研究生: |
陳俊和 Chen Chun Ho |
---|---|
論文名稱: |
合成高純度及高產率的氮化鎵奈米線 Synthesis of High-Purity and -Quality Gallium Nitride Nanowires |
指導教授: |
陳家俊
Chen, Chia-Chun |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2001 |
畢業學年度: | 89 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 氮化鎵 、奈米線 |
英文關鍵詞: | GaN, nanowire |
論文種類: | 學術論文 |
相關次數: | 點閱:282 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們藉由鎵、氨氣和不同的催化劑,成功的以VLS機構製備高純度且高產率的氮化鎵奈米線。由掃描式電子顯微鏡可知成長出的氮化鎵奈米線的平均直徑為10-50奈米,而長度可達到數個微米。由X-ray繞射儀及高解析度穿透式電子顯微鏡的鑑定,可知大部分的氮化鎵奈米線均為wurtzite的單晶結構,且晶體的成長方向大都為[110]。螢光光譜也顯示了3.38eV處wurtzite結構氮化鎵的能隙放光。在場發射測量中,低的起始電場顯示了氮化鎵奈米線在場發射應用上有很大的潛力。藉由高純度及高產率的製造方式,我們可以研究氮化鎵奈米線這種一維奈米材料的基本物理化學性質,並可更進一步探討其光電元件應用上的可行性。
Though vapor-liquid-solid (VLS) mechanism, we have successfully produced high-purity and -quality gallium nitride nanowires. It is shows using scanning electron microscopy (SEM) that the diameter of resulting nanowires range from 10 to 50 nm with length of several micrometers. Furthermore, X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) have been applied to identify the crystal structure of the individual gallium nitride nanowire. The results revealed that most of them are single crystalline wurtzite phase with a growing direction of [110]. Photoluminescence spectra also showed a strong band-edge emission of wurtzite gallium nitride crystal at 3.38eV. In the field emission studies, it has a potential application on low turn-on field of gallium nitride nanowires. Through the way of producing high-purity and -quality gallium nitride nanowires, we have investigated their fundamental properties as well as their potential in optoelectronic devices.
參考文獻
(1)Perrcy, P. S. Nature 2000, 406, 1023.
(2)(a) Cui, Y.; Lieber, C. M. Science 2001, 291, 851. (b) Messer, B.; Song, J. H.; Yang, P. J. Am. Chem. Soc. 2000, 122, 10232.
(3)(a) Alivisatos, A. P.; Johnsona, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Schultz, M. P. Nature 1996, 382, 609. (b) Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. (c) Warren, C.; Chan, W.; Nie, S. Science 1998, 281, 2016.
(4)(a) Nakamura, S.; Senoh, M.; Mukai, T. Appl. Phys. Lett. 1993, 62, 2390. (b) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354. (c) Schlamp, M. C.; Peng, X.; Alivisatos, A. P. J. Appl. Phys. 1997, 82, 5837. (d) Mattoussi et al. J. Appl. Phys. 1999, 86, 4390.
(5)Brus, L. E. J. Phys. Chem. 1994, 98, 3575.
(6)Kalyanasundaram, K.; Borgarello, E.; Duonghong, D.; Gratzel, M. Angew. Chem. Int. Ed. Engl. 1981, 20, 987.
(7)(a) Rupp, J.; Birringer, R. Phys. Rev. 1987, B36, 7888. (b) Hellstren, E.; Fecht, H.; Fu, Z.; Johnson, W. L. J. Appl. Phys. 1989, 65, 305.
(8)(a) Horvath, J.; Birringer, R.; Gleiter, H. Solid. State. Commun. 1987, 62, 319. (b) Birringer, R.; Hahn,H.; Hofler, H. J.;Karch, J.; Gleiter, H. Diffus. Defect. Data: Defect. Diffus. Forum. 1988, 59, 17.
(9)Gleiter, H. Prog. Mater. Sci. 1989, 32, 223.
(10)Wang, Y.; Herron, N. J. Phys. Chem. 1991, 95, 525.
(11)(a) Alivisatos, A. P. Science 1996, 271, 933. (b) Chen, C. C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Science 1997, 276, 398.
(12)(a) Vossmeyer, T.; Katsikas, L.; Giersig, M.; Popovic, I. G.; Weller, H. J. Phys. Chem. 1994, 98, 7665. (b) Goldstein, A. N.; Echer, C. M.; Alivisatos, A. P. Science 1992, 256, 1425.
(13)Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
(14)(a) eyer, M.; Wallberg, C.; Kuvihara, K.; Fendler, J. H. J. Am. Chem. Soc. Commun. 1984, 90. (b) Lianos, P.; Thomas, J. K. Chem. Phys. Lett. 1986, 125, 299.
(15)Breck, D. W. Zeolite Molecular Sieves. Wiley-Inter science, New York, 1984.
(16)Routkevitch, D.; Bigioni, T.; Moskovits, M.; Xu, J. M. J. Phys. Chem. 1996, 100, 14037.
(17)Han, W.; Fan, S.; Li, Q.; Hu, Y. Science 1997, 277, 1287.
