簡易檢索 / 詳目顯示

研究生: 賴君瑋
Lai, Chun-Wei
論文名稱: 銅摻雜之鈷有機金屬骨架應用於染料敏化太陽能電池對電極
Cu-doped Co-MOF as Electro-catalyst for the Counter Electrode in Dye-sensitized Solar Cells
指導教授: 李君婷
Li, Chun-Ting
口試委員: 林嘉和
Lin, Chia-Her
龔仲偉
Kung, Chung-Wei
李君婷
Li, Chun-Ting
口試日期: 2022/07/20
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 71
中文關鍵詞: 有機金屬骨架對電極染料敏化太陽能電池電催化非白金
英文關鍵詞: Metal-organic framework, Counter electrode, Dye-sensitized solar cell, Electro-catalyst, Pt-free
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201648
論文種類: 學術論文
相關次數: 點閱:101下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多孔隙雙金屬銅/鈷有機金屬骨架(Cu/Co-MOF)薄膜主要由銅摻雜的Co-MOF (Co2(6-mercaptonicotinate)2, CUK-2)與少量的鈷摻雜Cu-MOF ([Cu2(6-mercaptonicotinic acid)(6-mercaptonicotinate)]·NH4)組成,藉由下列六步驟的長晶機制鍵結在導電基材上:(i)錨定一層6-mercaptonicotinate (6-MNA)修飾層至基材;(ii) 硫醇基去質子化;(iii) 形成金屬−硫鍵;(iv) 6,6'-dithiodinicotinic acid (H2dtdn)釋出去質子化6-MNA;(v) 形成金屬-硫、金屬-氮或金屬-氧鍵;(vi) MOF晶體結構的展延。透過此方法可在沒有其他干擾物(包含客體分子、黏合劑或MOF衍生物)的情況下,量測MOF材料自身的本質電催化特性。使用碳布作為導電基材時,碳布中的碳纖維可作為一維導電核心,包覆其上的雙金屬Cu/Co-MOF薄膜可作為電催化外殼,可建立核/殼結構的階層式電荷傳輸路徑。雙金屬Cu/Co-MOF薄膜同時具備了由Co-MOF所提供的高孔隙度,也擁有Cu-MOF所提供的高導電度,此協同效應使雙金屬Cu/Co-MOF擁有較佳的本質電催化特性。在三維結構的Co-MOF中含有大量的一維彈簧狀(−Co−S−)n鏈作為活性位點,而二維Cu-MOF中含有許多二維蜂巢狀(−Cu−S−)n平面作為快速電子傳導路徑。因此,使用最佳雙金屬Cu/Co-MOF(9.96%)作為對電極之染敏電池相較於純Co-MOF(9.93%)、純Cu-MOF(9.36%)、白金(9.25%)之電池有更突出表現。在三種氧化−還原對(I−/I3−、Co(II/III)和Cu(I/II)錯合物)中可觀察到雙金屬Cu/Co-MOF出色的電催化劑活性,揭示了非導電、導電或雙金屬MOF應用於各種電化學系統的無限潛力。

    A mesoporous film of bimetallic Cu/Co-MOF, mainly composed of Cu-doped Co2(6-mercaptonicotinate)2 (CUK-2, denoted as Co-MOF hereafter) with minor particles of Co-doped [Cu2(6-mercaptonicotinic acid)(6-mercaptonicotinate)]·NH4 (Cu-MOF), was covalently bonded to a conducting substrate via a six-step crystal-growth mechanism: (i) anchoring a modification layer of 6-mercaptonicotinate (6-MNA) on a substrate; (ii) deprotonation of thiol; (iii) formation of metal−S bonds; (iv) releasing of deprotonated 6-MNA from H2dtdn; (v) coordination of metal−S, metal−N or metal−O bonds; (vi) extension of MOF building block. The evaluation of the intrinsic electro-catalytic ability of solely MOF particles can be thereby afforded without other interferences, including guest molecules, binders, or MOFderivatives. When the coating was on a CC substrate, a hierarchical charge transfer pathway was established by the core/shell structure of carbon fiber/MOF; where each carbon fiber in CC acted as a 1D conducting core, covered by a bimetallic Cu/Co-MOF film as an electro-catalytic shell. In a bimetallic Cu/Co-MOF film, an improved intrinsic electro-catalytic ability was obtained due to the synergetic effect of large active sites and facile charge-transfer; the former was supplied by numerous springcoil-like 1D (−Co−S−)n chains in the mesoporous 3D Cu-doped Co-MOF particle, the latter was provided by many 2D (−Cu−S−)n honeycomb-like plains in highly conductive 2D Co-doped Cu-MOF. Accordingly, the cell coupled with an optimal bimetallic Cu/Co-MOF (9.96%) as the counter electrode outperformed the cells coupled with pristine Co-MOF (9.93%), pristine Cu-MOF (9.36%), and Pt (9.25%) electrodes. The outstanding electro-catalyst activity of bimetallic Cu/Co-MOF was observed in three redox mediators (I−/I3−, cobalt(II/III), and copper(I/II) complex), revealing the infinite potential of non-conductive, conductive, or bimetallic MOF for various electrochemical systems.

