簡易檢索 / 詳目顯示

研究生: 王耀霆
論文名稱: 以溶液法合成 FeS2 奈米晶體並應用於近紅外光偵測器
Near Infrared Photodetectors Based on Solution – Phase Synthesis of FeS2 Nanocrystals
指導教授: 陳家俊
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 83
中文關鍵詞: 紅外光偵測器
論文種類: 學術論文
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗係以二硫化鐵奈米晶體 (FeS2 NCs) 作為近紅外光偵測器的主動層,並以氧化锌 (ZnO) 作為元件 blocking layer 之研究。二硫化鐵為非直接能隙半導體,擁有較窄的半導體能隙 (0.95 eV) ,且對光有很強的吸收,吸收範圍可以到近紅外光波段,之所以使用二硫化鐵奈米晶體的原因是因為材料合成容易、價錢低廉且是由對環境無害的元素組成。本實驗的二硫化鐵奈米晶體是利用溶液法合成,並可以進一步地藉由調控表面活性劑和溶劑比例來控制二硫化鐵奈米晶體的形狀以及在溶液中的分散性,接著藉由 XRD 和 TEM 可以分析其晶格和構型。而經由元件所量測的 J-V characteristics 及 temporal photocurrent response 得知,以二硫化鐵奈米晶體作為光偵測器之元件,確實在可見光及近紅外光波段 (波長 > 715 nm) 皆有光電流產生。

    In this thesis, the near infrared photodetectors based on FeS2 nanocrystals were studied. We used FeS2 nanocrystals as the active layer and ZnO as blocking layer for the devices. FeS2 is a indirect band gap semiconductor which has a narrow band gap of 0.95 eV with high absorption to the light even near-infrared range, and the advantage in using the FeS2 nanocrystals is because they are low-cost, abundant and non-toxic materials. The well dispersed FeS2 nanocrystals were synthesis by Solution –phase methods, furthermore, we could control the shapes of FeS2 nanocrystals by adjust the ratio of surfactant to solvent, then the crystal morphology and structure were identified by TEM and XRD. In conclusion, the photodetectors based on FeS2 nanocrystals response in both the visible and infrared ( λ > 715 nm) have been demonstrated by Current density–voltage characteristics and temporal photocurrent response of the devices.

    摘要 I Abstract II 謝誌 III 總目錄 IV 圖表目錄 VII 第一章 緒論 1 1.1 紅外光偵測器 (Infrared Photodetector) 1 1.2 蕭特基二極體 (Schottky Diode) 2 1.3 蕭特基接面光偵測器 (Schottky Junction photodetector) 的工作原理 7 1.4 二硫化鐵 (Iron Disulphide, FeS2) 8 1.5 氧化鋅 (Zinc Oxide, ZnO) 10 1.6 研究動機與目的 12 1.6.1 主動層 (active layer) 12 1.6.2. Blocking layer 15 第二章 儀器原理 17 2.1 X-光繞射分析儀 (X-ray Diffraction, XRD) 17 2.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 19 2.3 掃瞄式電子顯微鏡 (Scanning Electron Microscopy, SEM) 21 2.4 紫外光-可見光-近紅外光吸收光譜儀 22 2.5 旋轉塗佈機 (Spin Coater) 23 2.6 真空蒸鍍機 (Vacuum Evaporation) 24 2.7 射頻濺鍍機(RF Sputter) 26 2.8 光電子光譜儀 (Photoelectron Spectrometer, AC-2) 27 2.9 模擬光源及電流-電壓特性量測 (I-V Characteristic) 28 第三章 實驗 30 3.1 奈米晶體合成原理 30 3.2 實驗藥品 31 3.3 實驗步驟-奈米晶體合成 33 3.3.1 花型FeS2奈米晶體 33 3.3.2 球型FeS2奈米晶體合成 34 3.3.3 ZnO奈米晶體之合成 35 3.4 元件製程 36 第四章 結果與討論 37 4.1 材料合成與分析 37 4.1.1 花型二硫化鐵奈米晶體 37 4.1.2 球型二硫化鐵奈米晶體 40 4.1.3 氧化鋅 (ZnO) 奈米晶體 46 4.2 二硫化鐵 (FeS2) 奈米晶體於光偵測器上的應用 49 4.2.1 ITO / ZnO NCs / FeS2 NCs / Metals 結構 50 4.2.2 ITO / FeS2 / ZnO NCs / Au結構 56 4.2.4 ITO / ZnO thin film / FeS2 NCs / Au 結構 59 i. ITO / ZnO (100 nm) / FeS2 (400nm) / Au 61 ii. ITO / ZnO (100 nm) / FeS2 (130 nm) / Au 63 iii. ITO / ZnO (100 nm) / FeS2 (100 nm) / Au 66 iv. ITO / ZnO (100 nm) / Au 69 v. ITO / ZnO (80 nm) / FeS2 (130 nm) / Au 71 vi. ITO / ZnO (40 nm) / FeS2 (130 nm) / Au 74 第五章 結論 77 5.1 材料合成及分析 77 5.2 近紅外光偵測器應用 77 第六章 參考文獻 79

