簡易檢索 / 詳目顯示

研究生: 杜孟儒
Du, Meng-Ru
論文名稱: 不同自行車褲對舒適度與肌肉活化與氧飽和度之影響
The Effect of Bicycle Compression Garment on Comfort Level and Muscle Activation and Oxygen Saturation of Cyclists
指導教授: 李恆儒
Lee, Heng-Ju
口試委員: 黃昱倫
Huang, Yu-Lun
林建志
Lin, Jian-Zhi
李恆儒
Lee, Heng-Ju
口試日期: 2022/06/28
學位類別: 碩士
Master
系所名稱: 體育與運動科學系
Department of Physical Education and Sport Sciences
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 47
中文關鍵詞: 疲勞機能緊身服飾近紅外線光譜儀
英文關鍵詞: Fatigue, compression garment, near-infrared spectroscopy
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202201677
論文種類: 學術論文
相關次數: 點閱:90下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 背景:自行車運動長時間維持軀幹屈曲的姿勢,常導致脊柱及核心肌群間活化之不平衡,導致脊柱受力改變而增加腰椎負荷,進而造成下背疼痛 (Low Back Pain, LBP)。自行車褲透過於肢段加壓,能夠提供支撐身體組織的功能,藉此減少肌肉為了抵銷運動過程中的晃動而產生的額外活化,進而達到延緩肌肉疲勞的效果。然而,自行車褲對於軀幹肌肉活化與氧飽和度以及LBP的影響仍尚未被研究證實。目的:本研究欲探討藉由肌貼提供下背支撐之背帶式自行車褲對股四頭肌與腰部豎脊肌之肌電活化程度、肌肉氧飽和度、自覺痠痛程度與運動自覺程度之影響。方法:參與者為12位男性業餘自行車手 (年齡,22 ± 3歲;身高,174 ± 2公分;體重,69 ± 6公斤;最大有氧輸出功率,243 ± 31瓦),隨機交叉次序穿著平口式自行車褲 (SRT)、背帶式自行車褲 (BIB) 及背帶式自行車褲加上下背部肌貼支撐 (KT)。在首次實驗中,受試者於自行車訓練台上執行遞增負荷腳踏車測驗以決定其最大有氧輸出功率 (peak aerobic power output, POmax);在後續三次實驗中,以60% POmax進行45分鐘固定負荷自行車騎乘,並分別於開始騎乘後第0、15、30及45分鐘,測量股外側肌與腰部豎脊肌之肌電活化程度、肌肉氧飽和度、自覺痠痛程度 (Visual Analog Scale, VAS) 以及運動自覺強度 (Borg’s rating of perceived exertion, RPE)。以二因子重複量數變異數分析分析不同自行車褲與騎乘時間對股外側肌與腰部豎脊肌之肌肉活化程度、肌肉氧飽和度、VAS以及RPE之影響。結果:不同自行車褲對股外側肌及腰部豎脊肌之肌肉活化程度、肌肉氧飽和度、VAS以及RPE沒有顯著影響。結論:背帶式自行車褲加上下背部肌貼支撐在45分鐘固定負荷自行車騎乘無益於減少肌肉活化及增加肌肉氧飽和度,故無法提供降低下背疼痛之效果。

    Introduction: Spinal and core muscle activation imbalances in a prolonged flexed posture associated with cycling may lead to maladaptive spinal kinematics and increased spinal stresses contributing to low back pain (LBP). Bicycle compression garment could attenuate activation of the muscle during cycling, and this muscle activation decrease may be beneficial in terms of muscle savings and postpone the onset of muscle fatigue for cyclists. Purpose: The purpose of this study is to examine whether the bicycle compression garment which provides trunk supporting could help trunk stabilization to reduce LBP and attenuate muscle fatigue during 45-minute of cycling. Methods: Twelve male amateur cyclists were recruited [age, 22 ± 3 years; height, 174 ± 2 cm; body mass, 69 ± 6 kg; peak aerobic power output, 243 ± 31 W] in this study, and were required to complete a peak aerobic power output (POmax) trial, and three randomized crossover 45-minute constant-load trials. During the first trial, participants performed the incremental cycling test on a cycling trainer in order to determine the individual POmax of each participant. During the following trials, participants