研究生: |
楊智傑 Yang-Chih-Chieh |
---|---|
論文名稱: |
由粒線體核酸序列及 RAPD 分析台灣褸網蜘蛛之親緣關係 Molecular phylogenetic determination of Psechrus spiders in Taiwan |
指導教授: |
方剛
Fang, Kang |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
畢業學年度: | 87 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 褸網蜘蛛 、二級結構 |
英文關鍵詞: | 12S rDNA, 16S rDNA, RAPD, AMOVA |
論文種類: | 學術論文 |
相關次數: | 點閱:212 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以粒線體基因對褸網蜘蛛作分子親緣關係的鑑定,首先單獨使用 12S、16S 核醣體部份 DNA 序列,或 12S 及 16S rDNA 序列合併的序列資料,分別使用 Maximum-Parsimony、Neighbor-Joining 及 Maximum-Likelihood 方法建構親緣關係樹型圖,比較所有親緣關係樹型圖的異同,並且與形態資料分析所獲得親緣關樹型圖結果互相輔證。分析合併 12S 及 16S rDNA 資料,由三種分析所得到強烈支持的親緣關係樹型圖顯示,褸網蜘蛛科應歸類於狼蜘總科內,與篩疣類的渦蜘科親緣關係較遠。分析 12S rDNA 序列的二級結構結果,圖型上一共有七個保守的位置,均發生在鍵結 (stem) 的位置上,顯示鍵結的鹽基對褸網蜘蛛的演化過程中有強的約束力。
本文另一方面以隨機放大 DNA (Random amplified polymorphic DNA, RAPD) 的方法,分析台灣褸網蜘蛛族群的遺傳結構,透過相似度表的建立及 UPGMA 關係樹型圖,瞭解褸網蜘蛛族群間的遺傳結構,推測地理阻隔是否與褸網蜘蛛族群遺傳結構可能的關聯性。褸網蜘蛛有定點結網補食習性,以及幼蟲沒有牽游絲空飄的能力,所以移動能力很薄弱,由 RAPD 分析 DNA 條紋相似性及 UPGMA 樹型圖來看,均顯示台灣褸網蜘蛛族群已可分為北、中、南三個主要的族群,台灣褸網蜘蛛族群遺傳結構已有差異。利用 AMOVA 分析的結果,仍然不能夠顯示出褸網蜘蛛遺傳結構變化,是來自於個體間的差異或者是地理的阻隔所造成的,未來仍應以更多的採集樣本作進一步的研究。
In this work, the genetic variations of two cribellate spider families, Psechridae (psechride spiders) and Uloboridae, plus ecribellate spider families within Araneomorphae were examined by analyzing their partial mitochondrial 12S and 16S rDNA sequences and their phylogeny placement tested. Using Hexathelidae (Macrothele holsti) as outgroup taxa, the molecular phylogenetic relationships of Lycosoidae superfamily spiders was resolved. The results indicated that cribellate spiders are polyphyletic. The hierarchical structure analysis clearly demonstrates that the cribellate spider, Psechridae, be included within Lycosoidae clade that comprises of Lycosidae, Pisauridae and Oxyopidae. The analysis also reaffirmed that cribellate Psechridae and Uloboridae are two distant lineages. However, the topology within the Lycosoidae clade from our analysis differs from that as inferred by morphological, ecological and behavioral characterizations.
RAPD analyses were performed on five different populations of Taiwanese psechride spiders to determine their genetic parameters. An overall six primers used to calculate nucleotide similarities and an UPGMA tree was constructed based on the data analyzed. The results showed that the populations of psechride spiders in Taiwan be grouped into several clusters that have a high level of genetic heterogeneity. Samples collected from northern and southern Taiwan can be paired with those from central sector of the island that indicates genetic variation among the populations studied as a consequence of geological separation. Base on AMOVA model, it remains unclear whether the difference in genetic variation is due to each individual or geographic vicariance. More detailed investigation is needed before a better and clear picture on the genetic structure of psechride spiders in Taiwan is understood.
