簡易檢索 / 詳目顯示

研究生: 陳春渼
論文名稱: 以非接觸式分子自組裝法製備配向層與表面特性研究
指導教授: 洪偉修
Hung, Wei-Hsiu
許瑤真
Hsu, Yao-Jane
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
中文關鍵詞: 配向層分子自組裝法
論文種類: 學術論文
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 控制液晶的排列於液晶顯示器中為一舉足輕重的要素,磨刷配向是最廣泛使用於液晶配向的技術,現在在商業界中能持續的在使用此方法。近年來隨著因應大尺寸與高畫質的顯示器,開始發展許多不同的配向技術。例如:分子自組裝薄膜(self-assembly method),離子束轟擊(ion beam irradiation),藍布薄膜(Langmuir-Blodgett (LB) film method),斜向蒸鍍(oblique evaporation)和照光配向(photoalignment)。
      在此,我們選用分子自組裝法於表面製備配向層。以一胺基官能基的有機矽烷APTS(3-aminopropyl-triethoxysilane )於基材(ITO(indium-tin-oxide)玻璃和Ar-DLC)上形成自組裝分子薄膜,之後利用APTS尾端官能基接枝上具奈環的NIC (1-Isothiocyanato-naphthalene)分子。以X光電子能譜(X-ray photoelectron spectra,XPS)探討其表面之化學結構,於同步輻射中心的EPU光束線測量X光近緣吸收為結構光譜(near edge X-ray absorption fine structure,NEXAFS),研究其分子在基材表面上之方向異性。
      利用簡單非接觸式的分子自組裝薄膜與接枝法,我們可以成功製配出液晶配向層。藉由改變浸泡時間與溫度,我們找到良好的製備配向層條件。此一條件下製備的配向層,其結果顯示芳香環的雙色比率數值皆大於0.1,芳香環於基材(ITO玻璃和Ar-DLC)上有一良好的方向異性。

    Controlling the orientation of liquid crystals (LCs) is the important key in liquid-crystal display (LCD) technology. The method of rubbing polymers has been widely used to align liquid crystal molecule. Recently, many alignment methods have been developed for manufacturing large, high-resolution LCD, such as self-assembly method, ion beam irradiation, the Langmuir-Blodgett (LB) film method, oblique evaporation and photoalignment.
      In this article, we applied a noncontact procedure of self-assembled method to generate an alignment layer on surface of indium-tin-oxide (ITO) and argon ion beam bombardment diamond-like carbon (Ar-DLC). An amino-functionalized silane, 3-aminopropyl-triethoxysilane (APTS), was deposited to modify the ITO and Ar-DLC surface. Afterwards, 1-Isothiocyanato-naphthalene (NIC) molecules were grafted to the surface via the covalent bonding of its naphthalene ring to the amino terminal group of APTS. The deposited layer was examined by X-ray photoelectron spectrometry (XPS) for surface chemical composition. We also investigated the preferential orientation of the layer by polarization-dependent near edge X-ray absorption fine structure (NEXAFS).
      The extent of surface alignment is significantly dependent on deposition time and temperature. Among our studied conditions, the best surface alignment is obtained by immersing the ITO or Ar-DLC substrates in APTS solution for 6hr and NIC solution for 1hr at 50℃. The dichroic ratio corresponding to the aromatic ring is better than 0.1, indicting that the orientation of the aromatic rings is well-aligned on the treated ITO and Ar-DLC surfaces

