簡易檢索 / 詳目顯示

研究生: 林利
Li Lin
論文名稱: 電沉積法製備氧化鎢薄膜之特性與應用研究
Application and Characteristics of WO3 Thin Films Prepared Using the Electrodeposition Method
指導教授: 鄧敦平
Teng, Tun-Ping
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 電沉積法光學特性氧化鎢薄膜
英文關鍵詞: Electrodeposition, Optical characteristics, WO3 thin film
論文種類: 學術論文
相關次數: 點閱:261下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用定電流電沉積法(electrodeposition, ED)在ITO導電玻璃上製備氧化鎢(tungsten oxide, WO3)薄膜。使用HR-FESEM、XRD、α-STEP等儀器對薄膜特性進行量測與分析,並探討不同退火溫度、沉積時間與沉積電流對於WO3薄膜的結構與特性影響。最後篩選出具有較佳特性薄膜製程參數,進行鍍膜玻璃的隔熱應用研究。實驗結果顯示,沉積電流為3 mA、5 mA與7 mA時薄膜厚度與沉積時間成正比,沉積速率分別為2 nm/sec、4.9 nm/sec、7.6 nm/sec。當沉積電流大於7 mA時試片角落開始產生剝離現象,故建議沉積電流小於7 mA。在退火溫度影響薄膜結晶方面,薄膜在未經退火與退火250 ℃為非晶態,退火500 ℃與700 ℃為三斜晶態。光學特性在非晶態與三斜晶態分別具有抗紅外線穿透與增強紅外線穿透特性。在鍍膜玻璃的隔熱應用研究方面,以退火250 ℃試片具有最佳隔熱特性,溫度上升速率與最終溫度分別為0.131 ℃/min 與36.89 ℃。未來可藉由調整製程參數製備出符合不同應用領域元件,以達到提升效率與節能的目的。

    In this study, we produced the tungsten oxide (WO3) thin films on the indium tin oxide (ITO) glass by the electrodeposition method (ED). The characteristics of glass coated with WO3 thin films were measured and analyzed by using the HR-FESEM, XRD and α-STEP; moreover, the ED current, ED time and annealing temperature to influence the structure and characteristics of WO3 thin film were discussed. Finally, the optimal process parameters of WO3 coated glass with better properties were screened to conduct the applied research for thermal insulation. The experimental results showed that the WO3 film thickness is proportional to the ED current when the ED current at 3, 5 and 7 mA, and the deposition rate were 2, 4.9, and 7.6 nm/sec, respectively. The structure of WO3 thin films peeled when the ED current was over 7 mA, so the ED current should be controlled under 7 mA. As for the crystallization of the WO3 thin films, it was amorphous with controlled by as-deposited and annealing at 250 ℃; triclinic with annealing at 500 ℃ and 700 ℃. The optical characteristics of the coated glasses with amorphous or triclinic WO3 had anti-infrared and high infrared transmittance properties, respectively. As for the thermal insulation of WO3 coated glass, the WO3 coated glass had the best thermal insulation performance with annealing at 250 ℃, and the rise rate of temperature and the final temperature were 0.131 ℃/min and 36.89 ℃, respectively. The characteristics of WO3 coated glass can be tuned by different process parameters to form the element with the proper characteristics to meet different application, which can achieve the purpose of improving efficiency and energy conservation.