    Chapter 1 Introduction 1 1-1 Metal-organic frameworks 1 1-2 MOF semiconductors 5 1-3 MOF-based materials for photovoltaics 13 1-4 Motivation 18 Chapter 2 Experimental Section 20 2-1 Materials 20 2-2 Preparation of photoanode 20 2-3 Preparation of counter electrode 22 2-4 DSSC assembly 24 2-5 Instruments and analyses 24 Chapter 3 Result and Discussion 26 3-1 Pristine Cu-MOF film 26 3-2 Pristine Co-MOF film 31 3-3 Cu-doped Co-MOF 41 3-4 Electrochemical performance 53 Chapter 4 Conclusions 63 References 65 Appendix Curriculum vitae 71

    [1]. S. L. James. Metal-organic Frameworks. Chem. Soc. Rev., 2003, 32, 276-288.
    [2]. N. Stock, and S. Biswas. Synthesis of Metal-organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev., 2012, 112, 933-969.
    [3]. Y. R. Lee, J. Kim, and W. S. Ahn. Synthesis of Metal-organic Frameworks: A Mini Review. Korean J. Chem. Eng., 2013, 30, 1667-1680.
    [4]. H. Furukawa, K. E. Cordova, M. O'Keeffe, and O. M. Yaghi. The Chemistry and Applications of Metal-organic Frameworks. Science, 2013, 341, 1230444.
    [5]. P. Deria, J. E. Mondloch, O. Karagiaridi, W. Bury, J. T. Hupp, and O. K. Farha. Beyond Post-synthesis Modification: Evolution of Metal-organic Frameworks via Building Block Replacement. Chem. Soc. Rev., 2014, 43, 5896-5912.
    [6]. D. Alezi, Y. Belmabkhout, M. Suyetin, P. M. Bhatt, L. J. Weselinski, V. Solovyeva, K. Adil, I. Spanopoulos, P. N. Trikalitis, A. H. Emwas, and M. Eddaoudi. MOF Crystal Chemistry Paving the Way to Gas Storage Needs: Aluminum-based soc-MOF for CH4, O2, and CO2 Storage. J. Am. Chem. Soc., 2015, 137, 13308-13318.
    [7]. L. J. Murray, M. Dinca, and J. R. Long. Hydrogen Storage in Metal-organic Frameworks. Chem. Soc. Rev., 2009, 38, 1294-1314.
    [8]. M. P. Suh, H. J. Park, T. K. Prasad, and D. W. Lim. Hydrogen Storage in Metal-organic Frameworks. Chem. Rev., 2012, 112, 782-835.
    [9]. M. G. Campbell, and M. Dinca. Metal-organic Frameworks as Active Materials in Electronic Sensor Devices. Sensors (Basel), 2017, 17, 1108.
    [10]. H. Yuan, N. Li, W. Fan, H. Cai, and D. Zhao. Metal-organic Framework Based Gas Sensors. Adv. Sci. (Weinh), 2022, 9, e2104374.
    [11]. J. R. Li, J. Sculley, and H. C. Zhou. Metal-organic Frameworks for Separations. Chem. Rev., 2012, 112, 869-932.
