簡易檢索 / 詳目顯示

研究生: 歐陽弘文
論文名稱: 利用變壓器功率合成技術之5.2 GHz互補式金氧半導體功率放大器研製
Research on 5.2 GHz CMOS Power Amplifier Using Transformer Power Combining Techniques
指導教授: 蔡政翰
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 124
中文關鍵詞: 功率放大器功率合成技術變壓器互補式金氧半導體無線區域網路5 GHz
英文關鍵詞: Power amplifier, power combining techniques, transformer, CMOS, WLAN, 5 GHz
論文種類: 學術論文
相關次數: 點閱:357下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來,隨著無線通訊的快速發展,對於無線網路所要求的吞吐量也越來越高,且由於較低頻的2.4 GHz頻帶使用過於壅塞,導致電路設計上朝向同樣免授權免付費的5 GHz U-NII(Unlicensed National Information Infrastructure)頻帶發展,此外,對於無線收發器來說,功率放大器扮演著舉足輕重的角色,以往,為達高輸出功率與高效率,設計上會以砷化鎵(GaAs)製程為主,然而,互補式金氧半導體(CMOS)製程有著低成本及系統晶片整合的優點,故以5 GHz U-NII頻帶為重心的互補式金氧半導體功率放大器已成為現在的新趨勢,因此本論文將從電路設計的角度切入,設計及實現三個使用不同功率合成技術的5.2 GHz互補式金氧半導體功率放大器。
    第一個電路為直接並聯功率合成技術之5~5.8 GHz功率放大器,將兩組功率元件直接並聯,藉此提高輸出功率,晶片佈局面積為0.875×0.705 mm2,在5.2 GHz時之量測增益(S21)為12.3 dB,並達到23.1 dBm的飽和輸出功率(Psat),18.6 dBm的1dB增益壓縮輸出功率(OP1dB)及19.8%的最高功率輔助效率(PAE),寬頻功率匹配架構的使用,使得功率放大器從5~5.8 GHz的飽和輸出功率為22.6±0.5 dBm。
    第二個電路為兩路變壓器功率合成技術之5.2 GHz功率放大器,為了達到高功率輸出,利用變壓器實現功率合成,晶片佈局面積為1.2×0.6 mm2,量測增益(S21)為15.14 dB,飽和輸出功率(Psat)為25.81 dBm,1dB增益壓縮輸出功率(OP1dB)為21.42 dBm,最高功率輔助效率(PAE)為27.58%。
    第三個電路為串聯結合變壓器功率合成技術之5.2 GHz功率放大器,藉由堆疊每一功率元件的電壓,進而抬高整體的輸出電壓及功率,晶片佈局面積為1.2×1 mm2,量測增益(S21)為13.37 dB,飽和輸出功率(Psat)為27.63 dBm,1dB增益壓縮輸出功率(OP1dB)為23.45 dBm,最高功率輔助效率(PAE)為19.18%。

    Recently, with the development of high-speed wireless communications, very high throughput wireless local area network (WLANs) is rising. Due to the spectrum congestion at 2.4 GHz, leading the development of circuit design towards the 5 GHz U-NII (Unlicensed National Information Infrastructure) band with unlicensed and for free. In addition, power amplifier (PA) is a key component in the RF transceiver. By and large, the radio frequency power amplifiers (RFPAs) are implemented in GaAs technology for power and efficiency. However, Complementary Metal-Oxide Semiconductor (CMOS) PA is attractive for low cost and systems-on-a-chip (SoC) applications, so the 5 GHz U-NII band CMOS PA has become a new trend. Therefore, this thesis designs and implements three 5.2 GHz CMOS PAs using different power combining techniques.
    First, a 5-5.8 GHz fully-integrated single-ended PA is designed and fabricated utilizing a two-way direct shunt combining technique, the CMOS PA achieves a measured maximum saturation output power (Psat) of 23.1 dBm at 5.2 GHz. The measured output 1-dB compression point (OP1dB) is 18.6 dBm and peak power-added efficiency (PAE) is 19.8 % at 5.2 GHz. By using broadband power matching topology, the output power of the CMOS PA is 22.6 ± 0.5 dBm from 5 to 5.8 GHz.
    And then, a 5.2 GHz differential PA with transformer power combining technique has been designed and implemented. The PA demonstrates a Psat of 25.81 dBm, OP1dB of 21.42 dBm and peak PAE of 27.58 % at 5.2 GHz.
    Finally, for higher output power application, a 5.2 GHz 0.5 watt CMOS PA using series combining transformer to accumulate the voltage of each power device for boosting the output voltage and power has been designed and fabricated. The PA demonstrates a Psat of 27.63 dBm, OP1dB of 23.45 dBm with peak PAE of 19.18 % at 5.2 GHz.

