簡易檢索 / 詳目顯示

研究生: 李佩隃
Lee Pei-Yu
論文名稱: 潛在類別分析與二階段群集分析分群效果之比較研究
Compare the Result of Clustering Using Latent Class and Two-Step Cluster Analysis
指導教授: 陳柏熹
學位類別: 碩士
Master
系所名稱: 教育心理與輔導學系
Department of Educational Psychology and Counseling
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 潛在類別分析二階段群集分析創造力表現類型
英文關鍵詞: lantent class analysis, two-step cluster, type of creativity performances
論文種類: 學術論文
相關次數: 點閱:357下載:45
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在檢驗傳統群集分析中的二階段群集分析和潛在類別分析的分群能力差異,共分為兩個子研究。研究一透過模擬資料操弄外顯變項數量、外顯變項類型和樣本大小三個自變項,比較兩種分群方法的分群結果特徵和分群結果準確度,以作為選擇分群方法的參考。研究二以電腦化創造力測驗為工具,400位大專生為受試者,蒐集創造成品和創造歷程兩部分評分資料後,以兩種分群方法進行實際應用,比較分群結果差異並了解不同創造力表現類型的受試者在不同觀察變項上的表現差異與反應特徵。
    研究一結果顯示,在外顯變項包含有類別變項時,潛在類別分析法的表現明顯優於二階段群集分析。另外隨著樣本人數和外顯變項個數增加,分類錯誤率亦隨之下降。研究二結果顯示,不論是創造成品或創造歷程,兩種分群方法的分群結果非常相似,最後決定的群集數均相同,且各群集的反應特徵亦相當接近。而透過創造成品的評分規準,可將受試者區分為「創造設計者」、「實用設計者」和「想像設計者」三種不同表現類型;透過創造歷程的評分規準,可將受試者區分為「創造操作能力優異」、「實用操作能力優異」和「材質運用能力不佳」三組。最後依據本研究結果可提出以下建議:
    1、進行分群研究時,若外顯變項包含有類別變項,應選擇潛在類別分析法,較能確認分群準確性。此外若能增加樣本人數和外顯變項個數,也有助於降低分類錯誤率。
    2、研究二結果可應用在創造力教學上,教師可根據不同創造力表現類型的學生分別設計相對應的教學活動,例如加強創造成品中實用性與創新性的連結,或是針對創造歷程中表現不足的操作能力加以訓練。

    The purpose of this research is to compare the results of clustering using latent class analysis and two-step cluster analysis. The research is composed of two sub-researches, simulation and empirical study. In Study 1, the type of observed variables, the number of observed variables and sample size were be manipulated. And compare the features of clustering, the accuracy of clustering with two clustering methods. In Study 2, we apply two clustering methods on creativity performances and compare the results of clustering. Four hundreds university students were asked to complete the “computerized creativity test”. Their creating process were automatically recorded and scored by computer using seven criterions. The creating product was scored using nine criterions by two raters.
    The results of Study 1 indicate that latent class analysis performs better than two-step cluster, when the observed variables contain categorical variables. Besides, the number of observed variables and sample size has significant effect. The ANOVA result shows that the more observed variables and sample size, the less misclassification rate of both methods.
    The results of Study 2 show that the results of two clustering methods are very similar either in creating process or in creating product. In creating product, there are three types of creativity performances in the subjects which were named as “Creative designer”, “Practical designer”, and “Imaginable designer”. In creating process, there are three groups in the subjects too. They were named as “Excellence ability to creative operate”, “Excellence ability to practical operate”, and “Poor ability to use material”.

    According to the results of this study, two recommendations were proposed:
    1. It’s better to use latent class analysis, when the observed variables contain categorical variables. The results of latent class analysis have more correct decisions and less misclassification. In addition, to reduce the misclassification rate, researcher can add more observed variables and sample size.
    2. Several pedagogical implications can be drawn from Study 2. Teacher can design different programs for different type of students, such as strengthening the link between innovative and practical of creating product, or provided more training for the poor performance of creating process.

    誌謝詞................................................. i 中文摘要............................................... ii 英文摘要.............................................. iii 目次................................................... v 表次.................................................. vi 圖次................................................. vii 第一章 緒論.............................................. 1 第一節 研究動機與目的.................................. 1 第二節 研究問題........................................ 4 第三節 名詞解釋........................................ 5 第二章 文獻探討........................................... 6 第一節 群集分析........................................ 6 第二節 潛在類別分析.................................... 10 第三節 不同分群分析方法比較............................. 14 第四節 創造能力差異與表現類型........................... 17 第三章 研究方法.......................................... 20 第一節 研究架構....................................... 20 第二節 研究一:影響兩種分群方法效果之相關因素探討......... 21 第三節 研究二:以兩種分群方法分析電腦化創造力測驗實徵資料.. 27 第四章 研究結果與討論..................................... 33 第一節 研究一:影響兩種分群方法效果之相關因素探討......... 33 第二節 研究二:以兩種分群方法分析電腦化創造力測驗實徵資料.. 38 第五章 結論與建議........................................ 49 第一節 結論與建議..................................... 49 第二節 研究限制與未來研究建議........................... 51 參考文獻................................................ 54 中文部分............................................. 54 西文部分............................................. 55 附錄A 電腦化創造力測驗創造成品評分規準..................... 57 附錄B 電腦化創造力測驗創造歷程評分規準..................... 59 附錄C 創造成品規準在三個潛在類別上的條件機率與潛在類別機率... 61 附錄D 創造歷程規準在三個潛在類別上的條件機率與潛在類別機率... 62