參考文獻
Chen, S. H. (1996a). A checklist of spiders in Taiwan. Mus. 39:123-156.
Chen, S. H. (1996b). The psechrid spiders of Taiwan (Araeae: Psechridae).
Chinese. BioSci. 39:23.
Coddington, J. A. and H. W. Levi. (1991). Systematics and evolution of
spiders (Araneae). Ann. Rev. Ecol. Syst. 22:565-592.
Crease, T. J. and T. J. Little. (1997). Partial sequence of the mitochondrial
genome of the crustacean Daphnia pulex. Curr. Genet. 31:48-54.
De Rijk, P., J. M. Neefs, Y. van de Peer, and R. de Wachter. (1992).
Compilation of small ribosomal subunit RNA sequences. Nucleic Acids
Res. 20:2075-2089.
Eskov, K. (1987). A new archaeid spider (Chelicerate:Araneae) from the
Jurassic of Kazakhstonm, with notes on the so called "Gondwana" ranges
of recent taxa. N. Jb. Geol. Palaont. Abh. 175-181.
Eskov, K., S. Zonshtein. (1990). First mesozoic mygalomorph spidrss from
the Lower Cretaceous of Siberia and Mongoliam, with notes on the
system and evolution of the infraorder Mygalomorphae
(Chelicerata:Araneae). N. Jb. Geol. Palaont. Abh. 178-325.
Excoffier, L. (1993). AMOVA: analysis of molecular variance 1.55.
Genetics and Biometry Laboratory. University of Geneva.
Farris, J. S. (1989). The retention index and homoplasy excess. Syst. Zool.
38:406-407.
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using
the booststrap. Evol. 39:783-791.
Felsenstein, J. (1993). PHYLIP 3.5c Manual, University of California
Herbarium, Berkeley, California.
Foelix, F. R. (1996). Biology of spiders. New York, Oxford.
Forster, R. R. (1973). The spiders of New Zealand. Part 4. Otago. Mus. Bull.
4:1-310.
Fu, J. (1998). Toward the phylogeny of the family Lacertidae: Implications
from mitochondrial DNA 12S and 16S gene sequences
(Reptilia:Squamata). Mol. Phylogenet. Evol. 9:118-130.
Genevieve, A. P-K., C. T. Beagley, R. Okimoto, D. R. Wolstenholme.
(1994). Mitochondrial DNA of the sea anemone, Metridium senile
(Cnidaria): Prokaryote-like genes for tRNAf-Met and small-subunit
ribosomal RNA, and standard genetic code specificities for AGR and
ATA codons. J. Mol. Evol. 39:387-399.
Griswold, C. E. (1993). Investigations into the phylogeny of the Lycosoid
spiders and their kin (Arachnida:Araneae:Lycosoidea). Smithsonian
Contrib. Zool., 539:1-39.
Haig, S. M., J. M. Rhymer, and D. G. Heckel. (1994). Population
differentiation in randomly amplified polymorphic DNA of red-cockaded
woodpeckers Picoides borealis. Mol. Ecol. 3:581-595.
Heise, P. J., L. R. Maxson, H. G. Dowling, and S. B. Hedges. (1995).
Higher-level snake phylogeny inferred from mitochondrial DNA
sequences of 12S rRNA and 16S rRNA genes. Mol. Biol. Evol. 12:259-
265.
Hennig, W. (1966). Phylogenetic systematics. University of Illinois Press.
Urbana.
Hickson, R. E., C. Simon, A. Cooper, S. S. Spicer, J. Sullivan, and D. Penny.
(1996). Conserved sequence motifs, alignment, and secondary structure
for the third domain of animal 12S rRNA. Mol. Biol. Evol. 12: 150-169.
Hillis, D. M. and J. P. Huelsenbeck. (1992). Signal, noise and reliability in
molecular phylogenetic analyses. J. Heredity. 83:189-195.