    [1]. IPAC Staff. "Near, Mid and Far-Infrared". NASA ipac. http://www.ipac.caltech.edu/Outreach/Edu/Regions/irregions.html. Retrieved 2007-04-04.
    [2]. Kallhammer, J.E. Imaging; The road ahead for car night-vision Nature Photon. (2006), 12–13.
    [3]. Barton, J. B., Cannata, R. F. & Petronio, S. M. InGaAs NIR focal plane arrays for imaging and DWDM applications. Proc. SPIE 4721. (2002), 37–47.
    [4]. Schmitt, J. M., Xiang, S. H. & Yung, K. M. Differential absorption imaging with optical coherence tomography. J. Opt. Soc. Am. (1998), 2288–2296.
    [5]. K. Lee, M. Shur, A. Fjeldly, and T. Ytterdal, Semiconductor Devics Modeling for VLSI, Prentice-Hall International Editions.(1993)
    [6]. M. Sze, D. J. Coleman, R. and A. Loya, ; Solid-State Electronics. (1971), 14, 1209.
    [7]. W. Schottky, R. Stromer, and F. Waible, ; Hochfrequenztechnik. (1931), 37, 162–165.
    [8]. S. M. Sze, Physics of Semiconductor Devices. (1981), 2nd, 744.
    [9]. Q.Z.Liu, L.S.Yu, F. Deng, and S.S. Lau J.M. Redwing, J.Appl.Phy. (1998), 84, 881 .
    [10]. Ennaoui, A.; Fiechter, S.; Jaegermann, W.’ Tributsch, H. J. Electrochem. Soc. (1986), 133, 97.
    [11]. Wilcoxon J P, Newcomer P P and Samara G A, Solid State Commun. (1996), 98, 581.
    [12]. Ennaoui A and Tributsch H , Sol. Energy Mater. (1986), 14, 461.
    [13]. M. Blanchard et al; Geochimica et Cosmochimica Acta 71. (2007), 624–630.
    [14]. Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S.E., Chemistry of Materials. (2001), 13, 4395.
    [15]. K. L. Chopra and S. R. Das, "Thin film Solar Cells", (Plenum, New York,Z). (1983).
    [16]. H. Rensmo, K. Keis, H. Lindstrom, S. Sodergren, A. Solbrand, A.Hagfeldt, S. E. Lindquist, "High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes", J. Phys. Chem. B. (1997), 101, 2598–2601.
    [17]. Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P. Science. (2005), 310, 462-465.
    [18]. Steven A. McDonald, Gerasimos Konstantatos, Shiguo Zhang, Paul W. Cyr, Ethan J. D. Klem, Larissa Levina & Edward H. Sargent; Nature Materials. (2005), 4, 138 – 142.
    [19]. Joseph M. Luther, Matt Law, Matthew C. Beard, Qing Song, Matthew O. Reese, Randy J. Ellingson, and Arthur J. Nozik; Nano Lett. (2008), 8 , 3488.
    [20]. Tobias Rauch, Michaela Bo‥berl, Sandro F. Tedde1, Jens Fu‥rst, Maksym V. Covalence, Günter Hisser, Eli Lemmer, Wolfgang Heiss, Oliver Hayden; NATURE PHOTONICS. (2009), 3, 332–336.
