簡易檢索 / 詳目顯示

研究生: 林歆芸
Lin, Hsin-Yun
論文名稱: 極短線交易之流動性供給對於台灣期貨市場波動度之影響
The impact of liquidity supply from very-short-term trading on realized volatility in the Taiwan futures market
指導教授: 蔡蒔銓
Tsai, Shih-Chuan
學位類別: 碩士
Master
系所名稱: 管理研究所
Graduate Institute of Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 47
中文關鍵詞: 極短線交易委託不均衡日內型態流動性波動度
英文關鍵詞: very-short-term trade, order imbalance, intraday pattern, liquidity, volatility
DOI URL: https://doi.org/10.6345/NTNU202203950
論文種類: 學術論文
相關次數: 點閱:160下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文採用日內高頻資料,以台灣期貨市場中的臺股期貨為主要研究標的,並將持倉時間為十秒內之交易定義為極短線交易,透過將這些極短線交易之委託單排除後的市場委託不均衡,與完整市場的委託不均衡情形相比較,來觀察他們對市場的流動性供需情形與其對市場流動性的影響,再進一步分析其日內型態,最後透過迴歸模型,探討極短線交易提供之流動性對市場波動度的影響。
    實證結果顯示:1. 極短線交易能夠有效提供市場流動性。2. 其提供之流動性呈現日內U型曲線,並與日內實現波動度呈正相關。3. 投資人會在市場波動較大時,進入市場執行極短線交易賺取價差,提供並改善市場流動性,造成市場波動幅度降低。4. 若市場價格波動幅度較小時,則極短線交易會在後期提供較多流動性。

    This research employs intraday high frequency data on TAIEX futures. In our study, we define a trade with a holding period below 10 seconds as a very-short-term trade. We compare the order imbalance which excludes very-short-term trades and the order imbalance of the whole market, to find out how these very-short-term trades affect the market liquidity. Furthermore, we observe the intraday pattern of these trades and use regression models to analyze the influence of liquidity provided by these trades on market volatility.
    Our empirical results reveal that very-short-term trades significantly provide liquidity in the Taiwan futures market. On the other hand, we show that the liquidity provided by these trades has an intraday U-shaped pattern and it is positively associated with intraday realized volatility. In addition, our results indicate that investors prefer entering the market to executing very-short-term trades for earning the spread when the market volatility is high. These trades enhance the liquidity of the futures market, playing the role of the liquidity supplier and reducing market volatility. Besides, we also find that if the market volatility decreases, these very-short-term trades will provide more liquidity in the later period.

    目錄..........................................I 表目錄.......................................II 圖目錄......................................III 第一章 緒論...................................1 第一節 研究動機............................1 第二節 研究目的............................3 第三節 研究架構............................3 第二章 文獻探討................................5 第一節 市場流動性..........................5 第二節 極短線交易對市場影響之相關文獻........7 第三節 波動度與成交量關係之相關文獻..........9 第三章 研究方法...............................12 第一節 研究資料來源與介紹..................12 第二節 樣本資料處理.......................15 第三節 研究變數定義與說明..................20 第四節 單根檢定...........................25 第五節 迴歸模型...........................26 第四章 實證結果與分析..........................28 第一節 敘述統計分析........................28 第二節 單根檢定............................34 第三節 迴歸模型之實證結果...................35 第五章 結論與建議..............................43 第一節 本文研究結論........................43 第二節 未來研究建議........................44 參考文獻......................................45

