.M. (1983). Amino acid translation: A misconception in biology. In H.Helm & J.D.Novok(eds), Proceeding of the International Seminar: Misconceptions in Science and Mathematics. (Ithaca. NY: Cornell University Press.), 316-322
    Gamett, P. J. & Treagust, D. F. (1992a). Conceptual difficulties experience by high school students of electrochemistry : electriccircuits and oxidation-reduction equations. Journal of Research in science Teaching, 29, 121-142.
    Gamett, P. J. & Treagust, D. F. (1992b). Conceptual difficulties experience by high school students of electrochemistry : electrochemical (galvanic) and electrolytic cells. Journal of Research in science Teaching, 29(10), 1079-1099.
    Gentner, D. and Gentner, D. R. (1983) Flowing water or teeming crowds: Mental models of electricity. In D. Gentner and A. Stevens (eds) Mental models. (Lawrence Erlbaum Associates, Hillsdale, N.J.) 99-130.
    Gilbert, J. K., Boulter, C. & Rutherford, M. (1998a). Models in explanations, part 1: Horses for courses. International Journal of Science Education, 20, 83-97.
    Gilbert, J. K., Boulter, C. & Rutherford, M. (1998b). Models in explanations, part 2: Whose voice? Whose ears? International Journal of Science Education, 20, 187-203.
    Gilbert, J. K. & Boulter, C. J. (1998c). Learning science through models and modelling in J. Fraser & G. Tobin (eds) International handbook of science education(Boston : Kluwer Academic Publishers), 53-66.
    Gitmoer, D. H., & Duschl, R. A. (1998). Emerging issues and practice in science assessment in J. Fraser & G. Tobin (eds) International handbook of science education(Boston : Kluwer Academic Publishers), 791-810
    Glynn, S. M. (1991). Explaining science concepts: a teaching-with-analogies model. in The Psychology of Learning Science. S. M. Glynn, R. H. Yeany, & B. K. Britton. (Eds.), (Mahwah, New Jersey: Lawence Erlbaum Associates.), 219-240
    Grosslight, L., Unger, C., Jay, E. & Smith, C. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799-822.
    Halloun, I. (1996). Schematic Modeling for Meaningful Learning of Physics. Journal of Research in Science Teaching, v33, 1019-41
    Harrison, A. G. & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22, 1011-1026.
    Hestenes, D. (1996). Modeling methodology for physical teachers. Proceedings of the international conference on undergraduate physics education (College Park, August 1996)
    Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students’prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731-743.
    Hodson, D. (1992). In research of a meaningful relationship: an exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541-562.
    Holyoak, K. J. & Kon, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15, 332-340.
    Huddle, P. A. & White, M. D. (2000). Using a teaching model to correct known misconceptions in electrochemistry. Journal of Chemical Education, 77, 104-110
    Ingham, A. M. & Gilbert, J. K. (1991). The use of analog models by students of chemistry at higher education level. International Journal of Science Education, 13, 193-202
    Johnson-Laird, P. (1983). Mental models (Cambridge: Harvard University Press).
    Johnstone, A. H. (1993). The development of chemistry teaching. Journal of Chemical Education, 70, 701-705.
    Justi, R. & Gilbert, J. (2002) Modelling teacher’s view on the nature of modelling, implication for the education of modellers. International Journal of Science Education, 24, 369-387
    Justi R. S. & Gilbert, J. K. (2002) Science teachers’ Knowledge about and attitudes toward the use of models and modeling in learning science. International Journal of Science education, 24 , 1273-1292
    Kosslyn, S. (1980). Image and Mental. Cambrige, (Mass.: Harvard University Press.)
    Kuhn T. S.(1970). The structure of scientific revolutions (second edition). (Chicago: The University of Chicago Press.)
    Lee, K. W., Goh, N. K., Chia, L. S., & Chin, C. (1996). Cognitive variables in problem solving in chemistry: a revisited study. Science Education, 80, 691-710.
    Mainzer, K. (1999). Computational models and virtual reality. New perspectives of research in chemistry. HYLE-An International Journal of the Philosophy of Chemistry, 5, 117-126.
    Nagel, E. (1987). The structure of science. (Hackett, Indianapolis, IN.)