    摘要 i Abstract ii 謝誌 iii 表目錄 viii 圖目錄 ix 第一章 緒論 1 1. 1研究背景 1 1. 2研究動機 2 1. 3研究目的 3 1. 4研究方法 4 第二章 理論探討與文獻回顧 7 2. 1薄膜成形 7 2. 1. 1薄膜形成技術 7 2. 1. 2薄膜成形技術用途 7 2. 1. 3薄膜成形技術種類 7 2. 2金屬氧化物特性 8 2. 3薄膜製備方法 8 2. 3. 1濺鍍法 8 2. 3. 2蒸鍍法 9 2. 3. 3溶膠-凝膠法 9 2. 3. 4電沉積法 9 2. 4電沉積法製備氧化鎢薄膜 9 2. 4. 1氧化鎢電沉積法鍍液製備 10 2. 4. 2不同沉積參數與設備製程比較 11 第三章 實驗設計與規劃 13 3. 1實驗藥品與藥材 13 3. 2實驗流程規劃 14 3. 3氧化鎢薄膜製備 15 3. 3. 1實驗設備 15 3. 3. 2鍍液製作 16 3. 3. 3基材的前處理 18 3. 3. 4製備氧化鎢薄膜 18 3. 3. 5實驗參數設定 19 3. 4氧化鎢薄膜基本特性量測 22 3. 4. 1 薄膜表面及微結構之分析 22 3. 4. 2 X-Ray繞射分析 23 3. 5光學特性量測 25 3. 6 太陽熱能集/隔熱器鍍膜玻璃應用 25 第四章 結果與討論 29 4. 1製程參數對氧化鎢薄膜基本特性分析結果 29 4. 1. 1薄膜表面型態 29 4. 1. 2薄膜結晶狀態分析 30 4. 1. 3薄膜沉積厚度分析 31 4. 2薄膜光學特性量測結果與討論 57 4. 2. 1薄膜光學穿透特性量測結果 57 4. 2. 2薄膜光學反射特性量測結果 68 4. 3太陽能集/隔熱器鍍膜玻璃之應用研究結果與討論 76 4. 3. 1溫度上升速率與光學特性關係 76 4. 3. 2穩定溫度與薄膜特性關係 77 第五章 結論與未來展望 79 5. 1結論 79 5. 2未來展望 81 參考文獻 82

    參考文獻

    [1] 內政部營建署, 住宿類建築物節約能源設計技術規範, 台灣: 內政部營建署, 2011, pp. 1-65.
    [2] 李邦哲, "薄膜成型技術新紀元," 台灣綜合展望, vol. 7, pp. 65-71, 2003.
    [3] O.D. Greenwood , S.C. Moulzolf, P.J. Blau , R.J. Lad, "The influence of microstructure on tribological properties of WO3 thin films," WEAR, vol. 232, pp. 84-90, 1999.
    [4] R. Huirache-Acuña, F. Paraguay-Delgado, M.A. Albiter, J. Lara-Romero, R. Martínez-Sánchez, "Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method," Materials Characterization, vol. 60, pp. 932-937, 2009.
    [5] S. Ashraf, C.S. Blackman, R.G. Palgrave, I.P. Parkin, "Aerosol-assisted chemical vapour deposition of WO3 thin films using polyoxometallate precursors and their gas sensing properties," Journal of Materials Chemistry, vol. 17, pp. 1063-1070, 2007.
    [6] E.H. Espinosa, R. Ionescu, E. Llobet, A. Felten, C. Bittencourt, E. Sotter, Z. Topalian, P. Heszler, C.G. Granqvist, J.J. Pireaux, X. Correig, "Highly selective NO2 gas sensors made of MWCNTs and WO3 hybrid layers," Journal of the Electrochemical Society, vol. 154, pp. J141-J149, 2007.
    [7] A.A. Dakhel, "Investigations on Sn-doped Ni oxide thin films and their use as optical sensor devices," Journal of Non-Crystalline Solids, vol. 358, pp. 285-289, 2012.
    [8] J. Zhang, X.L. Wang, X.H. Xia, C.D. Gu, J.P. Tu, "Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation," Solar Energy Materials and Solar Cells, vol. 95, pp. 2107-2112, 2011.
    [9] K.A. Gesheva, T.M. Ivanova, G. Bodurov, "Transition metal oxide films: technology and Smart Windows electrochromic device performance," Progress in Organic Coatings, vol. 74, pp. 635-639, 2012.
    [10] H. Cheng, Y. Huang, C. Lee, "Decolorization of reactive dye using a photo-ferrioxalate system with brick grain-supported iron oxide," Journal of Hazardous Materials, vol. 188, pp. 357-362, 2011.
    [11] H. Einaga, A. Ogata, "Benzene oxidation with ozone over supported manganese oxide catalysts: effect of catalyst support and reaction conditions," Journal of Hazardous Materials, vol. 164, pp. 1236-1241, 2009.
