簡易檢索 / 詳目顯示

研究生: 張力中
Chang, Li-Chung
論文名稱: 探討POEC與分組合作學習模式在國二「原子與分子」單元的學習成效
A Study of the Learning Effect of POEC and Cooperative Learning Model for 8th Grades on the Unit of「Atoms & Molecules」
指導教授: 林如章
Lin, Ru-Jang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 146
中文關鍵詞: POEC分組合作學習校內教師社群
英文關鍵詞: POEC, cooperative learning, teacher professional learning community
論文種類: 學術論文
相關次數: 點閱:139下載:28
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討POEC(Predict-Observe-Explain- Conclusion)教學與分組合作學習(Cooperative Learning)模式,對國二「原子與分子」單元學習成效的影響,同時亦探討校內教師社群對本教學模式共同備課之參與度調查,以及實驗組學生接受POEC與分組合作學習教學後的感受情形。本研究採準實驗研究設計,研究對象為研究者任教學校之二個國二班級,其中一班為實驗組,以研究者所屬校內教師社群所開發之POEC與分組合作學習模式進行教學;另一班為控制組,以傳統講述式教學法教學。教學單元為國二上學期理化科,第六章原子與分子單元,受課堂數為6節課。
    本研究之研究工具包含「原子與分子單元測驗卷」、「教師對POEC與分組合作學習共同備課參與度問卷」、「學生對POEC與分組合作學習感受問卷」以及半結構式晤談資料。將測驗卷前、後測結果進行量化分析,了解實驗組與控制組學生經過不同教學法後的學習成效;再進行延宕測及半結構式晤談以了解實驗組學生在「原子與分子」單元學習的情形,之後整理學生在學習感受問卷的填答結果,以了解學生對於接受POEC與分組合作學習模式的學習感受。
    研究結果發現:一、在整體比較方面,實驗組與對照組於「原子與分子」單元後測及進步分數統計均達顯著差異,表示POEC與分組合作學習模式較講述式教學更能夠顯著提升學習成效且澄清迷思概念。二、同組內不同學習成就學生比較方面,兩組個別組內高分、中分與低分三群學生進步分數幅度並未達到顯著差異。三、兩組間相同學習成就學生之間的比較來看,高分群進步分數無顯著差異,但中分以及低分群進步分數中皆有顯著差異,顯示採取POEC與分組合作學習模式對中成就以及低成就學生學習成效有明顯改善。四、建議教師以此模式推廣之其他單元之教學。五、大部分的學生喜歡POEC與分組合作學習模式,且確實能提升班級的學習效果。
    根據上述結論,本研究做出相關建議,作為現階段國中科學探究教學與未來研究之參考。

    The purpose of this study was to explore: 1. the influence of the teaching strategy of POEC (prediction-observation-explanation-conclusion) and the cooperative learning approach for the unit “Atom and Molecule” on eighth graders’ learning effects; 2. the participation of the teacher professional learning community in collaborative lesson planning for this teaching-learning model; and 3. the attitude of students in the experimental group toward this model. The quasi-experimental method was adopted, with subjects comprising two classes of eighth graders in the junior high school where the researcher teaches. One class was used as the experimental group, undergoing the cooperative learning approach and the POEC teaching strategy developed by the teacher professional learning community of the school, while the other class was designated as the control group with the traditional teaching method. The teaching unit was Unit Six “Atom and Molecule” of the physics-chemistry course for the first semester of the eighth grade in junior high school. There were 6 sessions in total for teaching this unit.

    The research tools included: “Atom and Molecule Learning Test”, “Questionnaire of Teachers’ Participation in the Collaborative Lesson Planning for the POEC Teaching Strategy and Cooperative Learning”, “Questionnaire of Students’ Attitude toward the POEC Teaching Strategy and Cooperative Learning”, as well as a semi-structured interview. Both the pre-test and post-test were conducted, with the results quantitatively analyzed to understand the learning effects of both groups that received different teaching methods. A retention-test and semi-structured interviews were later performed to understand how well the students in the experimental group learned material from the “Atom and Molecule” unit. In the end, the results of the questionnaires of students’ attitude toward the POEC teaching strategy and cooperative learning were collected and analyzed.