Hiss, R. H., D. E. Norris, C. H. Dietrich, R. F. Whitcomb, D. F. West, C. F.
Bosio, S. Kambhampati, J. Piesman, M. F. Antolin, and W. C. Black.
(1994). Molecular taxonomy using single-strand conformation
polymorphism (SSCP) analysis of mitochondrial ribosomal DNA genes.
Insect. Mol. Biol. 3:171-182.
Homann, H. (1971). Die Augen der Aranea:Anatomie, Ontogenese und
Bedeutung fur die Systematik (Chelicetata:Arachnida). Zeitschr. Morph.
Tiere., 69:201-272.
Huber, K. C., T. S. Haider, M. W. Muller, B. A. Huber, R. J. Schweyen, and
F. G. Barth. (1993). DNA sequence data indicates the polyphyly of the
family Ctenidae (Araneae). J. Arachnol. 21:194-201.
Kambhamampati, S. and P. T. Smith. (1995). PCR primers for the
amplification of four insect mitochondrial gene fragments. Insect. Mol.
Biol. 4:233-236.
Kayashima, I. (1962). 關於台灣產 (Psechrus Torvus). 蜘蛛. Atypus. 25:9-
11. (In Japanese)
Kimura, M. (1980). A simple model for estimating evolution rate of base
subsitutions through comparative studies of nucleotide sequences. J. Mol.
Evol. 16:111-120.
Kjer, K. M. (1997). Conserved primary and secondary structural motifs of
amphibian 12S rRNA, domain III. J. Herpetol, 31:604-607.
Kluge, A. G. (1989). A concern for evidence and a phylogenetic hypothesis
of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38:7-
25.
Kluge, A. G. and J. S. Farris. (1969). Quantitative phyletics and evolution of
anurans. Syst. Zool. 18:1-32.
Kocher, T. D., W. K. Thomas, A. Meyer, S. V. Edwards, S. Paabo, F. X.
Villablanca, and A. C. Wilson. (1989). Dynamics of mitochondrial DNA
evolution in animals: Amplication and sequencing with conserved
primers. Proc. Natl. Acad. Sci.USA. 86:6196-6200.
Kullmann, E. and W. Zimmermann. (1976). Ein neuer Beitrag zum
cribellaten-ecribellaten-problem: Beschreibung von Uroecobius
ecribellatus n. gen. N. spec. und Diskussion seiner phylogenetischen
stellung (Arachnida:Araneae:Oecobiidae). Ent. Germ. 3-29.
Kumar, S., K.Tamura, and M, Nei. (1993). MEGA: Molecular Evolution
Genetics Analysis, version 1.01. The Pennsylvania State University
Lehtinen, P. (1967). Classification of the cribellate spiders and some allied
families. Ann. Zool. Fennici. 4:199-468.
Levi, H. W. (1982). The spider genera Psechrus and Fecenia
(Araneae:Psechridae). Pac. Insects. 24:114-138.
Levi, H. W. (1986). Ant-mimicking orb-weavers of the genus Ildibaha. Proc.
Ninth. Inter. Cong. Arachnol, Panama, Washington: Smithsonian. Inst.
Press. 159-62
Liao, L. C. and J. Y. Hsiao. (1998). Relationship between population genetic
structure and riparian habitat as revealed by RAPD analysis of the
rheophyte Acorus gramineus Soland (Araceae) in Taiwan. Mol. Ecol.
7:1275-1281.
Losos, J. B., T. R. Jackman, A, Larson, K. de Queiroz, L. Rodriguez-
Scehttino. (1998). Contingency and determinism in replicated adaptive
radiations of island lizards. Science. 279:2115-2118.
Mafham, K. P. (1998). Spiders: The new compact study guide and identifier.
Chartwell Books. New Jersey.
Nei, M. and W. H. Li. (1979). Mathematical model for studying genetic
variation in terms of restriction endonuclease. Proc. Natl. Acad. Sci.