cycled for 45 minutes at their 60% POmax wearing three different bicycle compression garments: cycling shorts (SRT), bib shorts (BIB), and low back-supporting bib shorts (KT). The DELSYS surface electromyography system was used to measure the muscle activation of vastus lateralis and lumbar erector spinae at initial cycling (first min), 15th, 30th, and ending cycling (last min). Near-infrared spectroscopy (NIRS) was used for measuring tissue oxygen saturation of vastus lateralis and lumbar erector spinae, including oxyhemoglobin (O2Hb), deoxyhemoglobin (HHb), total hemoglobin (tHb) and tissue saturation index (TSI), were continuously monitored throughout all trials. The Visual Analog Scale (VAS) was used for evaluating the rating of lower-back and lower-limb muscle soreness. The Borg’s Rating of Perceived Exertion (RPE) was used for measuring the status during cycling test. The obtained data were statistically processed by two-way repeated-measures ANOVA analysis. Results: The muscle activation, oxygen saturation, VAS and RPE showed no difference between cycling shorts. Conclusion: Low back-supporting bib shorts (KT) worn during 45-minute constant-load cycling did not improve comfort level and muscle activation and oxygen saturation.

    第壹章 緒論 1 第一節 問題背景 1 第二節 研究目的 2 第三節 研究假設 2 第四節 名詞操作性定義 3 第五節 研究範圍及限制 4 第貳章 文獻探討 5 第一節 自行車褲與肌內效貼布之效果與機制 5 第二節 肌肉特性與下背疼痛 7 第三節 外在支撐對自覺程度量表之影響 8 第四節 文章總結 9 第參章 實驗方法與步驟 10 第一節 研究對象 10 第二節 實驗儀器與設備 11 第三節 實驗設計與流程 15 第四節 資料處理 18 第五節 統計分析 18 第肆章 結果 19 第一節 受試者基本資料 19 第二節 不同自行車褲與騎乘時間對肌肉活化程度之影響 20 第三節 不同自行車褲與騎乘時間對VAS與RPE自覺量表分數之影響 22 第四節 不同自行車褲與騎乘時間對肌肉氧飽和濃度之影響 25 第伍章 討論 33 第一節 不同自行車褲與騎乘時間對肌肉活化程度之影響 33 第二節 不同自行車褲與騎乘時間對VAS與RPE自覺量表分數之影響 34 第三節 不同自行車褲與騎乘時間對肌肉氧飽和濃度之影響 35 第四節 結論 36 第五節 建議 36 參考文獻 37 附錄 44 附錄一 受試者須知 44 附錄二 實驗參與者同意書 45 附錄三 實驗參與者基本資料表 46 附錄四 自覺量表 47

    Abt, J. P., Smoliga, J. M., Brick, M. J., Jolly, J. T., Lephart, S. M., & Fu, F. H. (2007). Relationship between cycling mechanics and core stability. The Journal of Strength and Conditioning Research, 21(4), 1300-1304.
    Álvarez-Álvarez, S., San José, F., Rodríguez-Fernández, A. L., Güeita-Rodríguez, J., & Waller, B. J. (2014). Effects of Kinesio® Tape in low back muscle fatigue: randomized, controlled, doubled-blinded clinical trial on healthy subjects. Journal of Back and Musculoskeletal Rehabilitation, 27(2), 203-212. https://doi.org/10.3233/BMR-130437
    Azab, A. R., Elnaggar, R. K., Diab, R. H., & Moawd, S. A. (2020). Therapeutic value of kinesio taping in reducing lower back pain and improving back muscle endurance in adolescents with hemophilia. Journal of Musculoskeletal and Neuronal Interactions, 20(2), 256.