    [12] H. Zou, S. Chen, Z. Liu, W. Lin, "Selective CO oxidation over CuO–CeO2 catalysts doped with transition metal oxides," Powder Technology, vol. 207, pp. 238-244, 2011.
    [13] K. Karásková, L. Obalová, K. Jirátová, F. Kovanda, "Effect of promoters in Co–Mn–Al mixed oxide catalyst on N2O decomposition," Chemical Engineering Journal, vol. 160, pp. 480-487, 2010.
    [14] F. Xu, D. Guo, H. Han, H. Wang, Z. Gao, D. Wu, K. Jiang, "Room-temperature synthesis of pompon-like ZnO hierarchical structures and their enhanced photocatalytic properties," Research on Chemical Intermediates, vol. 38, pp. 1579-1589, 2012.
    [15] S. Sitthisang, S. Komarneni, J. Tantirungrotechai, Y.D. Noh, H. Li, S. Yin, T. Sato, H. Katsuki, "Microwave-hydrothermal synthesis of extremely high specific surface area anatase for decomposing NOx," Ceramics International, vol. 38, pp. 6099-6105, 2012.
    [16] D. Sánchez-Martínez, A. Martínez-de la Cruz, E. López-Cuéllar, "Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent," Applied Catalysis A: General, vol. 398, pp. 179-186, 2011.
    [17] D. Sánchez-Martínez, A. Martínez-de la Cruz, E. López-Cuéllar, "Synthesis of WO3 nanoparticles citric acid-assisted precipitation and evaluation of their photocatalytic properties," Materials Research Bulletin, vol. 48, pp. 691-697, 2013.
    [18] Z. Zhu, D. Yang, H. Liu, "Microwave-assisted hydrothermal synthesis of ZnO rod-assembled microspheres and their photocatalytic performances," Advanced Powder Technology, vol. 22, pp. 493-497, 2011.
    [19] C. Chananonnawathorn, S. Pudwata, M. Horprathum, P. Eiamchai, P.Limnontakul, C. Salawan, K. Aiempanakit, "Electrochromic Property Dependent on Oxygen Gas Flow Rate and Films Thickness of Sputtered WO3 Films," Procedia Engineering, vol. 32, pp. 752-758, 2012.
    [20] A. Karuppasamy, "Electrochromism in surface modified crystalline WO3 thin films grown by reactive DC magnetron sputtering," Applied Surface Science, vol. 282, pp. 77-83, 2013.
    [21] A. K. Chawla, S. Singhal , H. O. Gupta, R. Chandra, "Influence of nitrogen doping on the sputter-deposited WO3 films," Thin Solid Films, vol. 518, pp. 1430-1433, 2009.
    [22] "K. P. S. S. Hembrama, R. Thomas, G. M. Rao," Applied Surface Science, vol. 256, pp. 419-422, 2009.
    [23] N. Oka, M. Watanabe, K. Sugie, Y. Iwabuchi, H. Kotsubo, Y. Shigesato, "Reactive-gas-flow sputter deposition of amorphous WO3 films for electrochromic devices," Thin Solid Films, vol. 532, pp. 1-6, 2013.
    [24] D. Davazoglou, T. Dritsas, "Fabrication and calibration of a gas sensor based on chemically vapor deposited WO3 films on silicon substrates: Application to H2 sensing," Sensors and Actuators B, vol. 77, pp. 359-362, 2001.
    [25] Z. S. Houweling, J. W. Geus, R. E. I. Schropp, "Hot-wire chemical vapor deposition of WO3-x thin film of various oxygen content," Materials Chemistry and Physics, vol. 140, pp. 89-96, 2013.
    [26] R. Q. Cabrera, E. R. Latimer, A. Kafizas, C. S. Blackman, C. J. Carmalt, I. P. Parkin, "Photocatalytic activity of needle-like TiO2/WO3−x thin films prepared by chemical vapour deposition," Journal of Photochemistry and Photobiology A:Chemistry, vol. 239, pp. 60-64, 2012.
