簡易檢索 / 詳目顯示

研究生: 李冠儀
Li, Guan-Yi
論文名稱: 射頻功率放大器之靜電放電防護設計
On-Chip ESD Protection Design for Radio-Frequency Power Amplifier
指導教授: 林群祐
Lin, Chun-Yu
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 108
中文關鍵詞: 靜電放電防護矽控整流器串接二極體射頻功率放大器
英文關鍵詞: Electrostatic discharge protection, silicon-controlled rectifier, diode string, power amplifier
DOI URL: https://doi.org/10.6345/NTNU202202620
論文種類: 學術論文
相關次數: 點閱:219下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在利用嵌入矽控整流器之串接二極體來完成大訊號擺幅功率放大器的靜電放電防護設計,為了比較所提出的靜電放電防護電路的優劣性,也設計了串接二極體以及二極體觸發矽控整流器兩種靜電放電防護電路來提供比較。
    為了驗證所提出的靜電放電防護電路在實際電路上的效能,本論文也設計了一個功率放大器電路來搭配此次所設計的三種靜電放電防護電路。實驗結果顯示,嵌入矽控整流器之串接二極體不會造成訊號的衰減及失真,且能夠有效的保護功率放大器。
    在本論文中所設計的電路皆使用0.18-μm CMOS製程完成。並在實際的量測中發現,搭配串接二極體寄生矽控整流器的功率放大器電路能承受7 kV以上人體放電模式之靜電放電測試。

    In this thesis, the diode string with embedded silicon-controlled rectifier (DSSCR) is designed to provide electrostatic discharge (ESD) protection of radio-frequency (RF) power amplifiers (PAs). To examine and evaluate the performance of the DSSCR, ESD protection circuits using the diode string (DS) and the diode-triggered SCR (DTSCR) are also designed and implemented for comparison with the proposed DSSCR protection circuit.
    To validate the effectiveness of the designed ESD protection circuits, radio-frequency power amplifiers which equipped with the above-mentioned ESD protection circuits were designed and fabricated in this research. The measured results show that the protection circuit using DSSCR will not cause undesired signal degradation and distortion, and meanwhile can offer instant and effective protection to the RF PAs.
    All of the ESD protection circuits designed in this thesis were fabricated using 0.18-um CMOS process. It is found in measurement that the RF PA equipped with the DSSCR protection circuit can bear 7-kV human-body-model (HBM) test.

    摘要 I Abstract II Acknowledgment IV Contents VII Table Captions IX Figure Captions X Chapter 1 Introduction 1 1.1 Literature Survey and Research Motivation 1 1.2 Background of ESD 3 1.3 Test Standards of ESD 3 1.4 Traditional ESD Protection Design for Radio-Frequency Circuits 7 1.5 Introduction of Power Amplifiers 14 1.6 Thesis Organization 16 Chapter 2 Novel ESD Protection Design for Large-Swing Power Amplifier 17 2.1 Consideration of ESD Protection for Large-Swing Power Amplifier 17 2.2 Design of ESD Protection Devices 22 2.3 Measurement Methods and Results of ESD Protection Devices 30 2.4 Comparison of Traditional and Novel ESD Protection Devices 49 2.5 Summary of This Chapter 64 Chapter 3 2.4 GHz Power Amplifier with Novel ESD Protection Design 66 3.1 Reliability of CMOS Power Amplifier 66 3.2 Design of Power Amplifier 67 3.3 Architecture of the PA with ESD Protection Designs 75 3.4 Measured Results of the PAs with and without ESD Protection Circuits 78 3.5 Comparison between The Designed PAs with and without ESD Protection 89 3.6 Summary of This Chapter 95 Chapter 4 Conclusions and Future Works 97 4.1 Conclusion 97 4.2 Future Works 98 References 102 Vita 107 Publication List 108