    [21]. Edward h. sergeant; NATURE PHOTONICS, (2009), 3 , 325-331.
    [22]. Cyrus Wadia, A. Paul Alivisatos, Daniel M. Kammen; Environ. Sci. Technol. (2009), 43, 2072–2077.
    [23]. K. Biiker, PI. Alonso-Vante, and H. Tributsch. J. Appl. Phys. (1992), 72, (12), 15
    [24]. B.G. Streetman, S.K. Banerjee, “Solid state electron devices,6th edition ”, PearsonPrentice Hall ,New Jersey. (2006), 158–208.
    [25]. R. Cebulla, R. Wendt, and K. Ellmer, J. Appl. Phys. (1998), 83, 1087.
    [26]. S. Hore and R. Kern, Appl. Phys. Lett. (2005), 87, 263504
    [27]. J. Xia, N. Masaki, K. Jiang, and S. Yanagida, J. Phys. Chem. C. (2007), 111, 8092
    [28]. P. J. Cameron and L. M. Peter, J. Phys. Chem. B. (2003), 107, 14394
    [29]. Y. G. Wang, S. P. Lau, H. W. Lee, S. F. Yu, B. K. Tay. X. H. Zhang, K. Y. Tse, . H. Hng, J. Appl. Phys. (2003), 94, 3.
    [30]. F.J. Pern, B. To, C. DeHart, X. Li, and S.H. Glick; NREL; “Degradation of ZnO Window Layer for CIGS by Damp-Heat Exposure”. (2008).
    [31]. http://www.dur.ac.uk/~dph0www5/images/am1.jpg
    [32]. A. Yakimov, S. R. Forrest, Appl. Phys Lett. (2002), 80, 1667-1669.
    [33]. Christoph J. Brabec; N. Serdar Sariciftci; Jan C. Hummelen, Advanced Functional Materials. (2001), 11, 15–26.
    [34]. Ganf Li; Vishal shrotriya; Jinsong Huang; Yan Yao, Tom Moriarty; Keith Emery; Yang Yang, Nature materials. (2005).
    [35]. K. L. Chopra and S. R. Das, "Thin film Solar Cells", (Plenum, New York). (1983).
    [36]. L.F. Xu, Q. Liao, J.P. Zhang, X.C. Ai and D.S. Xu.; J. Phys. Chem. C. (2007), 111, 4549–4552.
    [37]. W. William Yu and Xiaogang Peng; Angew. Chem. Int. Ed. (2002), 41, No. 13.
    [38]. X. Y. Chen, Z. G. Wang, X. Wang, J. X. Wan, J. W. Liu, and Y. T. Qian; Inorg. Chem. (2005), 44, 951.
    [39]. H. Duana, and Y. F. Zhenga, Y. Z. Dong, X. G. Zhang, and Y. F. Sun Materials Research Bulletin. (2004), 39, 1861.
    [40]. A. Ennaoui, S. Fiechter, C. Pettenkofer, N. Alonso-Vante, K. Bilker, M. Bronold, C. Hpfner and H. Tributsch,; Solar Energy Materials and Solar Cell. (1993), 29, 289.
    [41]. Baoquan Sun and Henning Sirringhaus; Nano Lett. (2005), 5, 12.
    [42]. http://en.wikipedia.org/wiki/Work_function
    [43]. Yangang Han, Gang Wu, Haiguo Li, MangWang and Hongzheng Chen, Nanotechnology. (2010), 211, 85708.
    [44]. Quist P A C, Beek W J E, Wienk M M, Janssen R A J, Savenije T J, Siebbeles L D A. J. Phys. Chem. B. (2006), 110, 10315.

    無法下載圖示 本全文未授權公開
    QR CODE