    中文摘要 英文摘要 謝誌 目錄 圖目錄 壹、緒論……………………………………………………1 貳、文獻回顧 2-1 自組裝單分子膜……………………………………7 2-2 離子束轟擊之類鑽碳薄膜…………………………10 2-3 液晶配向層…………………………………………11 參、儀器原理與設備 3-1 原子力顯微鏡(AFM) ……………………………19 3-2 超高真空系統……………………………………20 3-3 同步輻射光源……………………………………20 3-4 X光光電子能譜術(XPS)……………………22 3-5 近緣X光吸收精細結構光譜(NEXAFS)……25 肆、實驗部分 4-1 樣品製備…………………………………………29 4-1.1實驗藥品………………………………………29 4-1.2 離子束轟擊之類鑽碳薄膜……………………30 4-1.3 基材清潔與表面活化處理……………………31 4-1.4 SAMs的製備……………………………………32 4-2 樣品測量‥…………………………………………33 4-2.1 靜態接觸角量測………………………………33 4-2.2 原子力顯微鏡量測……………………………33 4-2.3XPS的量測與數據處理…………………………34 4-2.4 NEXAFS的量測與數據處理…………………34 伍、結果與討論 5-1基材前處理 …………………………………………38 5-1.1 水電漿前處理 ………………………………38 5-1.2 NH4OH和H2O2水解作用前處理……………40 5-2 ITO玻璃之分子薄膜的表面配向性 ………………42 5-2.1 變化NIC浸泡時間與溫度之效應 …………46 5-2.2變化APTS浸泡時間之效應 …………………47 5-3 ITO玻璃改質後之分子自組裝薄膜的表面組成及結構變化………………………………………………………………49 5-3.1 APTS分子自組裝薄膜之鍵結情形 ……………50 5-3.2不同浸泡NIC溶液時間之鍵結情形分析………56 5-4離子束轟擊DLC的表面配向性………………………66 5-5 Ar-DLC(125eV)之分子薄膜的表面配向性 …………67 5-5.1 水平方向的方向異性…………………………68 5-5.2 垂直方向的方向異性…………………………72 5-6 Ar-DLC之分子自組裝薄膜的表間之鍵結情形分析………………………………………………………………76 5-6.1 APTS分子自組裝薄膜之鍵結情形 …………76 5-6.2不同浸泡NIC溶液時間之鍵結情形分析……79 陸、結論 ………………………………………………………89 參考文獻 ………………………………………………………90

    (1) Johan Hoogboom, Theo Rasing, Alan E. Rowan and Roeland J. M. Nolte, J. Mater. Chem., 2006, 16, 1305–1314.
    (2) D. W. Berreman, Phys. Rev. Lett. 1972, 28, 1683-1686.
    (3) Masaki Hasegawa, Jpn. J. Appl. Phys. 1999, Prat2, 38, L255.

    (4) K. Takatoh,M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, M. Hasegawa, Alignment technologies and applications of liquid crystal devices, 2005, Taylor & Francis.
    (5) L.A. Goodman, J. T. Mcginn, C. H. Anderson, and F. Digeronimo, IEEE,1977,ED-24, 795-804.
    (6) M.Schsdt, K. Schmitt, V.Hozinkov, and V.Chigrinov, Jpn.J.Appl.Phys. 1992,31, 2155-2164
    (7) (a) U.S. Patent No. 5770826, issued Jun,26,1998. (b) U.S. Patent No. 6020946, issued Feb,1,2000. (c) U.S. Patent No. 6061114, issued May,9,2000. (d) U.S. Patent No. 6195146 B1, issued Feb,27,2001. (e) U.S. Patent No. 6485614 B2, issued Nov,26,2002.
    (8) (a) P. Chaudhari, J. Lacey, J. Doyle, E. Galligan, S.-C. Alan Lien, A. Callegari, G. Hougham, N. D. Lang, P. S. Andry, R. John, K.-H. Yang, M. Lu, C. Cai, J. Speidell, S. Purushothaman, J. Ritsko, M. Samant, J. Stöhr, Y. Nakagawa, Y. Katoh, Y. Saitoh, K. Sakai, H. Satoh, S. Odahara, H. Nakano, J. Nakagaki, and Y. Shiota, NATURE 2001, 411, 56. (b) Chaudhari, P., Lacey, J., Lien, S. A. and Speidell, J. L. Jpn J. Appl. Phys. 1998, 37, L55.
    (9) J. Stöhr, M. G. Samant, J. Luning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, J. L. Speidell, Science 2001, 292, 2299.
    (10) Jin Seog Gwag, Chul Gyu Jhun, Jae Chang Kim, Tae-Hoon Yoon, Gi-Dong Lee, and Seong Jin Cho, J. Appl. Phys., 2004, 96,257-260
    (11) (a) 蕭惠方,國立臺灣師範大學化學所碩士論文,2006。(b) 郭書瑋,國立臺灣師範大學化學所碩士論文,2007。
    (12) J. Hoogboom, M. Behdani, J.A. A. W. Elemans, M. A. C. Devillers, R. Gelder, A. E. Rowan, T. Rasing, and Roeland J. M. Nolte, Angew. Chem. Int. Ed. 2003, 42, 1812 -1815.
    (13) J. Hoogboom, P. M. L. Garcia, M. B. J. Otten, J. A. A. W. Elemans, J. Sly, S. V. Lazarenko, T. Rasing, A. E. Rowan, and R. J. M. Nolte, J. Am. Chem. Soc. 2005, 127, 11047-11052.