    [1] A. Amerasekera and C. Duvvury, ESD in silicon integrated circuits. John Wiley & Sons, 2002.
    [2] A. Wang, On-chip ESD protection for integrated circuits. Kluwer, 2002.
    [3] P. Mak and R. Martins, “High-/mixed-voltage RF and analog CMOS circuits come of age,” IEEE Circuits Syst. Mag., vol. 10, no. 4, pp. 27–39, Fourth Quarter, 2010.
    [4] M.-H. Tsai, Shawn S.-H. Hsu, F.-L. Hsueh, and C.-P. Jou, “A multi-ESD-path low-noise amplifier with a 4.3-A TLP current level in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 12, pp. 4004-4011, Nov. 2010.
    [5] Y.-W. Hsiao and M.-D. Ker, “A 5-GHz differential low-noise amplifier with high pin-to-pin ESD robustness in a 130-nm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 5, pp. 1044-1053, Apr. 2009.
    [6] C. Duvvury, “CDM qualification: Technology impact, testing nuances, and target levels”, IEW 2015.
    [7] Industry Council on ESD Target Levels, “White Paper 1: A case for lowering component level HBM/MM ESD specifications and requirements,” Sept. 2011.
    [8] Industry Council on ESD Target Levels, “White Paper 2: A case for lowering component level CDM ESD specifications and requirements,” Apr. 2010.
    [9] M.-D. Ker, C.-Y. Lin, and Y.-W. Hsiao, ”Overview on ESD Protection Designs of Low-Parasitic Capacitance for RF ICs in CMOS Technologies,” IEEE Transactions on Device and Materials Reliability, vol. 11, no. 2, pp. 207-218, Jun. 2011.
    [10] A. S. Sedra and K. C. Smith, Microelectronic Circuit. New York, New York, USA: Oxford University Press Inc., 7th ed., 2016.
    [11] C. Richier, P. Salome, G. Mabboux, I. Zaza, A. Tuge, and P. Mortini, “Investigation on different ESD protection strategies devoted to 3.3V RF applications (2GHz) in a 0.18-μm CMOS process,” in Proc. EOS/ESD Symp., 2000, pp. 251-259.
    [12] W. Soldner et al., “RF ESD protection strategies-codesign vs. low-C protection,” in Proc. Electrical Overstress/Electrostatic Discharge Symp., 2005, pp. 1-10.
    [13] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuit for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 173-183, Jan. 1999.
    [14] S. Voldman, ESD: RF Technology and Circuits, John Wiley & Sons, 2006.
    [15] Y. Li, J. Liou, J. Vinson, and L. Zhang, “Investigation of LOCOS-and polysilicon-bound diodes for robust electrostatic discharge (ESD) applications,” IEEE Trans. Electron Devices, vol. 57, no. 4, pp. 814-819, Apr. 2010.
    [16] G. Chen and A. Wang, “Evaluating RF ESD protection design: An overview,” IEEE Physical and Failure Analysis of Integrated Circuits, pp. 205-208, July 2004.
    [17] M.-D. Ker and K.-C. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits,” IEEE Trans. Device and Materials Reliability, vol. 5, no. 2, pp. 235-249, Jun. 2005.
    [18] S. Jang, L. Lin, S. Li, and H. Chen, “Dynamic triggering characteristics of SCR-type electrostatic discharge protection circuits,” Solid-State Elect., vol. 45, no. 7, pp. 1091-1097, Jul. 2001.
    [19] M. Mergens, C. Russ, K. Verhaege, J. Armer, P. Jozwiak, R. Mohn, B. Keppens, and C. Trinh, “Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies,” IEEE Trans. Device Mater. Rel., vol. 5, no. 3, pp. 532-542, Sept. 2005.
    [20] C.-Y. Lin and C.-Y. Chen, “Resistor-Triggered SCR Device for ESD Protection in High-Speed I/O Interface Circuits,” IEEE Electron Device Letters, no. 99, pp. 1-1, 2017.