    Balasubramanian, V., Jagannath, M., & Adalarasu, K. (2014). Muscle fatigue based evaluation of bicycle design. Applied Ergonomics, 45(2), 339-345. https://doi.org/10.1016/j.apergo.2013.04.013
    Balasubramanian, V., & Jayaraman, S. (2009). Surface EMG based muscle activity analysis for aerobic cyclist. Journal of Bodywork and Movement Therapies, 13(1), 34-42. https://doi.org/10.1016/j.jbmt.2008.03.002
    Ballantyne, B. T., & Shields, R. K. (2010). Quadriceps fatigue alters human muscle performance during a novel weight bearing task. Medicine and Science in Sports and Exercise, 42(9), 1712. https://doi.org/10.1249/MSS.0b013e3181d85527
    Bini, R., Hume, P. A., & Croft, J. L. (2011). Effects of bicycle saddle height on knee injury risk and cycling performance. Sports Medicine, 41(6), 463-476. https://doi.org/10.2165/11588740-000000000-00000
    Bochmann, R. P., Seibel, W., Haase, E., Hietschold, V., Rodel, H., & Deussen, A. (2005). External compression increases forearm perfusion. Journal of Applied Physiology, 99(6), 2337-2344. https://doi.org/10.1152/japplphysiol.00965.2004
    Born, D. P., Sperlich, B., & Holmberg, H. C. (2013). Bringing light into the dark: effects of compression clothing on performance and recovery. International Journal of Sports Physiology and Performance, 8(1), 4-18. https://doi.org/10.1123/ijspp.8.1.4
    Burnett, A. F., Cornelius, M. W., Dankaerts, W., & O’Sullivan, P. B. (2004). Spinal kinematics and trunk muscle activity in cyclists: a comparison between healthy controls and non-specific chronic low back pain subjects—a pilot investigation. Manual Therapy, 9(4), 211-219. https://doi.org/10.1016/j.math.2004.06.002
    Carpes, F. P., Diefenthaeler, F., Bini, R. R., Stefanyshyn, D. J., Faria, I. E., & Mota, C. B. (2011). Influence of leg preference on bilateral muscle activation during cycling. Journal of Sports Sciences, 29(2), 151-159. https://doi.org/10.1080/02640414.2010.526625
    Chang, W. D., Chen, F. C., Lee, C. L., Lin, H. Y., & Lai, P. T. (2015). Effects of Kinesio taping versus McConnell taping for patellofemoral pain syndrome: a systematic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/471208
    Chen, W. C., Hong, W. H., Huang, T. F., & Hsu, H. C. (2007). Effects of kinesio taping on the timing and ratio of vastus medialis obliquus and vastus lateralis muscle for person with patellofemoral pain. Journal of Biomechanics, 40(2), S318.
    Clarsen, B., Krosshaug, T., & Bahr, R. (2010). Overuse injuries in professional road cyclists. The American Journal of Sports Medicine, 38(12), 2494-2501. https://doi.org/10.1177/0363546510376816
    Dannenberg, A. L., Needle, S., Mullady, D., & Kolodner, K. B. (1996). Predictors of injury among 1638 riders in a recreational long-distance bicycle tour: Cycle Across Maryland. The American Journal of Sports Medicine, 24(6), 747-753. https://doi.org/10.1177/036354659602400608
    Davies, V., Thompson, K. G., & Cooper, S. M. (2009). The effects of compression garments on recovery. The Journal of Strength and Conditioning Research, 23(6), 1786-1794. https://doi.org/10.1519/JSC.0b013e3181b42589
    De Brito Macedo, L., Richards, J., Borges, D. T., Melo, S. A., & Brasileiro, J. S. (2019). Kinesio taping reduces pain and improves disability in low back pain patients: a randomised controlled trial. Physiotherapy, 105(1), 65-75. https://doi.org/10.1016/j.physio.2018.07.005
    De Foa, J. L., Forrest, W., & Biedermann, H. J. (1989). Muscle fibre direction of longissimus, iliocostalis and multifidus: landmark-derived reference lines. Journal of Anatomy, 163, 243.