    The research findings were as follows: 1. In general, the difference in the “Atom and Molecule” unit post-test scores and the progress in scores between the experiment group and the control group reached a significant level, indicating that the POEC teaching strategy and the cooperative learning approach can better elevate students’ learning effect and their understanding of complex science concepts than the traditional teaching method. 2. The different progress in scores among high-achievers, intermediate-achievers and low-achievers in each group did not reach a significant level. 3. As for the equivalents of both groups, the high-achievers of both groups did not show significant differences in the progress of their scores while the intermediate-achievers and the low-achievers between the two groups exhibited a significant difference in the progress of their scores, suggesting that the POEC teaching strategy and the cooperative learning approach help to improve the learning effects of the intermediate-achievers and low-achievers. 4. It is suggested that teachers adopt and promote the POEC teaching strategy and the cooperative approach in the teaching of other units. 5. Most students liked the POEC teaching and the cooperative learning approach, and they could enhance the learning effects of the whole class.

    Based on above findings, suggestions are proposed at the conclusion of this study to serve as a reference for the improvement of current junior high school science teaching, as well as for relevant research in the future.

    目 錄 中文摘要 i Abstract ii 表目錄 v 圖目錄 vii 第一章 緒論 1 第一節 研究背景與研究動機 1 第二節 研究目的與問題 2 第三節 研究範圍及限制 3 第四節 重要名詞解釋 3 第二章 理論基礎與文獻探討 6 第一節 「原子與分子」概念結構 6 第二節 POE教學策略之研究 16 第三節 分組合作學習之研究 23 第四節 校內教師社群之研究 29 第三章 研究方法與步驟 34 第一節 研究流程 34 第二節 研究對象 35 第三節 教材設計 36 第四節 研究工具 39 第五節 施測程序 40 第六節 資料收集與處理 40 第肆章 研究結果及分析 42 第一節 不同教學法對學生在「原子與分子」單元學習成效的影響 42 第二節 實驗組與對照組學生在「原子與分子」單元前測結果分析 51 第三節 實驗組與對照組學生在「原子與分子」單元後測結果分析 63 