    中文摘要……………………………………………………………………i ABSTRACT………………………………………………………………………iii 誌  謝……………...…………………………………………………………...v 目  錄…………………………………………………………………………vii 圖 目 錄…………………………………………….…………………...…………x 表 目 錄……………………………………………………………………….…xv 第一章  緒論……………………………………………………………………1 1.1 研究背景及動機………………………………………………………1 1.2 文獻探討………………………………………………………………1 1.3 研究成果....................…………………………………………………3 1.4 論文架構…………………………………………………….………...3 第二章  通訊系統標準之介紹…………………………………………………5 2.1 概述……………………………………………………………………5 2.2 WLAN 802.11 b/a/g/n/ac…….…………..……………………………5 2.2.1 802.11 b……………………………..…………………………..5 2.2.2 802.11 a…………….……………….…………………………..6 2.2.3 802.11 g…………….……………….…………………………..8 2.2.4 802.11 n..…………..………………..…………………………..8 2.2.5 802.11 ac...………………………….…………………………..9 第三章  功率放大器之介紹…………………………………………………15 3.1 概述…………………………………………………………………15 3.2 功率放大器之重要參數設計………………………………………15 3.2.1 功率(Power)...…………………………………………………..16 3.2.2 效率(Efficiency)………………………………………………..16 3.2.3 線性度(Linearity)..……………………………………………..17 3.3 功率放大器種類……………………………………………………21 3.3.1 A類(Class A)功率放大器…...………..………………………..22 3.3.2 B類(Class B)功率放大器…………………….………………..23 3.3.3 AB類(Class AB)功率放大器…………...……………………..24 3.3.4 C類(Class C)功率放大器………….…………………………..25 第四章  利用直接並聯功率合成技術之5~5.8 GHz功率放大器...……...…27 4.1 簡介…………………………………………………………………27 4.2 直接並聯功率合成技術之5~5.8 GHz功率放大器研製..……...…28 4.2.1 偏壓與元件選擇………………………………………………..28 4.2.2 功率放大級選擇………………………………………………..31 4.2.3 匹配網路設計…………………………………………………..39 4.2.4 旁路電路設計…………………………………………………..46 4.3 模擬結果……………………………………………………………48 4.4 量測與模擬之比較…………………………………………………52 4.5 結果與討論…………………………………………………………59 第五章  利用兩路變壓器功率合成技術之5.2 GHz功率放大器…………..63 5.1 簡介…………………………………………………………………63 5.2 兩路變壓器功率合成技術之5.2 GHz功率放大器研製...……...…64 5.2.1 功率放大級選擇………………………………………………..64 5.2.2 變壓器原理簡介………………….……...……………………..65 5.2.3 匹配網路設計…………………………………………………..66 5.3 模擬結果……………………………………………………………79 5.4 量測與模擬之比較.…………...……………………………………83 5.5 結果與討論…………………………………………………………91 第六章  利用串聯結合變壓器功率合成技術之5.2 GHz功率放大器...….…93 6.1 簡介…………………………………………………………………93 6.2 串聯結合變壓器功率合成技術之5.2 GHz功率放大器研製..…....93 6.2.1 串聯結合變壓器簡介……………….…...……………………..93 6.2.2 匹配網路設計…………………………………………………..95 6.3 模擬結果…………………………………………………………104 6.4 量測與模擬之比較……………………………………..…………107 6.5 結果與討論……………………………………………………..…113 第七章  結論…………………………………………………………………117 參考文獻……………………………………………………………………….119 自  傳………………………………………………………………………....123

