簡易檢索 / 詳目顯示

研究生: 黃家綉
Huang, Chia-Hsiu
論文名稱: 宿主特徵與寄生蟲豐度、感染強度的關係─以臺灣山區四種共域小型囓齒目動物與其腸胃道寄生蟲為例
Host characteristics, parasite richness and infection intensity—A case study of four sympatric rodents and their intestinal parasites in the montane region of Taiwan
指導教授: 李佩珍
Lee, Pei-Jen
陳宣汶
Chen, Hsuan-Wien
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 45
中文關鍵詞: 體內寄生蟲流行病學種間交互作用小型哺乳類動物野生動物疾病
英文關鍵詞: Endo-parasites, Epidemiology, Interspecific interaction, Small mammals, Wildlife diseases
DOI URL: http://doi.org/10.6345/THE.NTNU.SLS.003.2018.D01
論文種類: 學術論文
相關次數: 點閱:242下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腸胃道寄生蟲與其宿主有很密切的關係。高品質的宿主個體可以增加寄生蟲的適存度,另外某些宿主物種相較於其他物種更能支撐起穩定的寄生蟲族群和多樣的寄生蟲群聚。因此,判別出形塑寄生蟲盛行率(prevalence)、寄生蟲豐度(richness)和感染強度(infection intensity)的重要宿主特徵是很重要的生態議題。在此篇研究中,我調查臺灣山區四種共域的小型囓齒目動物,分別是臺灣森鼠(Apodemus semotus)、高山白腹鼠(Niviventer culturatus)、高山田鼠(Microtus kikuchii)與黑腹絨鼠(Eothenomys melanogaster)。我檢驗這些囓齒目宿主的性別、體重和使用的微氣候(溫度與相對溼度)使否與其腸胃道寄生蟲(線蟲與絛蟲)的盛行率、寄生蟲豐度和感染強度有關。我在不同的季節裡以活捉式陷阱在五個地點(合歡山、觀霧、思源埡口、大雪山、塔塔加)捕捉齧齒目宿主。我利用宿主的糞便李的蟲卵辨識出七種寄生蟲分類群(strongyle nematodes, spirurian nematodes, ascarid nematodes, Capillaria spp, Trichuris spp, Syphacia spp and Hymenolepis spp),並且利用每克糞便中的蟲卵數(strongylid FEC)量化strongylids (Heligmonoides spp, Heligmosomoides spp)的感染強度。我發現兩種鼠科動物(A. semotus, N. culturatus)比與他們共域的倉鼠科動物(E. melanogaster, M. kikuchii)有著更高的盛行率與寄生蟲豐度。對擁有足夠樣本可分析宿主個體特徵的兩種鼠科動物來說,宿主體重比起宿主性別、使用的微氣候等更可能影響寄生蟲盛行率與感染強度。此篇研究提供在多宿主系統(小型囓齒目-腸胃道寄生蟲)上提供珍貴的野外資料。

    Intestinal parasites have a close relationship with their hosts. A high quality host individual could enhance parasite fitness, and some host species are more likely than others to support stable parasite populations and diverse parasite communities. Therefore, it is important to understand host characteristics that shape parasite prevalence, richness and infection intensity. In this study, I surveyed four sympatric rodent species, the Taiwan field mouse (Apodemus semotus), oldfield white-bellied rat (Niviventer culturatus), Taiwan vole (Microtus kikuchii) and Père David’s vole (Eothenomys melanogaster), in the montane region of Taiwan. I examined whether host sex, host body mass and microclimate (temperature, relative humidity) are associated with the prevalence, richness and infection intensity of intestinal nematodes and cestodes in these rodents. I live-trapped rodents across five sites (i.e. Mt. Hehuan, Guanwu, Siyuan Pass, Mt. Dasyue, Tataka) between 2015 and 2016. I identified seven parasite taxa (strongyle nematodes, spirurian nematodes, ascarid nematodes, Capillaria spp, Trichuris spp, Syphacia spp and Hymenolepis spp), and quantified infection intensity of strongylids (Heligmonoides spp, Heligmosomoides spp) using fecal egg count (strongylid FEC). I found that the two murids (A. semotus, N. culturatus) had higher prevalence and richness of intestinal parasites than their sympatric cricetids (E. melanogaster, M. kikuchii). For the two murids that had sufficient sample sizes for host characteristics analyses, I found that host body mass but not host sex or microclimate, played a role in shaping parasite prevalence and infection intensity. This study provided valuable empirical data on a multiple ‘rodent hosts – intestinal parasites’ system.