第四節 實驗組在「原子與分子」單元後測、延宕測結果與晤談內容分析 83 第五節 教師與學生問卷內容分析 93 第五章 結論與建議 98 第一節 結論 98 第二節 建議 101 參考文獻 102 表目錄 表2- 1微觀粒子概念的相關研究 7 表2- 2 POE 教學策略教師與學生的任務 17 表2- 3 國內外POE教學之相關研究 18 表2- 4建構主義和實證主義知識論之比較表 23 表2- 5合作學習理論綜合整理 25 表2- 6傳統教學與分組合作教學設計比較 26 表2- 7「學生小組成就區分法」STAD分組情況及實施流程表 27 表2- 8實務社群與教師團隊之比較 30 表3- 1研究步驟 35 表3- 2「原子與分子」單元學習目標 37 表3- 3 實驗組與對照組教學標題及內容 37 表3- 4 研究問題與分析方法對照表 40 表4- 1「原子與分子」單元前、後測Shapiro-Wilk常態性檢定結果 42 表4- 2實驗組與對照組後測成績同質性考驗 43 表4- 3實驗組與對照組前、後測描述性統計資料表 43 表4- 4實驗組與對照組前、後測獨立樣本t檢定表 44 表4- 5實驗組與對照組對於後測以及前後測差異之t統計考驗力摘要表 44 表4- 6實驗組與對照組前測對後測之迴歸係數同質性考驗結果表 45 表4- 7不同教學法(組別)在「原子與分子」單元學習成效描述性統計資料表 45 表4- 8不同教學法(組別)之單因子共變數分析表 45 表4- 9實驗組及對照組在前測總分之高、中、低分組人數分布及前、後測平均分數表 46 表4- 10實驗組及對照組高、中、低分組學生之「後測-前測」進步分數資料表 46 表4- 11實驗組之不同分數組別學生在「後測-前測」之單因子變異數分析結果摘要表 47 表4- 12對照組之不同分數組別學生在「後測-前測」之單因子變異數分析結果摘要表 47 表4- 13實驗與對照組之高分群前、後測及「後測-前測」描述性統計資料表 47 表4- 14實驗與對照組之高分群前、後測及「後測-前測」獨立樣本檢定(一) 47 表4- 15實驗與對照組之高分群前、後測及「後測-前測」獨立樣本檢定(二) 48 表4- 16實驗與對照組之中分群前、後測及「後測-前測」描述性統計資料表 48 表4- 17實驗與對照組之中分群前、後測及「後測-前測」獨立樣本檢定(一) 48 表4- 18實驗與對照組之中分群前、後測及「後測-前測」獨立樣本檢定(二) 49 表4- 19實驗與對照組之低分群前、後測及[後測-前測]描述性統計資料表 49 表4- 20實驗與對照組之低分群前、後測及[後測-前測]獨立樣本檢定(一) 49 表4- 21實驗與對照組之低分群前、後測及[後測-前測]獨立樣本檢定(二) 50 表4- 22實驗組及對照組前測答對人數及百分比 52 表4- 23前測實驗組及對照組於概念類型1「原子說」答對率分析表 53 表4- 24 前測實驗組及對照組於概念類型1各子概念答題狀況分析表 53 表4- 25前測實驗組及對照組於概念類型2「原子說(元素與化合物)」答對率分析表 54 表4- 26 前測實驗組及對照組於概念類型2各子概念答題狀況分析表 54 表4- 27前測實驗組及對照組於概念類型3「原子結構(元素週期表)」答對率分析表 55 表4- 28 前測實驗組及對照組於概念類型3各子概念答題狀況分析表 55 表4- 29前測實驗組及對照組於概念類型4「原子分子」答對率分析表 56 表4- 30 前測實驗組及對照組於概念類型4各子概念答題狀況分析表 56 表4- 31前測實驗組及對照組於概念類型5「化學式」答對率分析表 57 表4- 32 前測實驗組及對照組於概念類型5各子概念答題狀況分析表 57 表4- 33前測實驗組及對照組於概念類型6「粒子觀點的純物質和混合物」答對率分析表 58 表4- 34 前測實驗組及對照組於概念類型6各子概念答題狀況分析表 58 表4- 35前測實驗組及對照組於概念類型7「粒子觀點的元素與化合物」答對率分析表 59 表4- 36前測實驗組及對照組於概念類型7各子概念答題狀況分析表 59 表4- 37前測實驗組及對照組於概念類型8「巨觀的物理與化學變化」答對率分析表 60 表4- 38前測實驗組及對照組於概念類型8各子概念答題狀況分析表 60 表4- 39前測實驗組及對照組於概念類型9「微觀的物理與化學變化」答對率分析表 61 表4- 40前測實驗組及對照組於概念類型9各子概念答題狀況分析表 61 表4- 41前測實驗組及對照組於概念類型10「化學反應式」答對率分析表 62 表4- 42 前測實驗組及對照組於概念類型10各子概念答題狀況分析表 