簡易檢索 / 詳目顯示

研究生: 江泓逸
Horng-Yi Chiang
論文名稱: 探討添加氬氣對「微米晶鑽石-超奈米晶鑽石」之特性的影響研究
Influence on characteristics of “micro-crystalline diamond/ultra nano-crystalline diamond” in addition of argon gas
指導教授: 鄭秀鳳
Cheng, Hsiu-Fung
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 177
中文關鍵詞: 超奈米晶鑽石微米晶鑽石電漿輔助化學汽相沉積法可見光發射光譜穿透式電子顯微術
英文關鍵詞: UNCD, MCD, MPECVD, OES, TEM
論文種類: 學術論文
相關次數: 點閱:193下載:43
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鑽石薄膜具有優異之物理、化學、機械性質,因而擁有甚高應用潛力,所以鑽石薄膜之合成為目前熱門之研究課題;尤其是鑽石薄膜具有好的電子場發射特性,適於製作場發射元件,更是重要的研究方向。而化學汽相沉積法(Chemical Vapor Deposition, CVD)是成長鑽石薄膜諸多方法中最廣為使用之合成技術。
    本論文研究中,我們使用微波電漿輔助化學汽相沉積法(Microwave Plasma Enhanced Chemical Vapor Deposition, MPECVD)成長鑽石薄膜,探討在不同超奈米晶鑽石(UNCD)薄膜上成長微米晶鑽石(MCD)薄膜的生長機制、微結構特性及其對MCD/UNCD複合鑽石薄膜場發特性的影響。我們並使用拉曼光譜,場發射掃描電子顯微術(FESEM),可見光發射光譜(OES)與穿透式電子顯微術(TEM)分析鑽石薄膜結構特性,以探討其成長機制。
    本研究是首先在矽基板上成長一層超奈米晶鑽石(UNCD)薄膜作為晶核,再沉積一層微米晶鑽石(MCD)薄膜以合成MCD/UNCD複合鑽石,並探討第二階段沉積微米晶鑽石製程對MCD/UNCD複合鑽石場發特性的影響。第一部分的研究探討在氫氣/甲烷電漿中添加不同比例氬氣之效應;可以發現在添加50 %氬氣時,MCD/UNCD複合式鑽石有最佳之電子場發射特性:(MCD50)1h/UNCD1h薄膜之起始電場為6.50 V/μm;(MCD50)1h/UNCD3h薄膜之起始電場為5.0 V/μm。從TEM分析知是由於其含有較其他添加比例來得多的MCD/UNCD雙相晶,使得晶界形成奈米石墨相所致。第二部分的研究探討當選定50 %的氬氣添加為最佳化的鍍膜參數後,改變沉積MCD時間的效應,發現沉積一小時的MCD/UNCD複合鑽石薄膜,仍舊擁有最佳之場發射特性。
    本研究所開發之MCD/UNCD複合鑽石薄膜最佳場發射性可以達到:起始電場為5.0 V/μm;在27.5 V/μm外加電場,場發射電流密度可達0.70 mA/cm2。

    Diamond films possess excellent physical, chemical, and mechanical properties, such that the syntheses of diamond films have been the focus of research. Moreover, the diamond films own marvelous field emission properties and have great patential for the application on the electron field emission devices. The chemical vapor deposition (CVD) has been the most widely utilized process for growing the diamond films.
    In this study, we used microwave plasma enhanced chemical vapor deposition (MPECVD) technique to synthesize microcrystalline diamond/ultrananocrystalline diamond (MCD/UNCD) composite films, for the purpose of investigating the growth mechanism and the related microstructural characteristics of the MCD/UNCD composite films. We first grow ultrananocrystalline diamond (UNCD) thin films as nucleation layers, followed by a secondary MPECVD process for growing microcrystalline diamond (MCD) thin films. We used Raman spectroscopy, field emission scanning electron microscopy (FESEM), optical emission spectroscopy (OES), and transmission electron microscopy (TEM) to characterize the MCD/UNCD thin films. The growth mechanism was discussed based on these investigations.
    In the first part of research, different proportion of argon (0-90 %) was added into CH4/H2 plasma for the deposition of the secondary MCD layer. Among them, the 50% Ar plasma results in the best electron field emission properties, that is, the turn-on field of 6.50 V/μm for (MCD50)1h/UNCD1h and of 5.0 V/μm for (MCD50)1h/UNCD3h films. TEM examinations indicated that the two step MPECVD process markedly modified the gannular structure of UNCD films, resulting in large-grain/small-grain duplex microstructure. In the second part of research, we changed the deposition time for growing the MCD layer (with 50% Ar plasma). We observe that 1 h deposition of MCD layer leads to the best electron field emission properties. The best electron field emission properties obtainable are:turn-on field of 5.0 V/μm with EFE current density of 0.70 mA/cm2 at an applied field of 27.5 V/μm.