    致謝 i 中文摘要 ii Abstract iv Content vi Introduction 1 Materials and methods 5 Result 11 Discussion 14 Tables and figures 18 References 28 Appendices 32

    1. Anderson, R. C. (2000). Nematode parasites of vertebrates: their development and transmission. CABI Publishing, Wallingford, UK.
    2. Blaustein, A. R., Gervasi, S. S., Johnson, P. T., Hoverman, J. T., Belden, L. K., Bradley, P. W., & Xie, G. Y. (2012). Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 367, 1688-1707.
    3. Chaisiri, K., Siribat, P., Ribas, A., & Morand, S. (2015). Potentially zoonotic helminthiases of murid rodents from the Indo-Chinese peninsula: impact of habitat and the risk of human infection. Vector-Borne and Zoonotic Diseases, 15, 73-85.
    4. Fenton, A., Streicker, D. G., Petchey, O. L., & Pedersen, A. B. (2015). Are all hosts created equal? Partitioning host species contributions to parasite persistence in multihost communities. American Naturalist, 186, 610-622.
    5. Gregory, R. D., Keymer, A. E., & Clarke, J. R. (1990). Genetics, sex and exposure: the ecology of Heligmosomoides polygyrus (Nematoda) in the wood mouse. Journal of Animal Ecology, 59, 363-378.
    6. Hamilton, W. D., & Zuk, M. (1982). Heritable true fitness and bright birds: a role for parasites?. Science, 218, 384-387.
    7. Hasegawa, H. (1990). Nematodes of the family Heligmonellidae (Trichostrongyloidea) collected from rodents of the Ryukyu Archipelago and Taiwan. Journal of Parasitology, 76, 470-480.
    8. Hansen, J., & Perry, B. (1994). The epidemiology, diagnosis and control of helminth parasites of ruminants. A handbook. International Laboratory for Research on Animal Diseases, Nairobi, Kenya.
    9. Huffman, M. A., Gotoh, S., Turner, L. A., Hamai, M., & Yoshida, K. (1997). Seasonal trends in intestinal nematode infection and medicinal plant use among chimpanzees in the Mahale Mountains, Tanzania. Primates, 38, 111-125.
    10. Hong, Z. Z., Pang, & Victor. F. (1998) Study of rodents in Taiwan mountain areas and estimate of introducing new native animal species - pathology and hematology monitoring of rodents (Muridae, Rodentia) in Taiwan mountain areas. Research Report of National Science Council, Executive Yuan. (in Chinese)
    11. Hoberg, E. P., & Brooks, D. R. (2008). A macroevolutionary mosaic: episodic host‐switching, geographical colonization and diversification in complex host–parasite systems. Journal of Biogeography, 35, 1533-1550.
    12. Himsworth, C. G., Parsons, K. L., Jardine, C., & Patrick, D. M. (2013). Rats, cities, people, and pathogens: a systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector-Borne and Zoonotic Diseases, 13, 349-359.
    13. Kuris, A. M., Blaustein, A. R., & Alio, J. J. (1980). Hosts as islands. American Naturalist, 116, 570-586.
    14. Kennedy, C. R., Bush, A. O., & Aho, J. M. (1986). Patterns in helminth communities: why are birds and fish different?. Parasitology, 93, 205-215.
    15. Kan, M. L. (1995). Food habits and habitat use of three rodent species (Apodemus semotus, Eothenomys melanogaster, Micromys minutus) in Wulin. National Taiwan University, Department of Zoology, Master thesis. (in Chinese)
    16. Krasnov, B. R., Morand, S., Hawlena, H., Khokhlova, I. S., & Shenbrot, G. I. (2005). Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia, 146, 209-217.
    17. Krasnov, B. R., Bordes, F., Khokhlova, I. S., & Morand, S. (2012). Gender-biased parasitism in small mammals: patterns, mechanisms, consequences. Mammalia, 76, 1-13.
    18. Kamiya, T., O' Dwyer, K., Nakagawa, S., & Poulin, R.(2014). What determines species richness of parasitic organisms? A meta‐analysis across animal, plant and fungal hosts. Biological Reviews, 89, 123-134.
    19. Lin, H. J. (1996). Studies on the helminth fauna of rodents on Kinmen islands and Taiwan. National Chung Hsing University, Graduate institute of veterinary microbiology. Master's thesis. (in Chinese)
    20. Larsen, M. N., & Roepstorff, A. (1999). Seasonal variation in development and survival of Ascaris suum and Trichuris suis eggs on pastures. Parasitology, 119, 209-220.