    De Glanville, K. M., & Hamlin, M. J. (2012). Positive effect of lower body compression garments on subsequent 40-km cycling time trial performance. The Journal of Strength and Conditioning Research, 26(2), 480-486. https://doi.org/10.1519/JSC.0b013e318225ff61
    De Vey Mestdagh, K. (1998). Personal perspective: in search of an optimum cycling posture. Applied Ergonomics, 29(5), 325-334. https://doi.org/10.1016/S0003-6870(97)00080-X
    Doan, B., Kwon, Y. H., Newton, R., Shim, J., Popper, E. V. A., Rogers, R., ... & Kraemer, W. (2003). Evaluation of a lower-body compression garment. Journal of Sports Sciences, 21(8), 601-610. https://doi.org/10.1080/0264041031000101971
    Driller, M. W., & Halson, S. L. (2013). The effects of wearing lower body compression garments during a cycling performance test. International Journal of Sports Physiology and Performance, 8(3), 300-306. https://doi.org/10.1123/ijspp.8.3.300
    Driller, M. W., & Halson, S. L. (2013). The effects of lower-body compression garments on recovery between exercise bouts in highly-trained cyclists. Journal of Science and Cycling, 2(1), 45-50.
    Fintelman, D. M., Sterling, M., Hemida, H., & Li, F. X. (2014). Optimal cycling time trial position models: Aerodynamics versus power output and metabolic energy. Journal of Biomechanics, 47(8), 1894-1898. https://doi.org/10.1016/j.jbiomech.2014.02.029
    Fu, T. C., Wong, A. M., Pei, Y. C., Wu, K. P., Chou, S. W., & Lin, Y. C. (2008). Effect of Kinesio taping on muscle strength in athletes—a pilot study. Journal of Science and Medicine in Sport, 11(2), 198-201. https://doi.org/10.1016/j.jsams.2007.02.011
    Halseth, T., McChesney, J. W., DeBeliso, M., Vaughn, R., & Lien, J. (2004). The effects of kinesio™ taping on proprioception at the ankle. Journal of Sports Science and Medicine, 3(1), 1.
    Hennig, E. M. (2014). Plantar pressure measurements for the evaluation of shoe comfort, overuse injuries and performance in soccer. Footwear Science, 6(2), 119-127. https://doi.org/10.1080/19424280.2013.873486
    Hill, J., Howatson, G., Van Someren, K., Leeder, J., & Pedlar, C. (2014). Compression garments and recovery from exercise-induced muscle damage: a meta-analysis. British Journal of Sports Medicine, 48(18), 1340-1346. http://dx.doi.org/10.1136/bjsports-2013-092456
    Hintzy, F., Gregoire, N., Samozino, P., Chiementin, X., Bertucci, W., & Rossi, J. (2019). Effect of thigh-compression shorts on muscle activity and soft-tissue vibration during cycling. The Journal of Strength and Conditioning Research, 33(8), 2145-2152. https://doi.org/10.1519/JSC.0000000000002402
    Hsu, Y. H., Chen, W. Y., Lin, H. C., Wang, W. T., & Shih, Y. F. (2009). The effects of taping on scapular kinematics and muscle performance in baseball players with shoulder impingement syndrome. Journal of Electromyography and Kinesiology, 19(6), 1092-1099. https://doi.org/10.1016/j.jelekin.2008.11.003
    Kahanov, L. (2007). Kinesio Taping®, part 1: an overview of its use in athletes. International Journal of Athletic Therapy and Training, 12(3), 17-18. https://doi.org/10.1123/att.12.3.17
    Karatas, N., Bicici, S., Baltaci, G., & Caner, H. (2012). The effect of Kinesiotape application on functional performance in surgeons who have musculo-skeletal pain after performing surgery. Turkish Neurosurgery, 22(1). https://doi.org/10.5137/1019-5149.jtn.5377-11.1
    Kataoka, Y., & Ichimaru, A. (2005). Effect of kinesio taping and low-strength exercises on blood pressure and peripheral circulation.
