研究生: |
黃暐家 Huang, Wei-Chia |
---|---|
論文名稱: |
數學詳解影片自動生成系統之解題系統與動畫呈現設計 The Design of the Problem-solving System and Animation Presentation for Automatically Generating Explanatory Math Animation System |
指導教授: |
賴以威
Lai, I-Wei |
口試委員: |
蘇崇彥
Su, Chung-Yen 周建興 Chou, Chien-Hsing 賴以威 Lai, I-Wei |
口試日期: | 2023/07/06 |
學位類別: |
碩士 Master |
系所名稱: |
電機工程學系 Department of Electrical Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 98 |
中文關鍵詞: | 數學詳解影片 、影片生成 、逐步解題器 、數位學習 、教學呈現 |
英文關鍵詞: | explanatory math animation, video generating, step-by-step solver, digital learning, teaching presentation |
研究方法: | 實驗設計法 、 比較研究 、 社會網路分析 |
DOI URL: | http://doi.org/10.6345/NTNU202400015 |
論文種類: | 學術論文 |
相關次數: | 點閱:117 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在當今數位學習非常盛行的時代,教學影片已經是許多人學習的管道。為了減少教學影片製作的時間,本實驗室先前提出了自動生成教學影片的系統,然而該系統生成的數學詳解影片(explanatory math animation, EMA)動畫呈現較固定,且動畫設計也較耗時。本篇研究提出利用逐步解題器分析出解題步驟,並根據解題步驟設計名為詳解工具的動畫模板,再藉由結合各步驟的動畫生成 EMA 之技術。此技術生成之 EMA 相較於先前的系統擁有更多元的動畫呈現,也因各步驟的數學運算大多較為基本,詳解工具設計的時間成本也相對較低。
此外,本篇論文所設計之詳解工具對於相同的數學運算,可以呈現不同的教學方式,再藉由本研究提出之步驟解法分類,分析出各步驟合適的詳解工具,可以使本研究生成之 EMA 更加貼近教學現場,進而提升學生的學習體驗與效率。
本研究成果與現有數位學習資源相比,可以在短時間內生成與均一教育平台相似,甚至更高品質且不限數學題目類型的 EMA。本研究不僅擁有 Wolfram Alpha 所沒有的動態視覺化呈現,也可提供 Photomath 所沒有的完整數學解題動畫。
Due to the development of digital learning, instructional videos become a popular method for learning. To reduce the time cost of producing instructional videos, our laboratory proposed a system for automatically generating instructional videos. However, the types of explanatory math animation (EMA) generated from the system are limited, and the animation design is also time-consuming. In this paper, we propose using the step-by-step solver to analyze the mathematical problem solution steps and design the explanatory tool, the animation template based on the solution steps. Then, we merge the animations of each step to generate EMA. Compared with the previous system, our research can generate EMA with more animation presentation styles. Since most of the mathematical operations in each step are relatively basic, the time cost of designing the explanatory tool is lower.
In addition, the explanatory tool designed in this paper can present different teaching methods for the same mathematical operation. By classifying the solution of the step proposed in this paper and analyzing the appropriate explanatory tool for each step, the generated EMA can be more closely aligned with the teaching environment.
Compared with existing digital learning resources, our research can generate EMA similar to the Junyi Academy, and even higher quality EMA in a short time without being limited to the type of mathematical problem. Our research not only has dynamic visualization that Wolfram Alpha does not have, but also provides better problem-solving animation compare with Photomath.
D. Wong, "A critical literature review on e-learning limitations," Journal for the Advancement of Science and Arts, vol. 2, no. 1, pp. 55–62, 2007.
R. E. Mayer and R. Moreno, "Animation as an aid to multimedia learning," Educational psychology review, vol. 14, pp. 87–99, 2002.
S. Berney and M. Bétrancourt, "Does animation enhance learning? a meta-analysis," Computers & Education, vol. 101, pp. 150–167, 2016.
T.-S. Yang, W.-C. Huang, and I.-W. Lai, "Autogeneration of explanatory math animation," in 2022 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), pp. 727–728, IEEE, 2022.
R. E. Mayer, "Multimedia learning," in Psychology of learning and motivation, vol. 41, pp. 85–139, Elsevier, 2002.
R. Mayer and R. E. Mayer, The Cambridge handbook of multimedia learning. Cambridge university press, 2005.
D. Zhang, L. Zhou, R. O. Briggs, and J. F. Nunamaker Jr, "Instructional video in e-learning: Assessing the impact of interactive video on learning effectiveness," Information & management, vol. 43, no. 1, pp. 15–27, 2006.