(18)Chen, C. C.; Lin, J. J.; Adv. Mater. 2001, 13, 136.
(19)Gershfeld, N. L. Annu. Rev. Phys. Chem. 1976, 27, 349.
(20)Grieser, F.; Furlong, D. N.; Scoberg, D.; Ichinose, I.; Kimizuka, N.; Kunitake, K. J. Chem. Soc. Faraday Trans 1992, 88, 2207.
(21)(a) Morles, A. M.; Lieber, C. M. Science 1998, 179, 208. (b) Duan, X.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 188.
(22)Trentler, T. J.; Hickman, K. K. M.; Goel, S. C.; Vinao, A. M.; Gabbons, P. C.; Buhro, W. E. Science 1995, 270, 1791.
(23)Haber, J. A.; Gibbons, P. C.; Buhro, W. E. Chem. Mater. 1998, 10, 4062.
(24)(a) Janik, J. F.; Wells, R. L. Chem. Mater. 1996, 8, 2708. (b) Hwang, J. W.; Campbell, J. P.; Kozubowski, J.; Hanson, S. A.; Evans, J. F.; Gladfelter, W. L. Chem. Mater. 1995, 7, 517. (c) Gonsalves, K. E.; Carlson, G.; Rangarajin, S. P.; Benaissa, M.; JoseYacamam, M. J. Mater. Chem. 1996, 6, 1451. (d) Fischer, R. A.; Miehr, A.; Herdtweck, E.; Mattner, M. R.; Ambacher, O.; Metzger, T.; Born, E.; Weinkauf, S.; Pulham, C. R.; Parsons, S. Chem. Eur. J. 1996, 2, 1353.
(25)Hiruma, K.; Yazawa, M.; Katsuyama, T.; Ogawa, K.; Haraguchi, K.; Koguchi, M.; Kakibayashi, H. J. Appl. Phys. 1995, 77, 447.
(26)(a) Yang, J.; Meldrum, F. C.; Fendler, J. H. J. Phys. Chem. 1995, 99, 5500. (b) Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59. (c) Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Science 2000, 287, 1471. (d) Chen, C. C.; Chao, C. Y.; Lang, Z. H. Chem. Mater. 2000, 12, 1516.
(27)(a) Morkoc, H.; Mohammad, S. N. Science 1995, 267, 51. (b) Ponce, F. A.; Bour, D. P. Nature 1997, 386, 351. (c) Nakamura, S. Science 1998, 281, 956.
(28)Cheng, G. S.; Zhang, L. D.; Zhu, Y.; Fei, T.; Li, L. Appl. Phys. Lett. 1999, 75, 2456.
(29)Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89.
(30)(a) Brus, L. E. J. Phys. Chem. 1994, 98, 3735. (b) Brus, L. E. J. Am. Chem. Soc. 1995, 117, 2915. (c) Buda, F.; Kohanoff, J.; Parrinello, M. Science, 1994, 279, 1272.
(31)Bootama, G. A. J. Crystal Growth. 1973, 20, 217.
(32)Fujii, M.; Iwanaga, H; Shibata, N. J. Crystal Growth. 1998, 91, 229.
(33)(a) Yazawa, M.; Koguchi, M.; Hiruma, K. Appl. Phys. Lett. 1991, 58, 1080. (b) Hiruma, K.; Katsuyama, T.; Ogawa, K.; Koguchi, M.; Kakibayashi, H.; Morgan, G. P. Appl. Phys. Lett. 1991, 59, 431.
(34)Chrysanthou, A.; Grieveson, P.; Jha, A. J. Mater. Sci. 1991, 26, 3463.
(35)Gudiksen, M. S.; Lieber, C. M. J. Am. Chem. Soc. 2000, 122, 8801
(36) Okumura, H.; Hamaguchi, H.; Feuillet, G.; Ishida, Y.; Yoshida, S. Appl. Phys. Lett. 1998, 72, 3056.
(37)Chen, H. M.; Chen, Y. F.; Lee, M. C.; Feng, M. S. Phys. Rev. B 1997, 56, 6942.
(38)(a) Alivisatos, A. P.; Johnsona, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Schultz, M. P. Nature 1996, 382, 609. (b) Bruchez, M. Jr.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281, 2013. (c) Warren, C.; Chan, W.; Nie, S. Science 1998, 281, 2016. (d) Miltenyi, S.; Muller, W.; Weichel, W.; Radbruch, A. Cytometry 1990, 11, 231. (e) Lackie, P. M. Histochem Cell Biol. 1996, 106, 9. (f) Hermann, R.; Walther, P.; Muller, M. Histochem Cell Biol. 1996, 106, 31.
(39)(a) Colvin, V. L.; Schlamp, M. C.; Alivisatos, A. P. Nature 1994, 370, 354.(b) Dabbousi, B. O.; Bawendi, M. G.; Onitsuka, O.; Rubner, M. F. Appl. Phys. Lett. 1995, 66, 1316.(c) Nakamura, S.; Senoh, M.; Mukai, T. Appl. Phys. Lett. 1993, 62, 2390. (d) Mohammad, S. N.; Salvador, A.; Morkoc, H. Proc. IEEE 1995, 83, 1306.