    Nakhleh, M.B. (1992).Why some students don't learn chemistry. Journal of Chemical Education, 69, 191-196.
    Nersessian, N. J.(1992). How do scientists think? Capturing the dynamics of conceptual change in Science. In Cognitive Models of Science Vol. XV (Minneapolis: University of Minnesota Press) 3-44.
    Nersessian, N. J. (1995). Should Physicists Preach What They Practice? Constructive Modeling in Doing and Learning Physics. Science & Education, 4, 203-226.
    Norman, D. A. (1983). Some observations on mental models. in Gentner, D. & Stevens, A. L. Mental models (Hillsdale, N.J. : Erlbaum), 7-14
    Ogude, A. N. & Bradley, J. D. (1994). Ionic conduction and electrical neutrality in operating electrochemical cells . Journal of Chemical Education, 71, 29-34.
    Perry, W. G. (1970) Forms of intellectual and ethical development in the college years (New York: Holt, Rinehart and Winston).
    Piaget, J. (1950). The psychology of intelligence. (London: Routledge and Kegan Paul.)
    Piaget, J. (1985). The equilibration of cognitive structures. (Chicago: University of Chicago Press.)
    Posner, G. J., Strike, K. A., Hewson, P. W. & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
    Renner, J. W., & Marek, E. A. (1990). An educational theory base for science teaching. Journal of Research in Science Teaching, 27, 241-246.
    Sanger, M. J. & Greenbowe, T. J. (1997a). Common Student Misconceptions in Electrochemistry: Galvanic, Electrolytic, and Concentration Cells. Journal of Research in Science Teaching, 34, 377-398.
    Sanger, M. J. & Greenbow, T. J. (1997b). Students’ misconceptions in electrochemistry : current flow in electrolyte solutions and the salt bridge . Journal of Chemical Education, 74, 819-823.
    Sanger, M. J. & Greenbowe, T. J. (1999). An analysis of college chemistry textbooks as sources of misconceptions and errors in electrochemistry. Journal of Chemical Education, 76, 853-560.
    Sanger, M. J. & Greenbowe, T. J.(2000). Addressing student misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies. International Journal of Science Education, 22, 521-537.
    Sutton, C. (1996). The scientific model as a form of speech in G. Welford; J. Osborne & P. Scott (eds) Research in Science education in Europe: current issues and themes (London ; Washington, D.C. : Falmer Press) 143-152.
    Tomasi, J. (1988). Models and modeling in theoretical chemistry. Journal of Molecular Structure (Theochem) , 179, 273-292
    Tregust, D. F., Harrison, A. G. and Venville, G. (1998) Teaching science effectively with analogies: An approach for pre-service and in-service teacher education. Journal of Science Teacher Education, 9, 85-101.
    van Driel, J. H. (1998). Teachers’ Knowledge about the nature of models and modelling in science. Paper presented at the annual meeting of the national association for research in science education, San Diego, USA, 19-22 Apr.
    Viennot, L. (1979). Spontaneous reasoning in elementary dynamics. European Journal of Science Education, 1, 205-221.
    Vosniadou, S., & Brewer, W. F. (1987). Theories of knowledge restructuring in the development. Review of Educational Research, 57, 51-67.
    Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth. Cognitive Psychology, 24, 535-538.
    Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123-183.
    Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45-69.
    Vosniadou, S. (1996). Towards a revised cognitive psychology for new advances in learning and instruction. Learning and Instruction, 6, 95-109.
    Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: a psychological point of view. International Journal of Science Education, 20(10), 1213-1230.
    Vygotsky, L. S. (1962). Development of science concepts in childhood. In E. Hanfman & G. Vakar (eds), Thought and Language. (Cambridge, MA: MIT Press.), 82-118
    Wandersee, J. H., Mintzes, J. J., & Novak, J. D. (1994). Research on alternative conceptions in science. D. L. Gabel(eds), Handbook of Research on Science Teaching and Learning. (New York, Simon and Schuster MacMillan), 177-210.
    Zook, K. B. (1991) Effect of analogical processes on learning and misrepresentation.
    Educational Psychology Review, 3, 41-72.

    無法下載圖示
    QR CODE