    21. Luong, L. T., Perkins, S. E., Grear, D. A., Rizzoli, A., & Hudson, P. J. (2010). The relative importance of host characteristics and co-infection in generating variation in Heligmosomoides polygyrus fecundity. Parasitology, 137, 1003-1012.
    22. Lo, H. Y., & Shaner, P. J. L. (2015). Sex-specific effects of parasitism on survival and reproduction of a rodent host in a subtropical montane region. Oecologia, 177, 657-667.
    23. Morand, S., & Harvey, P. H. (2000). Mammalian metabolism, longevity and parasite species richness. Proceedings of the Royal Society of London B: Biological Sciences, 267, 1999-2003.
    24. Moore, S. L., & Wilson, K. (2002). Parasites as a viability cost of sexual selection in natural populations of mammals. Science, 297, 2015-2018.
    25. Morgan, E. R., Medley, G. F., Torgerson, P. R., Shaikenov, B. S., & Milner-Gulland, E. J. (2007). Parasite transmission in a migratory multiple host system. Ecological Modelling, 200, 511-520.
    26. O’Connor, L. J., Kahn, L. P., & Walkden-Brown, S. W. (2007). Moisture requirements for the free-living development of Haemonchus contortus: Quantitative and temporal effects under conditions of low evaporation. Veterinary Parasitology, 150, 128-138.
    27. Poulin, R. (1995). Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecological Monographs, 65, 283-302.
    28. Paull, S. H., Song, S., McClure, K. M., Sackett, L. C., Kilpatrick, A. M., & Johnson, P. T. (2012). From superspreaders to disease hotspots: linking transmission across hosts and space. Frontiers in Ecology and the Environment, 10, 75-82.
    29. Rogers, W. P., & Sommerville, R. I. (1963). The infective stage of nematode parasites and its significance in parasitism. Advances in Parasitology, 1, 109-177.
    30. Reperant, L. A., Hegglin, D., Tanner, I., Fischer, C., & Deplazes, P.(2009). Rodents as shared indicators for zoonotic parasites of carnivores in urban environments. Parasitology, 136, 329-337.
    31. Raharivololona, B. M., & Ganzhorn, J. U. (2010). Seasonal variations in gastrointestinal parasites excreted by the gray mouse lemur Microcebus murinus in Madagascar. Endangered Species Research, 11(2), 113-122.
    32. Stear, M. J., Bishop, S. C., Doligalska, M., Duncan, J. L., Holmes, P. H., Irvine, J., McCririe, L., McKellar, Q. A., Sinsk, E., & Murray, M. A. X. (1995). Regulation of egg production, worm burden, worm length and worm fecundity by host responses in sheep infected with Ostertagia circumcincta. Parasite Immunology, 17, 643-652.
    33. Sheldon, B. C., & Verhulst, S. (1996). Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology and Evolution, 11, 317-321.
    34. Smith, K. F., & Carpenter, S. M. (2006). Potential spread of introduced black rat (Rattus rattus) parasites to endemic deer mice (Peromyscus maniculatus) on the California Channel Islands. Diversity and Distributions, 12, 742-748.
    35. Shaner, P. J. L., Wu, S. H., Ke, L., & Kao, S. J. (2013). Trophic niche divergence reduces survival in an omnivorous rodent. Evolutionary Ecology Research, 15, 933-946.
    36. Shaner, P. J. L., Yu, A. Y., Ke, L., & Li, S. H. (2017). Spacing behaviors and spatial recruitment of a wild rodent in response to parasitism. Ecosphere, 8, e01780.
    37. Thompson, R. A. (2013). Parasite zoonoses and wildlife: one health, spillover and human activity. International Journal for Parasitology, 43, 1079-1088.
    38. Tseng, M., & Myers, J. H. (2014). The relationship between parasite fitness and host condition in an insect-virus system. PloS ONE, 9, e106401.
    39. Woolhouse, M. E., Taylor, L. H., & Haydon, D. T. (2001). Population biology of multihost pathogens. Science, 292, 1109-1112.
    40. Wells, K., Smales, L. R., Kalko, E. K., & Pfeiffer, M. (2007). Impact of rain-forest logging on helminth assemblages in small mammals (Muridae, Tupaiidae) from Borneo. Journal of Tropical Ecology, 23, 35-43.
    41. Yeh, W. T. (2012). Using Stable Isotopes to Analyze Food Partitioning of Two Small Rodent Communities in He-huan Mountains. National Taiwan University, Institute of Ecology and Evolutionary Biology College of Life Science, Master thesis.
    42. Zuk, M., & McKean, K. A. (1996). Sex differences in parasite infections: patterns and processes. International Journal for Parasitology, 26, 1009-1024.

    下載圖示
    QR CODE