    [1]www.cc.ntu.edu.tw/chinese/epaper/0024/20130320_2409.html
    [2]Skyworks datasheet SE5003L : 5 GHz, 32 dBm power amplifier with power detector.
    [3]T. Sawa, J. Thuret, S. Sawada, and S. Nakajima, “Manufacturable 4W GaAs WLAN amplifier module for 5GHz applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2004, pp. 1531-1534.
    [4]C.-C. Lin and Y.-C. Hsu, “Single-chip dual-band WLAN power amplifier using InGaP/GaAs HBT,” in IEEE European Microwave Conference (EuMC), Oct. 2005, pp. 489-492.
    [5]J. H. Kim, J. H. Kim, Y. S. Noh, and C. S. Park, “A low quiescent current 3.3V operation linear MMIC power amplifier for 5GHz WLAN applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, pp. 867-870.
    [6]J. P. Fraysse, J. P. Viaud, M. Campovecchio, P. Auxemery, and R. Quere, “A 2W high efficiency 2-8GHz cascode HBT MMIC power distributed amplifier,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2000, pp. 529-532.
    [7]W. Zhang, E.-S. Khoo, and T. Tear, “A low voltage fully-integrated 0.18μm CMOS power amplifier for 5GHz WLAN,” Proceedings of the European Solid-State Circuits Conference (ESSCIRC), Florence, Italy, Sept. 2002, pp. 215-218.
    [8]Y.-S. Eo and K.-D. Lee, “A fully integrated 24-dBm CMOS power amplifier for 802.11a WLAN applications,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 504-506, Nov. 2004.
    [9]Y.-S. Eo and K.-D. Lee, “High efficiency 5GHz CMOS power amplifier with adaptive bias control circuit,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2004, pp. 575-578.
    [10]W. Wang and Y. P. Zhang, “0.18-μm CMOS push-pull power amplifier with antenna in IC package,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 1, pp. 13-15, Jan. 2004.
    [11]H. Solar, R. Berenguer, I. Adin, U. Alvarado, and I. Cendoya, “A fully integrated 26.5 dBm CMOS power amplifier for IEEE 802.11a WLAN standard with on-chip power inductors,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 1875-1878.
    [12]P. Haldi, D. Chowdhury, P. Reynaert, G. Liu, and A. M. Niknejad, “A 5.8GHz 1V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1054-1063, May 2008.
    [13]簡榮宏、廖冠雄,無線區域網路,全華科技圖書,2007
    [14]唐政,802.11無線區域網路通訊協定及應用,文魁資訊,2003
    [15]S. C. Cripps, RF Power Amplifiers for Wireless Communications, 2nd ed., Artech House, 1999.
    [16]Guillermo Gonzalez, Microwave Transistor Amplifiers – Analysis and Design, 2nd ed., Prentice Hall, 1996.
    [17]David M. Pozar, Microwave Engineering, 3rd ed., Wiley, 2005.
    [18]I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Distributed active transformer─A new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002.
    [19]I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371-383, Mar. 2002.
    [20]W.-H. Lin, Y.-N. Jen, J.-H. Tsai, H.-C. Lu, and T.-W. Huang, “V-band fully-integrated CMOS LNA and DAT PA for 60GHz WPAN applications,” in IEEE European Microwave Conference (EuMC), Sept. 2010, pp. 284-287.
    [21]Y.-N. Jen, J.-H. Tsai, T.-W. Huang, and H. Wang, “Design and analysis of a 55-71GHz compact and broadband distributed active transformer power amplifier in 90-nm CMOS process,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 7, pp. 1637-1646, Jul. 2009.
    [22]葉景富,24-GHz CMOS射頻前端晶片及毫米波電路之研究設計,國立成功大學電腦與通信工程研究所碩士論文,民國98年7月
    [23]C.-C. Kuo, Y.-H. Lin, H.-C. Lu, and H. Wang, “A K-band compact fully integrated transformer power amplifier in 0.18-μm CMOS,” in IEEE Asia-Pacific Microwave Conference (APMC), Nov. 2013, pp. 597-599.
    [24]B. Jin, J. Moon, C. Zhao, and B. Kim, “A 30.8-dBm wideband CMOS power amplifier with minimized supply fluctuation,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 6, pp. 1658-1666, Jun. 2012.
    [25]K. H. An, Y. Kim, O. Lee, K. S. Yang, H. Kim, W. Woo, J. J. Chang, C.-H. Lee, H. Kim, and J. Laskar, “A monolithic voltage-boosting parallel-primary transformer structures for fully integrated CMOS power amplifier design,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2007, pp. 419-422.
    [26]G. Liu, P. Haldi, T.-J. K. Liu, A. M. Niknejad, “Fully integrated CMOS power amplifier with efficiency enhancement at power back-off,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 600-609, Mar. 2008.
    [27]D. Chowdhury, C. D. Hull, O. B. Degani, Y. Wang, and A. M. Niknejad, “A fully integrated dual-mode highly linear 2.4GHz CMOS power amplifier for 4G WiMax applications,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3393-3402, Dec. 2009.
    [28]E. Kaymaksut and P. Reynaert, “A 2.4GHz fully integrated doherty power amplifier using series combining transformer,” Proceedings of the European Solid-State Circuits Conference (ESSCIRC), Seville, Sept. 2010, pp. 302-305.
    [29]J.-F. Yeh, J.-H. Tsai, and T.-W. Huang, “A multi-mode 60-GHz power amplifier with a novel power combination technique,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2012, pp. 61-64.
    [30]O. Lee, K. S. Yang, K. H. An, Y. Kim, H. Kim, J. J. Chang, W. Woo, C.-H. Lee, and J. Laskar, “A 1.8-GHz 2-Watt fully integrated CMOS push-pull parallel-combined power amplifier design,” IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, Jun. 2007, pp. 435-438.
    [31]J. Kim, W. Kim, H. Jeon, Y.-Y. Huang, Y. Yoon, H. Kim, C.-H. Lee, and K. T. Kornegay, “A fully-integrated high-power linear CMOS power amplifier with a parallel-series combining transformer,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 599-614, Mar. 2012.

    下載圖示
    QR CODE