    1. 詹場、胡星陽(2000),「流動性衡量方法之綜合評論」,國家科學委員會研究彙刊:人文及社會科學,第十一卷第三期,頁205~221。
    2. 林詩舫 (2012),投資人交易行為影響交易量與波動度關係之研究-以台灣指數期貨為例。碩士論文。台北:臺灣師範大學全球經營與策略研究所。
    3. Abhyankar, A., Ghosh, D., Levin, E., and Limmack, R. J. (1997). Bid-ask spreads,trading volume and volatility:Intra-day evidence from the London stock exchange. Journal of Business Finance & Accounting, 24(3), 343-362.
    4. Aitken, M., and Comerton-Forde, C. (2003). How should liquidity be measured?
    Pacific-Basin Finance Journal, 11(1), 45-59.
    5. Aldridge, I. (2009). High-FrequencyTrading:A Practical Guide to Algorithmic Strategies and Trading Systems:17.
    6. Amihud,Y., and Mendelson,H. (1989). The effects of beta, bid‐ask spread, residual risk, and size on stock returns. Journal of Finance, 44(2), 479-486.
    7. Bessembinder, H., and Seguin, P.J. (1992). Futures trading activity and stock price volatility. Journal of Finance, 47(5), 2015-2034.
    8. Bessembinder, H., and Seguin, P.J. (1993).Price volatility, trading volume, and market depth: Evidence from futures markets. Journal of Financial and Quantitative Analysis, 28(1), 21-39.
    9. Biais, B., Foucault, T.,and Moinas, S. (2015). Equilibrium fast trading.Journal of Financial Economics, 116(2), 292-313.
    10.Board, J., andSutcliffe, C. (1990). Information, volatility, volume and maturity: An investigation of stock index futures.Reviewof Futures Market, 19(3), 533-549.
    11. Brogaard, J.(2010). High frequency trading and its impact on market quality.Working Paper. Northwestern University Kellogg School ofManagement.
    12. Brogaard, J., Hendershott, T.,and Riordan, R. (2014). Highfrequency trading and price discovery. Review of Financial Studies, 27(8), 2267-2306.
    13. Carchano, O.,Lucia, J.J.,and Tornero, A.P. (2010).Open and closed positions and stock index futures volatility. Working Paper. University of Valencia.
    14. Carrion, A. (2013). Very fast money: Highfrequency trading on the NASDAQ.Journal of Financial Markets,16(4), 680-711.
    15. Chan,C.C.,and Fong W.M. (2006). Realized volatility and transactions. Journal of Banking & Finance, 30(7), 2063-2085.
    16. Chaboud, A., Chiquoine, B., Hjalmarsson, E., and Vega, C.(2014). Rise of the machines: Algorithmic trading in the foreign exchange market. Journal of Finance, 69(5) , 2045-2084.
    17. Chen,H.C., and Wu,J.(2008). Return volatility and the intraday behavior of market liquidity withoutmarket makers: Evidence from the taiwan futuresmarket. International Research Journal of Finance and Economics, 17, 117-128.
    18. Clark, P.K. (1973). Asubordinated stochastic process modelwith finite variance for speculative prices. The Econometric Society, 41(1), 135-155.
    19. Copeland, T.E. (1976). A model of asset trading under theassumption of sequential information arrival. Journal of Finance, 31(4), 1149-1168.
    20. Darrat, A.F., Zhong, M., and Cheng, L.T.W. (2007). Intraday volume and volatility relations with and without public news. Journal of Banking & Finance, 31(9), 2711-2729.
    21. Gallant,A.R., Rossi,P.E., and Tauchen,G. (1992). Stock prices and volume.Review of Financial studies, 5(2), 199-242.
    22. Hagstromer, B., and Norden. L. (2013). The diversity of highfrequency traders. Journal of Financial Markets, 16(4), 741–770.
    23. Harris, L. (2003). Trading and exchanges. Oxford University Press, Inc., NY.
    24. Hasbrouck,J., and Schwartz,R.A. (1988). Liquidity and execution costs in equity markets.Journal of Portfolio Management, 14(3), 10-16.
    25. Hasbrouck, J., and Saar, G. (2013). Lowlatency trading. Journal of FinancialMarkets, 16(4), 646-679.
    26. Hendershott, T., Jones, C., and Menkveld, A. (2011). Does algorithmic tradingimprove liquidity? Journal of Finance, 66(1), 1-33.
    27. Hendershott, T.,and Riordan, R. (2013). Algorithmic trading and the market for liquidity.Journal of Financial and Quantitative Analysis, 48(4), 1001-1024.
    28. Hoffmann, P. (2014). A dynamic limit order market with fast and slow traders.Journal of Financial Economics, 113(1), 156-169.
    29. Jinliang,L.,and Chunchi,W. (2011). Stochastic volatility, liquidity and intraday information flow.Applied Economics Letters, 18(16), 1511-1515.
    30. Jones,C.M.,Kaul,G.,and Lipson,M.L.(1994). Transactions,volume,andvolatility.
    Review of Financial Studies, 7(4), 631-651.
    31. Jovanovic,B.,and Menkveld, A. (2010). Middlemen in limit order markets,Working paper. New York University.
    32. Kawaller, I.G.,Koch, P.D.,and Peterson, J.E. (2001). Volume and volatility surrounding quarterly redesignation of the lead S&P 500 futures contract. Journal of Futures Markets, 21(12), 1119-1149.
    33. Kearns, M., Kulesza, A., and Nevmyvaka, Y. (2010). Empirical limitations on high frequency trading profitability.Working paper, Universityof Pennsylvania.
    34. Lee, C., and Ready, M. (1991). Inferring trading direction from intraday data. Journal of Finance, 46(78), 733-746.
    35. Lee, C., Mucklow, B., and Ready, M. (1993). Spreads, depths, and the Impact of earnings Information: An intraday analysis. Review of Financial Studies, 6(2), 345-374.
    36. Lippman, S. A., and McCall, J.J. (1986). An operational measure of liquidity. American
    Economic Review, 76(1), 43-55.
    37. Najand, M., and Yung, K. (1991). A GARCH examination of the relationship between volume and price variability in futures markets. Journal of Futures Markets, 11(5), 613-621.
    38. O’Hara, M. (1995). Market microstructure theory, Cambridge: Blackwell Publisher Inc.
    39. O’Hara, M.(2003). Presidential Address: Liquidity and Price Discovery. Journal of Finance, 58(4), 1335-1354.
    40. Smirlock, M., and Starks, L. (1988). An empirical analysis of the stock price-volume relationship. Journal of Banking &Finance, 12(1), 31-41.
    41. Sua, Y.C., Huangb, H.C., and Lina, S.F. (2012). Dynamic relations between order imbalance, volatility and return of top gainers. Applied Economics, 44(12), 1509-1519.
    42. Viljoen, T., Joakim,W., and Zheng, H. (2014). Algorithmic trading, liquidity, andprice discovery: An intraday analysis of the SPI 200 futures. FinancialReview, 49(2), 245-270.
    43. Wang, G.H.K. and Yau, J. (2000). Trading volume, bid-ask spread, and price volatility in futures markets. Journal of Futures Markets, 20(10), 943-970.
    44. Zhang F. (2010). The effect of high frequency trading on stock volatility and price discovery. Working paper, Yale University, School of Management.
    45. Zwergel, B., and Heiden, S.(2014). Intraday futures patterns and volume-volatility relationships: The German evidence. Review of Managerial Science, 8(1), 29-61.

    下載圖示
    QR CODE