    [12]. Y. Lu, H. Zhang, J. Y. Chan, R. Ou, H. Zhu, M. Forsyth, E. M. Marijanovic, C. M. Doherty, P. J. Marriott, M. M. B. Holl, and H. Wang. Homochiral MOF-polymer Mixed Matrix Membranes for Efficient Separation of Chiral Molecules. Angew. Chem. Int. Ed. Engl., 2019, 58, 16928-16935.
    [13]. Y. R. Miao, Z. Su, and K. S. Suslick. Energy Storage during Compression of Metal-organic Frameworks. J. Am. Chem. Soc., 2017, 139, 4667-4670.
    [14]. Y. Wu, Y. C. Yang, T. T. Zhai, T. Zhou, Q. Shang, L. H. Zhu, C. X. Shang, and Z. X. Guo. Porosity Engineering of MOF‐based Materials for Electrochemical Energy Storage. Adv. Energy. Mater., 2021, 11, 2100154.
    [15]. J. Liang, and K. Liang. Biocatalytic Metal–organic Frameworks: Prospects Beyond Bioprotective Porous Matrices. Adv. Funct. Mater., 2020, 30, 2001648.
    [16]. J. Lee, O. K. Farha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp. Metal-organic Framework Materials as Catalysts. Chem. Soc. Rev., 2009, 38, 1450-1459.
    [17]. C. C. Chueh, C. I. Chen, Y. A. Su, H. Konnerth, Y. J. Gu, C. W. Kung, and Kevin C. W. Wu. Harnessing MOF Materials in Photovoltaic Devices: Recent Advances, Challenges, and Perspectives. J. Mater. Chem. A, 2019, 7, 17079-17095.
    [18]. S. Zhao, Y. Yang, and Z. Tang. Insight into Structural Evolution, Active Sites, and Stability of Heterogeneous Electrocatalysts. Angew. Chem. Int. Ed. Engl., 2022, 61, e202110186.
    [19]. R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii, M. Dinca, A. Bavykina, J. Gascon, A. Ejsmont, J. Goscianska, M. Kalmutzki, U. Lachelt, E. Ploetz, C. S. Diercks, and S. Wuttke. The Current Status of MOF and COF Applications. Angew. Chem. Int. Ed. Engl., 2021, 60, 23975-24001.
    [20]. H. Wang, Q. L. Zhu, R. Zou, and Q. Xu. Metal-organic Frameworks for Energy Applications. Chem., 2017, 2, 52-80.
    [21]. T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha, and J. T. Hupp. Postsynthetic Tuning of Metal-organic Frameworks for Targeted Applications. Acc. Chem. Res., 2017, 50, 805-813.
    [22]. L. Chen, and Q. Xu. Metal-organic Framework Composites for Catalysis. Matter, 2019, 1, 57-89.
    [23]. M. Kalaj, and S. M. Cohen. Postsynthetic Modification: An Enabling Technology for the Advancement of Metal-organic Frameworks. ACS Cent. Sci., 2020, 6, 1046-1057.
    [24]. D. Ma, B. Li, and Z. Shi. Multi-functional Sites Catalysts Based on Post-synthetic Modification of Metal-organic Frameworks. Chin. Chem. Lett., 2018, 29, 827-830.
    [25]. X. L. Xu, W. H. Shi, P. Li, S. F. Ye, C. Z. Ye, H. J. Ye, T. M. Lu, A. A Zheng, J. X. Zhu, L. X. Xu, M. Q. Zhong, and X. H. Cao. Facile Fabrication of Three-Dimensional Graphene and Metal-organic Framework Composites and Their Derivatives for Flexible All-solid-state Supercapacitors. Chem. Mater., 2017, 29, 6058-6065.
    [26]. G. Liu, V. Chernikova, Y. Liu, K. Zhang, Y. Belmabkhout, O. Shekhah, C. Zhang, S. Yi, M. Eddaoudi, and W. J. Koros. Mixed Matrix Formulations with MOF Molecular Sieving for Key Energy-intensive Separations. Nat. Mater., 2018, 17, 283-289.