62 表4- 43實驗組及對照組各題組後測答對人數及百分比 64 表4- 44後測實驗組及對照組於概念類型1「原子說」答對率分析表 65 表4- 45 後測實驗組及對照組於概念類型1各子概念答題狀況分析表 65 表4- 46後測實驗組及對照組於概念類型2「原子說(元素與化合物)」答對率分析表 66 表4- 47 後測實驗組及對照組於概念類型2各子概念答題狀況分析表 66 表4- 48後測實驗組及對照組於概念類型3「原子結構(元素週期表)」答對率分析表 67 表4- 49 後測實驗組及對照組於概念類型3各子概念答題狀況分析表 67 表4- 50後測實驗組及對照組於概念類型4「原子分子」答對率分析表 68 表4- 51 後測實驗組及對照組於概念類型4各子概念答題狀況分析表 68 表4- 52後測實驗組及對照組於概念類型5「化學式」答對率分析表 69 表4- 53 後測實驗組及對照組於概念類型5各子概念答題狀況分析表 69 表4- 54後測實驗組及對照組於概念類型6「粒子觀點的純物質和混合物」答對率分析表 70 表4- 55 後測實驗組及對照組於概念類型6各子概念答題狀況分析表 70 表4- 56後測實驗組及對照組於概念類型7「粒子觀點的元素與化合物」答對率分析表 71 表4- 57後測實驗組及對照組於概念類型7各子概念答題狀況分析表 71 表4- 58後測實驗組及對照組於概念類型8「巨觀的物理與化學變化」答對率分析表 72 表4- 59後測實驗組及對照組於概念類型8各子概念答題狀況分析表 72 表4- 60後測實驗組及對照組於概念類型9「微觀的物理與化學變化」答對率分析表 73 表4- 61後測實驗組及對照組於概念類型9各子概念答題狀況分析表 73 表4- 62後測實驗組及對照組於概念類型10「化學反應式」答對率分析表 74 表4- 63 後測實驗組及對照組於概念類型10各子概念答題狀況分析表 74 表4- 64前、後測中子概念題目答對的比例及差異示意表 75 表4- 65前、後測中子概念題目答對的比例及差異示意表 76 表4-66 「原子模型」題綱中迷思概念類型及對應題號 78 表4-67實驗組與對照組在「原子模型」題綱中答對率變化表 78 表4-68「原子與分子」題綱中迷思概念類型及對應題號 78 表4-69實驗組與對照組在「原子與分子」題綱中答對率變化表 79 表4-70「物質變化」題綱中迷思概念類型及對應題號 79 表4-71實驗組與對照組在「物質變化」題綱中答對率變化表 79 表4-72實驗組與對照組在「原子模型」題綱中各認知向度答對率增減表 80 表4-73實驗組與對照組在「原子與分子」題綱中各認知向度答對率增減表 81 表4-74實驗組與對照組在「物質變化」題綱中各認知向度答對率增減表 82 表4-75 實驗組在「原子與分子」單元後測及延宕測答對人數及百分比 83 表4-76 實驗組在「原子與分子」單元後測及延宕測描述統計量 84 表4- 77實驗組在「原子與分子」單元後測及延宕測相依樣本相關性 84 表4- 78實驗組在「原子與分子」單元後測及延宕測相依樣本檢定 84 表4-79實驗組在「原子與分子」單元後測及延宕測相依樣本檢定 84 表4-80半結構性晤談作答情形分配表 85 表4-81「POEC與分組合作學習」教師及學生問卷可靠性統計量 93 表4- 82教師在「分組合作學習」教師參與度填答結果統計、描述性統計資料表 93 表4-83學生在「教師共同備課開發之新式教案結合分組合作學習」感受問卷填答結果統計、描述性統計資料表 95 圖目錄 圖2- 1、化學中的三種概念層級 14 圖2- 2化學中的三種概念層級 15 圖2- 3P(預測)-O(觀察)-E(解釋)-C(結論)新式教案範例 22 圖2- 4「近側發展區」(ZPD;zone of proximal development)的概念圖 25 圖4- 1 實驗組與對照組在「原子模型」題綱中答對率變化圖 78 圖4- 2實驗組與對照組在「原子與分子」題綱中答對率變化圖 79 圖4- 3實驗組與對照組在「物質變化」題綱中答對率變化圖 80 圖4- 4實驗組與對照組在「原子模型」題綱中各認知向度答對率增減長條圖 81 圖4- 5實驗組與對照組在「原子與分子」題綱中各認知向度答對率增減長條圖 81 圖4- 6實驗組與對照組在「物質變化」題綱中各認知向度答對率增減長條圖 82 圖4-7學生SM03原子模型圖 圖4-8學生SL01原子模型圖 89 圖4-9學生SL03原子模型圖 90 圖4-10學生SH03分子模型圖 91 圖4-11學生SH03水的三態變化圖 92