    [21] G.-Y. Li and C.-Y. Lin, “On-chip ESD protection design for radio-frequency power amplifier with large-swing-tolerance consideration,” IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 258-261, 2016.
    [22] De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer, Agilent, Application Note 1364-1, May, 2004.
    [23] M.-D. Ker, C.-L. Hou, C.-Y. Chang, F.-T. Chu, "Correlation between transmission-line-pulsing I-V curve and human body model ESD level on low temperature poly-Si TFT devices," in 11th International Symposium on the Physical and Failure Analysis of Integrated Circuits. pp. 209-212, 2004.
    [24] T. J. Maloney, "Evaluating TLP transients and HBM waveforms," in 31st Electrical Overstress/Electrostatic Discharge Symposium, pp. 1-9, 2009.
    [25] M. Shrivastava, H. Gossner, M.S. Baghini, V.R. Rao, "Part I: On the behavior of STI-type DENMOS device under ESD conditions," IEEE Trans. on Electron Devices, vol. 57, no. 9, pp. 2235-2242, 2010.
    [26] R. Ma, L. Wang, C. Zhang, F. Lu, Z. Dong, A. Wang, W. Lu,Y. Song, B. Zhao, "TLP and HBM ESD test correlation for power ICs, "IEEE International Conference of Electron Devices and Solid-State Circuits, pp. 1-2, 2013.
    [27] M. Prabhu, J.-H. Lee, M.I. Natarajan, V. Kumar, R. Jain, T.-C. Tsai, L. Zhiqing, D. Thurmer, “Source of miscorrelation of product level HBM to TLP test results,” Electrical Overstress/Electrostatic Discharge Symposium, pp. 1-7, 2015.
    [28] S.-L. Chen and M.-H. Lee, “Impacts of Leakage-Biasing Failure-Mode Identification in the Transmission-Line-Pulse Testing for Low-Voltage /High-Voltage MOSFET Components,” IEEE Transactions on Industry Applications, no. 99, pp. 1-1, 2017.
    [29] L.-M. Ting et al., “Integration of TLP analysis for ESD trouble shooting,” Electrical Overstress/Electrostatic Discharge Symposium, pp. 440-447, 2001.
    [30] C.-Y. Lin et al., “Area-efficient and low-leakage diode string for on-chip ESD protection,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 531-536, Feb. 2016.
    [31] S. H. Voldman, G. Gerosa, V. P. Gross, N. Dickson, S. Furkay, and J. Slinkman, “Analysis of snubber-clamped diode-string mixed voltage interface ESD protection network for advanced microprocessors,” J. Electrostatics, vol. 38, nos. 1–2, pp. 3–31, Oct. 1996.
    [32] L. Zhang; Y. Wang, and Y. He,” A novel insight into transient behaviors of diode-triggered SCRs under VF-TLP testing by 2D/3D simulations,” IEEE International Nanoelectronics Conference (INEC), pp. 1-2, 2016.
    [33] J.-J. Liou, “Electrostatic discharge (ESD) protection of RF integrated circuits,” in Proc. IEEE Asia Pacific Conf. Circuits and Systems, Kaohsiung, Taiwan, R.O.C., Dec. 2012, pp. 460-462.
    [34] Z. Shi, X. Wang, A. Wang, and Y. Cheng, “A 5kV ESD-protected 2.4GHz PA in 180nm RFCMOS optimized by ESD-PA co-design technique,” in Proc. IEEE International Conference on ASIC, 2013.
    [35] Y.-D. Shiu, B.-S. Huang, and M.-D. Ker, “CMOS power amplifier with ESD protection design merged in matching network,” IEEE International Conference on Electronics, Circuits and Systems, pp 825-828, 2007.
    [36] X. Wang, X. Guan, S. Fan, H. Tang, H Zhao, L. Lin, Q. Fang, J. Liu, A. Wang, and L.-W. Yang, ” ESD-Protected Power Amplifier Design in CMOS for Highly Reliable RF ICs,” IEEE Transactions on Industrial Electronics, vol.58, no. 7, pp. 2736-2743, 2011.

    下載圖示
    QR CODE