USA. 76:5269-5273.
Nicholas, K. B. and H. B. Nicholas. (1997). GeneDoc:a tool for editing and
annotating multiple sequence alignments. Distributed by the author.
Petrunkevitch, A. (1942). A study of amber spiders. Trans Connect. Acad.
Arts. Sci. 34-119.
Platnick, N. I. (1977). The Hypochiloid Spiders:A aladistic analysis, with
notes on the atypoidea (Arachnida, Araneae). Amer. Mus. Novitates.
2627:1-23.
Platnick, N. I. (1993). Advances in spider taxonomy, 1988-1991. The New
York Entomological Society and The American Museum of Natural
History, New York, pp. 846.
Rohlf, F. J. (1993). NTSYS: Numerical taxonomy and multivariate analysis
system, version 1.8 manual. Applied Viostatistics Inc., New York.
Rosemary, G. G., H. B. Croom, and S. R. Palumbi. (1994). Multiple origins
of a spider radiation in Hawaii. Proc. Natl. Acad. Sci. USA. 91:2290-
2294.
Saitou, U. and M. Nei. (1987). The neighbor-joining methods: A new
method for reconstructing phylogenetic trees. Mol. Evol. Biol. 4:406-425.
Selden, P. A. (1989). Orb weaving spiders in the early Cretaceous, Nature
(Lond). 340-711.
Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu, and P. Flook. (1994).
Evolution, weighting, and phylogenetic utility of mitochondrial gene
sequences and a compilation of conserved polymerase chain reaction
primers. Ann. Entomol. Soc. Am. 87:651-701.
Simons, A. M., and R. L. Mayden. (1998). Phylogenetic relationships of the
western north American Phoxinins (Actinopterygii:Cyprinidae) as
inferred from mitochondrial 12S and 16S ribosomal RNA sequences.
Mol. Phylogenet. Evol. 9:308-329
Springer, M. S., L. J. Hollar, and A. Burk. (1995). Compensatory
substitutions and the evolution of the mitochondrial 12S rRNA gene in
mammals. Mol. Biol. Evol. 12:1138-1150.
Swofford, D. L. (1993). PAUP:Phylogenetic analysis using parsimony
(PAUP), Version 3.11. Smithsonian Institution, Washington, DC.
William, J., O. Ballard, G. J. Olsen, D. P. Faith, W. A. Odgers, D. M.
Rowell, and P. W. Atkinson. (1992). Evidence from 12S ribosomal RNA
sequences that onychophorans are modified arthropods. Science.,
258:1345-1347.
Winnepenninckx, B., Y. Van de peer, T. Backeljau, and R. De Wachter.
(1995). CARD: a drawing tool for nucleic acid secondary structures.
Biotechniqies. 18:1060-1063.
Wolstenholme, D. R. (1992). Animmal mitochondria DNA: Structure and
evolution. Int. Rev. Cytol. 141:173-217.
Yoshida, H. (1978). On some Formosan spiders. Atypus. 71:21-28.
Zardoya, R., and A. Meyer. (1996). The complete nucleotide sequence of the
mitochondrial genome of the lungfish ( Protopterus dolloi) supports its
phylogenetic position as a close relative of land vertebrates. Genetics.
42:1249-1263.
Zehethofer, K. and C. Sturmbauer. (1998). Phylogenetic ralationships of
central European wolf spiders (Araneae:Lycosidae) inferred from 12S
ribosomal DNA sequences. Mol. Phylogenet. Evol. 10:391-398.
李長林. (1964). 台灣之蜘蛛. 大江印刷廠, 84頁.
呂柏緯. (1998). 由粒線體 16S rDNA 核酸序列分析褸網蜘蛛之親緣關
係. 國立台灣師範大學生物系碩士論文.
林朝棨、周瑞燉. (1974). 台灣地質. 台灣文獻委員會. 台北.
鄭可大、陳志輝、周昌宏. (1994). Random amplified polymorphic DNA 在