    一、中文部分
    丁一顧. (2011). 教師專業學習社群與教師集體效能感關係模式驗證之研究. 屏東教育大學學報.
    丁美枝. (2001). 不同教學媒體對國中學生學習 [原子結構] 之成效. 碩士, 臺灣師範大學, 台北市.
    丁翠鈺. (2014). 分組合作學習經驗對數學學習態度與成效之影響-以某國中一年級為例. 碩士, 政治大學, 台北市.
    王金國. (2007). 創新教學-在爭議中尋求共識之小組論辯法. 教育研究月刊, 161, 133 - 139.
    王金國, & 張新仁. (2003). 國小六年級教師實施國語科合作學習之研究. Educational Review, 21, 53-26.
    王為國. (2007). 從實務社群談課程發展與教師專業發展. Journal of Curriculum Studies, 2(2), 41-63.
    王桂蘭. (2002). 國民中小學教師教師知識分享態度, 虛擬社群參與意願及參與程度之關係研究. 碩士, 國立高雄師範大學, 高雄市.
    吳怡慧. (2014). 探討POE-Inquiry教學策略對國中八年級學生科學探究能力之影響. 碩士, 國立臺灣師範大學, 台北市.
    吳明隆. (2008). SPSS操作與應用-變異數分析實務. 台北市: 五南圖書出版股份有限公司.
    吳穎沺. (2003). 建構主義式的科學學習活動對國小高年級學生認知結構之影響. 碩士, 國立交通大學, 新竹市.
    李柏欽. (2013). POE 教學策略在國中八年級 [反應速率] 單元應用之研究. 碩士, 台灣師範大學, 台北市.
    李榮通. (2006). 合作學習法的認識與實施. 網路社會學通訊期刊, 58.
    杜聲鋒. (1991). 皮亞傑及其思想: 遠流出版公司.
    林子議. (2003). 自然科學學習平台之製作初探—以氧化還原單元為例. 碩士, 台灣師範大學, 台北市.
    林財庫, & 林慧潔. (2003). 高雄市國中小學生氣體迷思概念的認知類型、層次、頻率分佈及認知發展的分析研究. 科學教育學刊, 11卷(3), 297 - 330.
    林瑞昌. (2006a). 以專業社群概念內涵為核心的教師專業發展策略. 臺北市: 國立臺北教育大學.
    林瑞昌. (2006b). 以專業社群概念內涵為核心的教師專業發展策略.
    林寶山. (1998). 教學原理與技巧: 五南.
    邱克豪, & 邵慧綺. (2003). 合作學習的理論與應用
    邱美虹. (2000). 概念改變研究的省思與啟示. 科學教育學刊, 8(1), 1- 34.
    孫賢霖. (2008). 應用鷹架教學策略於網頁設計技能檢定數位學習課程之研究. 碩士, 國立臺東大學, 台東市.
    張杏如. (2010). 合作學習的理論基礎. 網路社會學通訊期刊, 86(14).
    張春興. (2013). 教育心理學-三化取向的理論與實踐 重修二版. 台北市: 東華出版社.
    張容君, 張惠博, & 鄭子善. (2007). 國二學生會「純物質」和「混合物」之微觀粒子概念研究. 科學教育研究與發展季刊, 48, 33-62.
    張德銳, & 王淑珍. (2010). 教師專業學習社群在教學輔導教師制度中的發展與實踐. [教育類]. 臺北市立教育大學學報, 41(1), 61-90.
    許良榮, & 羅佩娟. (2009). 以序列性POE 探究學生的科學解釋能力:以「大氣壓力與表面張力」為例. 屏東教大科學教育, 30.
    郭昭佑, 陳美如, & 洪若烈. (2005). 建構生活課程發展評鑑指標--精釋研究法在指標建構上的應用. 教育與心理研究.
    陳昇飛. (2004). 理論與實務的對話-建構主義在數學教育上的再思. 臺中師院學報, 18(2), 71-87.
    陳彥廷, & 柳賢. (2005). 合作學習情境中學生數學概念學習之研究-以Posner 概念改變模式與Toulmin 論證模式分析為例.科學教育研究與發展季刊. 39.
    陳慧娟. (1998). 情境學習理論的理想與現實. 教育資料與研究, 25.
    黃善美, & 黃萬居. (2003). 以問題為中心的合作學習策略對國小學童科學學習之研究. 科學教育研究與發展季刊, 32, 1-32.
    黃鈺翔. (2008). 國中生微觀粒子概念的發展. 碩士, 臺灣師範大學, 台北市.
    楊智先. (2006). 教師社群互動, 工作希望感受與創造性轉化之關係: 量化模式建構與典範案例分析. 碩士, 國立政治大學, 台北市.
    葛玟菁. (2001). 應用粒子模型之模擬教具探討國中學生物質狀態概念之學習成效. 碩士, 臺灣師範大學, 台北市.
    廖婭妏, & 佘曉清. (2004). 運用 [科學推理] 於網路互動學習─ 促進國中生原子概念之建構與推理
    蔡執仲, 段曉林, & 靳知勤. ( 2007). 巢狀探究教學模式對國二學生理化學習動機影響之探討. 科學教育學刊, 15 (2), 119-144.
    謝志庚. (2011). 新型多媒體學習平台之初探—以認識電解質與電池為例. 碩士, 台灣師範大學, 台北市.
    謝秉桓, 林啟華, 曾茂仁, 鐘建坪, & 邱美虹. (2014). 九年級個案學生粒子概念之探討--以擴散作用為例. 科學教育月刊.
    鐘建坪. (2014). 模型本位之合作學習教學模式. 臺灣化學教育, 2.