    [27]. X. Lian, Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, and H. C. Zhou. Enzyme-MOF (Metal-organic Framework) Composites. Chem. Soc. Rev., 2017, 46, 3386-3401.
    [28]. A. Alec Talin, Andrea Centrone, Alexandra C. Ford, Michael E. Foster, Vitalie Stavila, Paul Haney, R. Adam Kinney, Veronika Szalai, Farid El Gabaly, Heayoung P. Yoon, François Léonard, and Mark D. Allendorf. Tunable Electrical Conductivity in Metal-organic Framework Thin-film Devices. Science, 2014, 343, 66-69.
    [29]. C. W. Kung, K. Otake, C. T. Buru, S. Goswami, Y. Cui, J. T. Hupp, A. M. Spokoyny, and O. K. Farha. Increased Electrical Conductivity in a Mesoporous Metal-organic Framework Featuring Metallacarboranes Guests. J. Am. Chem. Soc., 2018, 140, 3871-3875.
    [30]. J. K. Sun, and Q. Xu. Functional Materials Derived from Open Framework Templates/Precursors: Synthesis and Applications. Energy Environ. Sci., 2014, 7, 2071-2100.
    [31]. K. Shen, X. D. Chen, J. Y. Chen, and Y. W. Li. Development of MOF-derived Carbon-based Nanomaterials for Efficient Catalysis. ACS Catal., 2016, 6, 5887-5903.
    [32]. L. Zou, C. C. Hou, Z. Liu, H. Pang, and Q. Xu. Superlong Single-crystal Metal-organic Framework Nanotubes. J. Am. Chem. Soc., 2018, 140, 15393-15401.
    [33]. Y. Z. Chen, R. Zhang, L. Jiao, and H. L. Jiang. Metal–organic Framework-derived Porous Materials for Catalysis. Coord. Chem. Rev., 2018, 362, 1-23.
    [34]. L. S. Xie, G. Skorupskii, and M. Dinca. Electrically Conductive Metal-organic Frameworks. Chem. Rev., 2020, 120, 8536-8580.
    [35]. C. Kittel. Introduction to Solid State Physics, 8th ed.; John Wiley & Sons, Inc.: United States of America, 2005.
    [36]. L. Sun, S. S. Park, D. Sheberla, and M. Dinca. Measuring and Reporting Electrical Conductivity in Metal-organic Frameworks: Cd2(TTFTB) as a Case Study. J. Am. Chem. Soc., 2016, 138, 14772-14782.
    [37]. L. Sun, C. H. Hendon, M. A. Minier, A. Walsh, and M. Dinca. Million-fold Electrical Conductivity Enhancement in Fe2(DEBDC) versus Mn2(DEBDC) (E = S, O). J. Am. Chem. Soc., 2015, 137, 6164-6167.
    [38]. L. Sun, C. H. Hendon, S. S. Park, Y. Tulchinsky, R. Wan, F. Wang, A. Walsh, and M. Dinca. Is Iron Unique in Promoting Electrical Conductivity in MOFs? Chem. Sci., 2017, 8, 4450-4457.
    [39]. L. S. Xie, L. Sun, R. Wan, S. S. Park, J. A. DeGayner, C. H. Hendon, and M. Dinca. Tunable Mixed-valence Doping toward Record Electrical Conductivity in a Three-dimensional Metal-organic Framework. J. Am. Chem. Soc., 2018, 140, 7411-7414.
    [40]. A. Pathak, J. W. Shen, M. Usman, L. F. Wei, S. Mendiratta, Y. S. Chang, B. Sainbileg, C. M. Ngue, R. S. Chen, M. Hayashi, T. T. Luo, F. R. Chen, K. H. Chen, T. W. Tseng, L. C. Chen, and K. L. Lu. Integration of a (-Cu-S-)n Plane in a Metal-organic Framework Affords High Electrical Conductivity. Nat. Commun., 2019, 10, 1721.
    [41]. A. Nath, K. S. Asha, and S. Mandal. Conductive Metal-organic Frameworks: Electronic Structure and Electrochemical Applications. Chem., 2021, 27, 11482-11538.