    (14) J. Christopher Love, Lara A. Estroff, Jennah K. Kriebel, Ralph G. Nuzzo, and George M. Whitesides, Chem. Rev. 2005, 105, 1103-1169
    (15)W.C.Bigelow, D.L.Pickett, W.A.Zisman, Collid Interface Sci. 1946, 1, 513
    (16)R.G.Nuzzo, D.L. Allara, J. Am. Chem. Soc. 1983,105,4481.
    (17) L. M.Christine, S.Andrey, K. M. Carole, Uppili Sundararajan, Zharnikov Michael, and D.L. Allara, J. AM. CHEM. SOC. 2006, 128, 5231-5243
    (18) A. C. Ferrari, and J. Robertson, Physical Review B 2000, 61, 14095.
    (19) (a) C. Angus and C. Hayman, Science 1988, 241, 913. (b) F. Demichelis, A. Tagliaferro, and D. Das Gupta, Surf. Coat. Technol 1991, 47, 218. (c) J. Roberson, Surface and Coating Technology, 1992, 185, 50.
    (20) Li, J.J.; Gu, C.Z.; Peng, H.Y.; Wu, H.H.; Zheng, W.T.; Jin, Z.S.; Applied Surface Science 2005, 251, 236-241.
    (21) Lin, I.-N.; Chuang, F.-Y.; Tseng, C.-T.; Cheng, H.-F.; Sun, C.-Y.; Diamond and Related Materials 1998, 7, 711-716.
    (22) (a) J. Meneve, R. Jacobs, L. Eersels, J. Smeets, E. Dekempeneer, Surf. Coatings Technol. 1993, 62, 577. (b) M. Grischke, K. Bewilogua, K. Trojan, H. Dimigen, Surf. Coatings Technol. 1995, 739, 74-75. (c) Y.Y. Chang, D.Y. Wang, WeiTe Wu, Thin Solid Films 2002, 241, 420– 421.
    (23) (a) J. L. Janning , Appl. Phys. Lett. 1972, 21, 173 . (b) N. A. Clark, S. T. Lagerwall, Appl. Phys. Lett. 1980, 36, 899.
    (24) J. Stöhr, M. G. Samant, A. Cossy-Favre, J. Dı´az, Y. Momoi, S. Odahara, and T. Nagata, Macromolecules 1998, 31, 1942-1946.
    (25) (a)T. Uchida, Mol. Cryst. Liq. Cryst. 1985, 123, 15. (b)Y.-J. Lee, Y.-W. Kim, J.-D. Ha, J.-M Oh and M.-H. Yi, Polym. 2006, 47, 1555–1562.
    (26) (a) J. H. Kim, M. Yoneya, H. Yokoyama, Nature 2002, 420, 159. (b) S. Varghese, S. Narayanankutty, C. W. M. Bastiaansen, and D. J. Broer, Adv. Mater. 2004, 16, 1600.
    (27) (a) S. Park, C. Padeste, H. Schift, J. Gobrecht, and T. Scharf, Adv. Mater. 2005, 17, 1398-1401. (b) C.-H. Chiu, H.-L. Kuo, P.-C. Chen, C.-H. Wen, Y.-C. Liu, and P. Chen, Appl. Phys. Lett. 2006, 88, 073509. (c) H.-R. Kim, J.-W. Jung, Y.-J. Lee, and J.-H. Kim, Appl. Phys. Lett. 2006, 88, 113504
    (28) Kyung Chan Kim, Han Jin Ahn, Jong Bok Kim, Byoung Har Hwang, and Hong Koo Baik, Langmuir 2005, 21, 11079-11084.
    (29) J.-S. Gwag, C.-G. Jhun, J.-C. Kim, and T.-H. Yoon, G.-D. Lee, S.-J. Cho, J. Appl. Phys. 2004, 96, 257.
    (30) T. Ikeda, J. Mater. Chem. 2003, 13, 2037. (b) K. Ichimura, Chem. Rev. 2000, 100, 1847. (c) T. Sasaki, and T. Ikeda, J. Phys. Chem. 1995, 99, 13013, (d) H. Sakamoto, M. Tanaka and K. Kimura, Chem. Lett. 2000, 928. (e) R. Wirnsberger, B. J. Scott, B. F. Chmelka, and G. D. Stucky, Adv. Mater. 2000, 12, 1450. (f) H. Nishikiori, R. Sasai, N. Arai, and K. Takaoki, Chem. Lett. 2000, 1142.