    [27] R Solarska, B. D. Alexander, J. Augustynski, "Electrochromic and photoelectrochemical characteristics of nanostructuredWO3 films prepared by a sol–gel method," COMPTES RENDUS CHIMIE, vol. 9, pp. 301-306, 2006.
    [28] M. Yang, Z. Yang, J. Dai, D. Zhang, "Fiber optic hydrogen sensors with sol–gel WO3 coatings," 2012, vol. 166, pp. 632-636.
    [29] N. Naseri, S. Yousefzadeh, E. Daryaei a, A.Z. Moshfegh, "Photoresponse and H2 production of topographically controlled PEG assisted Solegel WO3 nanocrystalline thin films," I n t e r n a t i o n a l J ournal o f hydrogen energy, vol. 36, pp. 13461-13472, 2011.
    [30] N.A. Ramos-Delgado, L. Hinojosa-Reyes, I. L. Guzman-Mara, M. A. Gracia-Pinilla, A. Hernández-Ramírez, "Synthesis by sol–gel of WO3/TiO2 for solar photocatalytic degradation of malathion pesticide," Catalysis Today, vol. 209, pp. 35-40, 2013.
    [31] M. Deepa, A.K. Srivastava, T.K. Saxena, S.A. Agnihotry, "Annealing induced microstructural evolution of electrodeposited electrochromic tungsten oxide films," Applied Surface Science, vol. 252, pp. 1568-1580, 2005.
    [32] H. Habazaki, Y. Hayashi, H. Konno, "Characterization of electrodeposited WO3 films and its application to electrochemical wastewater treatment," Electrochimica Acta, vol. 47, pp. 4181-4188, 2002.
    [33] G. Leftheriotis, P. Yianoulis, "Development of electrodeposited WO3 films with modified surface morphology and improved electrochromic properties," Solid State Ionics, vol. 179, pp. 2192-2197, 2008.
    [34] Z. Yu, X. Jia", J. Du", J. Zhang, "Electrochromic WO3 flms prepared by a new electrodeposition method," Solar Energy Materials & Solar Cells, vol. 64, pp. 55-63, 2000.
    [35] M. Deepa, M. Kar, S.A. Agnihotry, "Electrodeposited tungsten oxide films: annealing effects on structure and electrochromic performance," Thin Solid Films, vol. 468, pp. 32-42, 2004.
    [36] A.K. Srivastava, M. Deepa, S. Singh, R. Kishore, S.A. Agnihotry, "Microstructural and electrochromic characteristics of electrodeposited and annealed WO3 films," Solid State Ionics, vol. 176, pp. 1161-1168, 2005.
    [37] M. Deepa, A.K. Srivastava, S.N. Sharma, Govind, S.M. Shivaprasad, "Microstructural and electrochromic properties of tungsten oxide thin films produced by surfactant mediated electrodeposition," Applied Surface Science, vol. 254, pp. 2342-2352, 2008.
    [38] 林利、高緯成、鄧敦平、方彥博、徐有駿, “WO3 薄膜的製備與特性研究,” 於 全國精密製造研討會論文集, 台北市, 2013.
    [39] 林利、鄧敦平、方彥博、徐有駿, “電沉積法製備WO3薄膜與光誘導特性研究,” 於 中國機械工程學會第三十屆全國學術研討會, 宜蘭縣, 2013.
    [40] E. A. Meulenkamp, "Mechanism of W03 Electrocleposition from Peroxy-Tungstate Solution," Journal of The Electrochemical Society, vol. 144, no. 5, pp. 1664-1671, 5 1997.
    [41] P. K. Shen, J. Syed‐Bokhari, and A. C. C. Tseung, "The Performance of Electrochromic Tungsten Trioxide Films Doped with Cobalt or Nickel," Journal of The Electrochemical Society, vol. 138, no. 9, pp. 2778-2783, 1991.
    [42] G. Leftheriotis, P. Yianoulis, "Development of electrodeposited WO3 films with modified surfacemorphology and improved electrochromic properties," Solid State Ionics, vol. 179, pp. 2192-2197, 2008.

    下載圖示
    QR CODE