    [42]. X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang, H. Geng, Y. Zou, C. A. Di, Y. Yi, Y. Sun, W. Xu, and D. Zhu. A Two-dimensional pi-d Conjugated Coordination Polymer with Extremely High Electrical Conductivity and Ambipolar Transport Behaviour. Nat. Commun., 2015, 6, 7408.
    [43]. T. C. Narayan, T. Miyakai, S. Seki, and M. Dinca. High Charge Mobility in a Tetrathiafulvalene-based Microporous Metal-organic Framework. J. Am. Chem. Soc., 2012, 134, 12932-12935.
    [44]. S. S. Park, E. R. Hontz, L. Sun, C. H. Hendon, A. Walsh, T. Van Voorhis, and M. Dinca. Cation-dependent Intrinsic Electrical Conductivity in Isostructural Tetrathiafulvalene-based Microporous Metal-organic Frameworks. J. Am. Chem. Soc., 2015, 137, 1774-1777.
    [45]. M. L. Aubrey, M. T. Kapelewski, J. F. Melville, J. Oktawiec, D. Presti, L. Gagliardi, and J. R. Long. Chemiresistive Detection of Gaseous Hydrocarbons and Interrogation of Charge Transport in Cu[Ni(2,3-pyrazinedithiolate)2] by Gas Adsorption. J. Am. Chem. Soc., 2019, 141, 5005-5013.
    [46]. Y. Q. Hu, M. Q. Li, Y. Y. Wang, T. Zhang, P. Q. Liao, Z. P. Zheng, X. M. Chen, and Y. Z. Zheng. Direct Observation of Confined I−⋅⋅⋅I2⋅⋅⋅I− Interactions in a Metal–organic Framework: Iodine Capture and Sensing. Eur. J. Chem., 2017, 23, 8409-8413.
    [47]. M. H. Zeng, Q. X. Wang, Y. X. Tan, S. Hu, H. X. Zhao, L. S. Long, and M. Kurmoo. Rigid Pillars and Double Walls in a Porous Metal-organic Framework: Single-crystal to Single-crystal, Controlled Uptake and Release of Iodine and Electrical Conductivity. J. Am. Chem. Soc., 2010, 132, 2561-2563.
    [48]. B. W. Hao, and W. L. Xiong. Metal-organic Frameworks and Their Derived Materials for Electrochemical Energy Storage and Conversion: Promises and Challenges. Sci. Adv., 2017, 3, eaap9252.
    [49]. X. Li, X. Yang, H. Xue, H. Pang, and Q. Xu. Metal–organic Frameworks as a Platform for Clean Energy Applications. J. Energy Chem., 2020, 2, 100027.
    [50]. F. Chigondo. From Metallurgical-grade to Solar-grade Silicon: An Overview. Silicon, 2017, 10, 789-798.
    [51]. W. Jaegermann, A. Klein, and T. Mayer. Interface Engineering of Inorganic Thin-film Solar Cells-materials-science Challenges for Advanced Physical Concepts. Adv. Mater., 2009, 21, 4196-4206.
    [52]. A. Listorti, B. O’Regan, and J. R. Durrant. Electron Transfer Dynamics in Dye-sensitized Solar Cells. Chem. Mater., 2011, 23, 3381-3399.
    [53]. E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey, and L. Dou. Two-dimensional Halide Perovskite Nanomaterials and Heterostructures. Chem. Soc. Rev., 2018, 47, 6046-6072.
    [54]. B. O'Regan, and M. Grätzel. A Low-cost, High-efficiency Solar Cell Based on Dye-sensitized Colloidal TiO2 Films. Nature, 1991, 353, 737-740.
    [55]. M. Liang, and J. Chen. Arylamine Organic Dyes for Dye-sensitized Solar Cells. Chem. Soc. Rev., 2013, 42, 3453-3488.
    [56]. R. Krishnapriya, C. Nizamudeen, B. Saini, M. S. Mozumder, R. K. Sharma, and A. I. Mourad. MOF-derived Co2+-doped TiO2 Nanoparticles as Photoanodes for Dye-sensitized Solar Cells. Sci. Rep., 2021, 11, 16265.