    (31) (a) D. S. Seo, H. K. Kim, and H. J. Jeon, Liq. Cryst. 2001, 28, 313. (b) O. Yaroshchuk, R. Kravchuk, A. Dobrovolskyy, and O. Lavrenlovich, Liq. Cryst. 2004, 31, 859.(b) K. Y. Wu, C. H. Chen, C. M. Yeh, J. Hwang, P. C. Liu, C. Y. Lee, C. W. Chen, H. K. Wei, C. S. Kou, and C. D. Lee, J. Appl. Phys. 2005, 98, 083518.
    (32) (a) Saunders FC, Staromlynska J, Smith GW and Daniel MF, Mol. Cryst. Liq. Cryst. 1985, 122, 287. (b) Y. Kawanishi, T. Takimiya, and K.Ichimura, Polym. Mater. Sci. Eng. 1992, 66, 263. (c) Y. Kawanishi, T. Tamaki, M. Sakuragi, T. Seki, Y. Suzuki, and K.Ichimura, Langmuir 1992, 8, 2601.
    (33) F. J. Kahn, G. N. Taylor, and H. Schonhorn, Proceedings of The IEEE 1973, 61, 823.
    (34) (a) D. Shenoy, K. Grueneberg, J. Naciri, and R. Shashidhar, Jpn. J. Appl. Phys. 1998, Part 2 37, L1326. (b) D. Shenoy, L. Beresnev, D. Holt, and R. Shashidhar, Appl. Phys. Lett. 2002, 80, 4. (c) Shenoy, D.; Gru¨ neberg, K.; Naciri, J.; Shashidhar, R. Jpn. J. Appl. Phys. A 1998, 37, L1326. (d) J. Naciri, J. Y. Fang, M. Moore, D. Shenoy, C. S. Dulcey, and R. Shashidhar, Chem. Mater. 2000, 12, 3288. (e) J. Naciri, D. K. Shenoy, K. Grueneberg, and R. Shashidhar, J. Mater. Chem. 2004, 14, 3468–3473.
    (35)Johan Hoogboom, Kelly Velonia, Theo Rasing, Alan E. Rowan, Roeland J. M. Nolte , Chem. Commun., 2006, 434–435
    (36) R. van Hameren, P. Schön, A. M. van Buul, J. Hoogboom,
    S.V. Lazarenko, J. W. Gerritsen, H.Engelkamp, P. C. M. Christianen, H. A. Heus, Jan C. Maan, Theo Rasing, Sylvia Speller, A. E. Rowan, Johannes A. A. W. Elemans, Roeland J. M. Nolte, SCIENCE, 2006, 314, 1433-1436.
    (37) 林俊勳,掃描式探針顯微鏡
    (38) http://www.nsrrc.org.tw/
    (39) 汪建民 等,材料分析,中國材料科學學會,1998。
    (40) J. Chastain and R. C. Jr. King, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Inc, 1995.
    (41) J. Stöhr, NEXAFS Spectroscopy, Springer, Heidelberg, 1992.
    (42) H. V. Boenig, Plasma Science and Technology, Cornell University Press, 1982.
    (43) (a) C. C. Wang, G. H. Hsiue, Journal of Applied Polymer Science, 1993, 50, 1141-1149. (b) H. Xu, Z. Hu, S. Wu, Y. Chen, Materials Chemistry and Physics 2003, 80, 278–282.
    (44) Sunil K. Arya, Arun K. Prusty, S.P. Singh, Pratima R. Solanki,
    Manoj K. Pandey, Monika Datta, and Bansi D. Malhotra, Analytical Biochemistry 2007,363, 210–218.
    (45)(a)R. Benters, C. M. Niemeyer, D. Wöhrle ,CHEMBIOCHEM ,2001, 2, 686 -694 (b)Zhen Guo,Richard A.Guilfoyle,Andrew J.Thiel, Renfeng Wang,Lloyd M.Smith, Nucleic Acids Research, 1994, 22, 5456-5465. (c)Linda A. Chrisey, Gil U Lee , C. Elizabeth O’Ferrall , Nucleic Acids Research, 1996, 24, 3031–3039. (d)Soon Jin Oh, Sung Ju Cho, Chang Ok Kim, and Joon Won Park , Langmuir 2002, 18, 1764-1769.