    Kaya, E., Zinnuroglu, M., & Tugcu, I. (2011). Kinesio taping compared to physical therapy modalities for the treatment of shoulder impingement syndrome. Clinical Rheumatology, 30(2), 201-207. https://doi.org/10.1007/s10067-010-1475-6
    Kohzad Mohammadi, H., Pouretezad, M., Shokri, E., Tafazoli, M. O. Z. H. D. E. H., Dastjerdi, M., & Neghahban Siouki, H. (2010). The effect of forearm kinesio taping on hand grip strength of healthy people. Journal of Kerman University of Medical Sciences, 17(3), 248-256.
    Kraemer, W. J., Bush, J. A., Newton, R. U., Duncan, N. D., Volek, J. S., Denegar, C. R., Canavan, P., Johnston, J., Putukian, M., & Sebastianelli, W. J. (1998). Influence of a compression garment on repetitive power output production before and after different types of muscle fatigue. Research in Sports Medicine, 8(2), 163-184. https://doi.org/10.1080/15438629809512525
    Lam, W. K., Sterzing, T., & Cheung, J. T. M. (2011). Reliability of a basketball specific testing protocol for footwear fit and comfort perception. Footwear Science, 3(3), 151-158. https://doi.org/10.1080/19424280.2011.630680
    Lucas-Cuevas, A. G., Pérez-Soriano, P., Priego-Quesada, J. I., & Llana-Belloch, S. (2014). Influence of foot orthosis customisation on perceived comfort during running. Ergonomics, 57(10), 1590-1596. https://doi.org/10.1080/00140139.2014.938129
    McLean, S., Kerhervé, H., Lovell, G. P., Gorman, A. D., & Solomon, C. (2016). The effect of recovery duration on vastus lateralis oxygenation, heart rate, perceived exertion and time motion descriptors during small sided football games. PloS One, 11(2), e0150201. https://doi.org/10.1371/journal.pone.0150201
    Mcmullen, K. L., Cosby, N. L., Hertel, J., Ingersoll, C. D., & Hart, J. M. (2011). Lower extremity neuromuscular control immediately after fatiguing hip-abduction exercise. Journal of Athletic Training, 46(6), 607-614. https://doi.org/10.4085/1062-6050-46.6.607
    Osterhues, D. J. (2004). The use of Kinesio Taping® in the management of traumatic patella dislocation. A case study. Physiotherapy Theory and Practice, 20(4), 267-270. https://doi.org/10.1080/09593980490888370
    O’ Sullivan, P. B. (2000). Lumbar segmental ‘instability': clinical presentation and specific stabilizing exercise management. Manual Therapy, 5(1), 2-12. https://doi.org/10.1054/math.1999.0213
    O’ Sullivan, P. B., Burnett, A., Floyd, A. N., Gadsdon, K., Logiudice, J., Miller, D., & Quirke, H. (2003). Lumbar repositioning deficit in a specific low back pain population. Spine, 28(10), 1074-1079. https://doi.org/10.1097/01.BRS.0000061990.56113.6F
    Ozmen, T., Aydogmus, M., Dogan, H., Acar, D., Zoroglu, T., & Willems, M. (2016). The effect of kinesio taping on muscle pain, sprint performance, and flexibility in recovery from squat exercise in young adult women. Journal of Sport Rehabilitation, 25(1), 7-12. https://doi.org/10.1123/jsr.2014-0243
    Paoloni, M., Bernetti, A., Fratocchi, G., Mangone, M., Parrinello, L., Del Pilar Cooper, M., ... & Santilli, V. (2011). Kinesio Taping applied to lumbar muscles influences clinical and electromyographic characteristics in chronic low back pain patients. European Journal of Physical and Rehabilitation Medicine, 47(2), 237-44.