The Manim Community Developers, "Manim–Mathematical Animation Framework." https://www.manim.community/, 12 2022.
H.-J. Lee and M.-C. Lee, "Understanding mathematical expressions in a printed document," in Proceedings of 2nd International Conference on Document Analysis and Recognition (ICDAR’93), pp. 502–505, IEEE, 1993.
M. Schubotz, N. Meuschke, T. Hepp, H. S. Cohl, and B. Gipp, "Vmext: a visualization tool for mathematical expression trees," in Intelligent Computer Mathematics: 10th International Conference, CICM 2017, Edinburgh, UK, July 17-21, 2017, Proceedings 10, pp. 340–355, Springer, 2017.
J. Von Zur Gathen and J. Gerhard, Modern computer algebra. Cambridge university press, 2013.
F. Zeynivandnezhad and R. Bates, "Explicating mathematical thinking in differential equations using a computer algebra system," International Journal of mathematical education in science and technology, vol. 49, no. 5, pp. 680–704, 2018.
A. Olenev, A. Shuvaev, M. Migacheva, E. Kulevskaya, and A. Nazarenko, "Using the maple computer algebra system to study mathematical induction," in Journal of Physics: Conference Series, vol. 1691, p. 012102, IOP Publishing, 2020.
P. A. Jaques, H. Seffrin, G. Rubi, F. de Morais, C. Ghilardi, I. I. Bittencourt, and S. Isotani, "Rule-based expert systems to support step-by-step guidance in algebraic problem solving: The case of the tutor pat2math," Expert Systems with Applications, vol. 40, no. 14, pp. 5456–5465, 2013.
Building Socratic, "Stepping into math: Open-sourcing our step-by-step solver." https://blog.socratic.org/stepping-into-math-open-sourcing-our-step-by-step-solver-9b5da066ae36, 2017. Accessed March 21, 2023.
google, "mathsteps." https://github.com/google/mathsteps, 2021. Accessed March 22, 2023.
Maplesoft, a division of Waterloo Maple Inc.., "Maple." https://www.maplesoft.com/, 2023. Accessed April 12, 2023.
D. Redfern, The maple handbook: maple V release 4. Springer Science & Business Media, 2012.
B. W. Char, K. O. Geddes, G. H. Gonnet, B. L. Leong, M. B. Monagan, and S. Watt, Maple V library reference manual. Springer Science & Business Media, 2013.
W. R. Inc., "Mathematica, Version 13.2." https://www.wolfram.com/mathematica. Champaign, IL, 2022.
S. Wolfram, The MATHEMATICA® book, version 4. Cambridge university press, 1999.
S. Wolfram et al., A new kind of science, vol. 5. Wolfram media Champaign, 2002.
The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.8), 2023. https://www.sagemath.org.
P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, F. Maltey, M. Meulien, M. Mezzarobba, C. Pernet, et al., Computational mathematics with SageMath. SIAM, 2018.
Sagemath, Inc., "Use SageMath Online." https://cocalc.com/features/sage?utm_source=sagemath.org&utm_medium=icon, 2023. Accessed April 12, 2023.
W. A. LLC, "Wolfram|Alpha." https://www.wolframalpha.com/, 2023. Accessed March 30, 2023.
M. B. Hoy, "Wolfphram| alpha: a brief introduction," Medical reference services quarterly, vol. 29, no. 1, pp. 67–74, 2010.
Photomath, "Photomath." https://photomath.com/, 2022. Accessed March 30, 2023.
C. Webel and S. Otten, "Teaching in a world with photomath," The Mathematics Teacher, vol. 109, no. 5, pp. 368–373, 2015.
J. de Jong, "mathjs." https://github.com/josdejong/mathjs, 2023. Accessed March 22, 2023.
A. Meurer, C. P. Smith, M. Paprocki, O. Čertík, S. B. Kirpichev, M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake, S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats, F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka, A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, "Sympy: symbolic computing in python," PeerJ Computer Science, vol. 3, p. e103, Jan. 2017.
J. Academy, "均一教育平台." https://www.junyiacademy.org/, 2023. Accessed March 29, 2023.
EDU, "教育部因材網." https://adl.edu.tw/HomePage/home/, 2020. Accessed June 5, 2023.
N. B. E. C. LTD., "南一書局." https://trans.nani.com.tw/NaniWeb/, 2017. Accessed June 5, 2023.
H. L. P. C. LTD., "翰林出版." https://www.hle.com.tw/index.html, 2020. Accessed June 5, 2023.
K. H. E. P. Group, "康軒文教集團." https://www.knsh.com.tw/index.asp, 2023. Accessed June 5, 2023.