    (46) (a) A. Schöll, Y. Zou, T. Schmidt, R. Fink, E. Umbach, J. Electron Spectrosc. Relat. Phenom. 2003, 129, 1–8. (b) B. Watts, L. Thomsen, P.C. Dastoor, Journal of Electron Spectroscopy and Related Phenomena, 2006, 151, 105–120.
    (47)Paul T. Charles, Gary J. Vora, Joanne D. Andreadis, Amanda J. Fortney, Carolyn E. Meador, Charles S. Dulcey, and David A. Stenger, Langmuir 2003, 19, 1586-1591.
    (48) Z.Q.Wei, C. Wang, C.F. Zhu, C.Q. Zhou, B. Xu, C.L. Bai, Surface Science 2000, 459, 401–412.
    (49) Minghui Hu, Suguru Noda, Tatsuya Okubo, Yukio Yamaguchi, Hiroshi Komiyama, Applied Surface Science, 2001,181,307-316.
    (50)(a)B. Watts, L. Thomsen, P.C. Dastoor, Synthetic Metals, 2005,152,21–24. (b)Wei Chen, Xing Yu Gao, Dong Chen Qi, Shi Chen, Zhi Kuan Chen, Andrew Thye Shen Wee, Adv. Funct. Mater. 2007, 17, 1339–1344.
    (51) A. Cossy-Favre, J. Dıaz, Y. Liu, H. R. Brown, M. G. Samant, J. Stöhr, A. J. Hanna, S. Anders, and T. P. Russell, Macromolecules, 1998, 31, 4957-4962.
    (52) M. Zharnikov, Y. Ouchi, M. Hasegawa, and A. Schöll, J. Phys. Chem. B 2004, 108, 859-863.
    (53) Chemistry (Rajkot.India), 2005,2(1),1-6.
    (54) Yian Tai, Andrey Shaporenko, Michael Grunze, Michael Zharnikov, J. Phys. Chem. B 2005, 109, 19411-19415
    (55)Oliver Dannenberger, Klaus Weiss, Christof ,Manfred Buck Wöll, Phys. Chem. Chem. Phys., 2000, 2, 1509-1514.
    (56) Emma M. E. Kristensen, Fredrik Nederberg, Håkan Rensmo, Tim Bowden, Jöns Hilborn, Hans Siegbahn, Langmuir 2006, 22, 9651-9657.
    (57) P. Harder, K. Bierbaum, Ch. Woell, and M. Grunze, Langmuir 1997, 13, 445-454.
    (58) Mohamed M. Chehimi, Michel Delamar, Dorota Kowalczyk, Stanislaw Slomkowski, Int. J. Adhesion and Adhesives,16 ,1996, 227-232.
    (59) Randy De Palma, Sara Peeters, Margriet J. Van Bael, Heidi Van den Rul, Kristien Bonroy, Wim Laureyn, Jules Mullens,Gustaaf Borghs, Guido Maes, Chem. Mater. 2007, 19, 1821-1831.
    (60)L. A. Pothan, F. Simon, S. Spange, S. Thomas, Biomacromolecules, 2006, 7, 892-898.
    (61)O Cavalleri1,4, G Gonella1, S Terreni1, M Vignolo1, P Pelori1,L Floreano2, AMorgante2,3, M Canepa1 and R Rolandi, J. Phys.: Condens. Matter 16 (2004) S2477–S2482
    (62)(a)Gregers Hansen, Bo Gervang, Torben Lund,Inorganic Chemistry,42, 18, 2003,5545-5550(b)Z. Mekhalif, J. Riga, J.-J. Pireaux, J. Delhalle, Langmuir 1997, 13, 2285-2290.(c)Hugh Rieley, Gary K. Kendall, Fessehaye W. Zemicael, Terry L. Smith, Shihe Yang, Langmuir 1998, 14, 5147-5153
    (63)Ilario Losito, Elvira De Giglio, Nicola Cioffi , Cosimino Malitesta, J. Mater. Chem., 2001, 11, 1812–1817.(b) Mark D. Ellison, Robert J. Hamers, J. Phys. Chem. B 1999, 103, 6243-6251. Lawrence Pranger, Alex Goldstein, Rina Tannenbaum, Langmuir, 2005, 21, 5396-5404.
    (64)Youngku Sohn, Wei Wei, John M. White, Langmuir 2007, 23, 12185-12191

    無法下載圖示 本全文未授權公開
    QR CODE