    二、英文部分

    Calik, M., & Ayas, A. (2005). A comparison of level of understanding of eighth‐grade students and science student teachers related to selected chemistry concepts. Journal of Research in Science Teaching, 42(6), 638-667.

    Chiu, M. H. (2008). Research And Instruction-Based/Oriented Work (RAINBOW) for conceptual Change in Science Learning – An Example of Students’ Understanding of as Particles. Paper present at the NARST 2008, March 29 – April 2, Baltimore, U.S.A.

    Coştu, B., Ayas, A., & Niaz, M. (2010). Promoting conceptual change in first year students’ understanding of evaporation. Chemistry Education Research and Practice, 11(1), 5-16.

    Griffiths, A. K., & Preston, K. R. (1992). Grade‐12 students' misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science teaching, 29(6), 611-628.

    Harrison, A. G., & Treagust, D. F. (1996). Secondary students' mental models of atoms and molecules: Implications for teaching chemistry. Science education, 80(5), 509-534.

    Hord, S. M. (1997). Professional learning communities: Communities of continuous inquiry and improvement.

    Huang, K. C. (2007). The Effect of Collaborative Writing on Elementary School Students’ Science Concept Learning.

    Khathanvy, H., & Yuenyong, C. (2009). The grade student’s mental model of force and motion through predict–observe–explain (poe) strategy. Thailand: Khon Kaen University.

    Milk, R. (1982). Language use in bilingual classrooms: two case studies. On TESOL, 81, 181-191.

    Samsa, G. P., Thomas, L., Lee, L. S., & Neal, E. M. (2012). An Active Learning Approach to Teach Advanced Multi-predictor Modeling Concepts to Clinicians. Journal of Statistics Education, 20(1), n1.

    Sergiovanni, T. J. (2000). The lifeworld of leadership: Creating culture, community, and personal meaning in our schools. San Francisco: Jossey-Bass.

    Wenger, E., & Snyder, W. M. (2000). Communities of practice: The organizational frontier.Harvard Business Review, 78(1), 139-145.

    Wenger, E., & Snyder, W. M. (2001). Cultivating communities of practice. Boston: Haven Business School Press.

    Yuenyong, C., & Thathong, K. (2015). Physics Teachers’ Constructing Knowledge Base for Physics Teaching Regarding Constructivism in Thai Contexts. Mediterranean Journal of Social Sciences, 6(2), 546.

    下載圖示
    QR CODE