    [57]. F. Bella, R. Bongiovanni, R. S. Kumar, M. A. Kulandainathan, and A. M. Stephan. Light Cured Networks Containing Metal Organic Frameworks as Efficient and Durable Polymer Electrolytes for Dye-sensitized Solar Cells. J. Mater. Chem. A, 2013, 1, 9033-9036.
    [58]. S. H. Ahn, M. J. Klein, and A. Manthiram. 1D Co- and N-doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Tri-iodide Reduction Reactions. Adv. Energy Mater., 2017, 7, 1601979.
    [59]. T. Y. Chen, Y. J. Huang, C. T. Li, C. W. Kung, R. Vittal, and K. C. Ho. Metal-organic Framework/Sulfonated Polythiophene on Carbon Cloth as a Flexible Counter Electrode for Dye-sensitized Solar Cells. Nano Energy, 2017, 32, 19-27.
    [60]. A. N. Yang, J. T. Lin, and C. T. Li. Electroactive and Sustainable Cu-MOF/PEDOT Composite Electrocatalysts for Multiple Redox Mediators and for High-Performance Dye-sensitized Solar Cells. ACS Appl. Mater. Interfaces, 2021, 13, 8435-8444.
    [61]. S. A. Patil, N. Mengal, A. A. Memon, S. H. Jeong, and H.-S. Kim. CuS Thin Film Grown Using the One Pot, Solution-process Method for Dye-sensitized Solar Cell Applications. J. Alloys Compd., 2017, 708, 568-574.
    [62]. C. W. Kung, H. W Chen, C. Y. Lin, K. C. Huang, R. Vittal, and K. C. Ho. CoS Acicular Nanorod Arrays for the Counter Electrode of an Efficient Dye-sensitized Solar Cell. ACS Nano, 2012, 6, 7016-7025.
    [63]. J. Wang, W. Cui, Q. Liu, Z. Xing, A. M. Asiri, and X. Sun. Recent Progress in Cobalt-based Heterogeneous Catalysts for Electrochemical Water Splitting. Adv. Mater., 2016, 28, 215-230.
    [64]. S. M. Humphrey, J. S. Chang, S. H. Jhung, J. W. Yoon, and P. T. Wood. Porous Cobalt(II)–organic Frameworks with Corrugated Walls: Structurally Robust Gas-sorption Materials. Angew. Chem. Int. Ed., 2007, 46, 272-275.
    [65]. W. X. Li, W. Fang, C. Wu, K. N. Dinh, H. Ren, L. Zhao, C. Liu, and Q. Y. Yan. Bimetal–MOF Nanosheets as Efficient Bifunctional Electrocatalysts for Oxygen Evolution and Nitrogen Reduction Reaction. J. Mater. Chem. A, 2020, 8, 3658-3666.
    [66]. Y. Saygili, M. Soderberg, N. Pellet, F. Giordano, Y. Cao, A. B. Munoz-Garcia, S. M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo, L. Kavan, J. E. Moser, M. Gratzel, A. Hagfeldt, and M. Freitag. Copper Bipyridyl Redox Mediators for Dye-sensitized Solar Cells with High Photovoltage. J. Am. Chem. Soc., 2016, 138, 15087-15096.
    [67]. L. Giribabu, R. Bolligarla, and M. Panigrahi. Recent Advances of Cobalt(II/III) Redox Couples for Dye-sensitized Solar Cell Applications. Chem. Rec., 2015, 15, 760-788.
    [68]. C. T. Li, F. L. Wu, C. J. Liang, K. C. Ho, and J. T. Lin. Effective Suppression of Interfacial Charge Recombination by a 12-crown-4 Substituent on a Double-anchored Organic Sensitizer and Rotating Disk Electrochemical Evidence. J. Mater. Chem. A, 2017, 5, 7586-7594.
    [69]. W. Wei, H. Wang, and Y. H. Hu. A Review on PEDOT-based Counter Electrodes for Dye-sensitized Solar Cells. Int. J. Energy Res., 2014, 38, 1099-1111.

    無法下載圖示 本全文未授權公開
    QR CODE