    一、中文部分
    李佩隃、陳柏熹、洪素蘋、許純瑜(2009,12月)。不同創造力表現類型在創造歷程中的差異比較。2009台灣教育研究學術研討會口頭發表,高雄市。
    吳毓瑩、林原宏(1996)。潛在類別分析取向的除法概念結構。中國測驗學會測驗年刊,43,345-358。
    邱皓政(2008)。潛在類別模式:原理與技術。台北:五南圖書公司。
    林幸台、金樹人、陳清平、張小鳳(1996)。生涯興趣量表指導手冊 (大專版 ) 。台北:測驗出版社。
    林清山(1992)。心理與教育統計學。台北:東華書局。
    洪兆祥(2010)混合分配的分群方法比較研究:二階段集群法、潛在類別模式及自組織映射圖的模擬與實證分析(未出版碩士論文)。輔仁大學,新北市。
    陳正昌(2005)。集群分析。載於陳正昌、程炳林、陳新豐及劉子鍵(主編),多變量分析方法—統計軟體應用(255-308頁)。台北市:五南。
    陳柏熹、李佩隃、許純瑜、洪素蘋(2010,5月))。創造歷程與創造成果的結構方程模式分析。2010兩岸資優與創造力教育發展研討會口頭發表,台北市。
    陳柏熹、李佩隃、許純瑜、洪素蘋(2011)。創造力電腦化測驗系統之發展暨學生創造歷程之研究:IRT取向。行政院國家科學委員會專題研究成果報告(報告編號:NSC 98-2511-S-003-011-MY3),未出版。
    張陳穎(2006)。上市電子業公司分類之研究-潛在類別分析與集群分析的比較研究(未出版碩士論文)。東吳大學,台北市。
    教育百科辭典編審委員會(1994)。教育百科辭典。台北:五南。

    二、西文部分
    Anderberg, M. R. (1973). Cluster Analysis for Application. Academic Press, New York.
    Bachter, J., Wenzig, K., & Vogler, M. (2004, February). SPSS TwoStep Cluster - A First Evaluation. Lehrstuhl für Soziologie.Arbeits- und Diskussionspapier, Nürnberg.
    Chiu, T., Fang, D., Chen, J., Wang, Y., & Jeris, C. (2001). A Robust and Scalable Clustering Algorithm for Mixed Type Attributes in Large Database Environment. In Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, 263–268.
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillside, NJ: Lawrence Erlbaum Associates.
    Fraley, C. & Raftery, A. E. (1998). How many Clusters? Which Clustering Method? Answers via Model-based Cluster Analysis. Computer Journal, 4, 578–588.
    Goodman, L.A. (2002). Latent class analysis: The empirical study of latent types, latent variables and latent structures. In J.A. Hagenaars & A.L. McCutcheon (Eds.), Applied latent class analysis (pp. 3-55). Cambridge: Cambridge University Press.
    Guilford, J. P. (1968). Intelligent, Creativity and Their Educational Implications, SD: Robert R. Knapp.
    Jain, A. K. & Dube, R. C. (1988). Algorithms for clustering data. Englewood Cliffs: Prentice Hall.
    Kaufman, L. & Rousseeuw, P. J. (1990). Finding groups in data: An introduction to cluster analysis. Wiley, New York.
    MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observation. Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 281-297.
    Magidson, J. & Vermunt, J. K. (2002a). Latent class models for clustering: A comparison with K-means. Canadian Journal of Marketing Research, 20, 36-43.
    Magidson, J. & Vermunt, J. K. (2002b). Latent class modeling as a probabilistic extension of K-means clustering. Quirk’s Marketing Research Review, 20, 77-80.
    McCutcheon, A.L. (1987). Latent class analysis. Beverly Hills, CA: Sage Publications.
    Mednick, S. A. (1962). The associative basis of the creative process. Pshchological Review, 69, 220-232.
    Muth'en, L. K. & Muth'en, B. O. (2010). Mplus User's Guide(Sixed ed). Los Angeles, CA: Muth'en & Muth'en.
    SPSS Inc. (2004). TwoStep Cluster Analysis. Technical report, Chicago. Institute for SPSS Web site:http://support.spss.com/tech/stat/Algorithms/12.0/twostep cluster.pdf.
    Yang, C.C. (2006). Evaluating Latent Class Analysis Models in Qualitative Phenotype Identification, Computational Statistics and Data Analysis, 50(4), 1090-1104.

    下載圖示
    QR CODE