    Perlau, R., Frank, C., & Fick, G. (1995). The effect of elastic bandages on human knee proprioception in the uninjured population. The American Journal of Sports Medicine, 23(2), 251-255. https://doi.org/10.1177/036354659502300221
    Salai, M., Brosh, T., Blankstein, A., Oran, A., & Chechik, A. (1999). Effect of changing the saddle angle on the incidence of low back pain in recreational bicyclists. British Journal of Sports Medicine, 33(6), 398-400. http://dx.doi.org/10.1136/bjsm.33.6.398
    Scanlan, A. T., Dascombe, B. J., Reaburn, P. R., & Osborne, M. (2008). The effects of wearing lower-body compression garments during endurance cycling. International Journal of Sports Physiology and Performance, 3(4), 424-438. https://doi.org/10.1123/ijspp.3.4.424
    Schultz, S. J., & Gordon, S. J. (2010). Recreational cyclists: The relationship between low back pain and training characteristics. International Journal of Exercise Science, 3(3), 79.
    Silberman, M. R., Webner, D., Collina, S., & Shiple, B. J. (2005). Road bicycle fit. Clinical Journal of Sport Medicine, 15(4), 271-276. https://doi.org/10.1097/01.jsm.0000171255.70156.da
    Srinivasan, J., & Balasubramanian, V. (2007). Low back pain and muscle fatigue due to road cycling—An sEMG study. Journal of Bodywork and Movement Therapies, 11(3), 260-266. https://doi.org/10.1016/j.jbmt.2006.08.009
    Streisfeld, G. M., Bartoszek, C., Creran, E., Inge, B., McShane, M. D., & Johnston, T. (2017). Relationship between body positioning, muscle activity, and spinal kinematics in cyclists with and without low back pain: A systematic review. Sports Health, 9(1), 75-79. https://doi.org/10.1177/1941738116676260
    Strutzenberger, G., Moore, J., Griffiths, H., Schwameder, H., & Irwin, G. (2016). Effects of gluteal kinesio-taping on performance with respect to fatigue in rugby players. European Journal of Sport Science, 16(2), 165-171. https://doi.org/10.1080/17461391.2015.1004372
    Suzuki, S., Takasaki, S., Ozaki, T., & Kobayashi, Y. (1999). Tissue oxygenation monitor using NIR spatially resolved spectroscopy. In Optical tomography and spectroscopy of tissue III . International Society for Optics and Photonics, 3597, 582-592. https://doi.org/10.1117/12.356862
    Thomas, R., & Stephane, P. (2008). Prefrontal cortex oxygenation and neuromuscular responses to exhaustive exercise. European Journal of Applied Physiology, 102(2), 153-163. https://doi.org/10.1007/s00421-007-0568-7
    Usabiaga, J., Crespo, R., Iza, I., Aramendi, J., Terrados, N., & Poza, J. J. (1997). Adaptation of the lumbar spine to different positions in bicycle racing. Spine, 22(17), 1965-1969. https://doi.org/10.1097/00007632-199709010-00004 
    Van Hoof, W., Volkaerts, K., O'Sullivan, K., Verschueren, S., & Dankaerts, W. (2012). Comparing lower lumbar kinematics in cyclists with low back pain (flexion pattern) versus asymptomatic controls–field study using a wireless posture monitoring system. Manual Therapy, 17(4), 312-317. https://doi.org/10.1016/j.math.2012.02.012
    Vanti, C., Bertozzi, L., Gardenghi, I., Turoni, F., Guccione, A. A., & Pillastrini, P. (2015). Effect of taping on spinal pain and disability: systematic review and meta-analysis of randomized trials. Physical Therapy, 95(4), 493-506. https://doi.org/10.2522/ptj.20130619
    Weiss, B. D. (1985). Nontraumatic injuries in amateur long distance bicyclists. The American Journal of Sports Medicine, 13(3), 187-192. https://doi.org/10.1177/036354658501300308
    Zhang, S., Fu, W., Pan, J., Wang, L., Xia, R., & Liu, Y. (2016). Acute effects of Kinesio taping on muscle strength and fatigue in the forearm of tennis players. Journal of Science and Medicine in Sport, 19(6), 459-464. https://doi.org/10.1016/j.jsams.2015.07.012

    無法下載圖示 電子全文延後公開
    2025/09/23
    QR CODE