    中文摘要………………………………………………………I 英文摘要………………………………………………………II 誌謝……………………………………………………………III 目錄……………………………………………………………IV 圖目錄…………………………………………………………VII 表目錄…………………………………………………………XI 第一章 緒論…………………………………………………………………………1 1.1鑽石薄膜的特性與應用…………………………………………………………1 1.1.1 鑽石及鑽石薄膜的特性……………………………………………………1 1.1.2 鑽石薄膜之應用……………………………………………………………3 1.1.3 微米及超奈米晶鑽石薄膜…………………………………………………5 1.2 微米及超奈米晶鑽石薄膜之合成方法與理論………………………………8 1.2.1 合成鑽石薄膜之方法………………………………………………………8 1.2.2 鑽石膜成核相關理論……………………………………………………10 第二章 實驗方法…………………………………………………………………33 2.1薄膜製備…….………………………………………………………………33 2.1.1 實驗設備與方法…………………………………………………………33 2.1.1.1 實驗設備………………………………………………………33 2.1.1.2 實驗方法………………………………………………………35 2.2 薄膜物性量測…………………………………………………………39 2.2.1光學發射光譜(Optical Emission Spectra, OES)………………40 2.2.2拉曼光譜(Raman spectra)..…………………………………………43 2.2.3掃描式電子顯微結構(Scanning Electron Microstructure, SEM)…45 2.2.4電子場發射(Electron Field Emission, EFE)……………………46 2.2.5穿透式電子顯微結構( Transmission Electron Microstructure, TEM)…51 第三章 實驗結果與討論…………………………………………………………67 3.1成長微米晶鑽石薄膜以及成長超奈米晶鑽石薄膜…………………………67 3.1.1成長微米晶鑽石以及超奈米晶鑽石薄膜與其特性研究……………67 3.1.1.1光學發射光譜分析………………………………………………………67 3.1.1.2拉曼光譜分析……………………………………………………………69 3.1.1.3掃描式電子顯微結構分析………………………………………………70 3.1.1.4電子場發射分析…………………………………………………………70 3.2在成長微米晶鑽石薄膜中添加不同比例之氬氣……………………………71 3.2.1沉積1小時超奈米晶鑽石上成長1小時微米晶鑽石薄膜與其特性研究…71 3.2.1.1光學發射光譜分析………………………………………………………71 3.2.1.2拉曼光譜分析……………………………………………………………73 3.2.1.3掃描式電子顯微結構分析………………………………………………74 3.2.1.4電子場發射分析…………………………………………………………75 3.2.1.5穿透式電子顯微結構分析………………………………………………77 3.2.2 沉積3小時超奈米晶鑽石上成長1小時微米晶鑽石薄膜與其特性研究…85 3.2.2.1拉曼光譜分析……………………………………………………………85 3.2.2.2掃描式電子顯微結構分析………………………………………………86 3.2.2.3電子場發射分析…………………………………………………………87 3.3改變沉積微米晶鑽石薄膜之時間……………………………………………88 3.3.1沉積1小時超奈米晶鑽石上成長1小時微米晶鑽石薄膜與其特性研究…89 3.3.1.1拉曼光譜分析……………………………………………………………89 3.3.1.2掃描式電子顯微結構分析………………………………………………89 3.3.1.3電子場發射分析…………………………………………………………90 3.3.2沉積3小時超奈米晶鑽石上成長1小時微米晶鑽石薄膜與其特性研究…90 3.3.2.1拉曼光譜分析……………………………………………………………90 3.3.2.2掃描式電子顯微結構分析………………………………………………91 3.3.2.3電子場發射分析…………………………………………………………91 第四章 總結與展望………………………………………………………………143 4.1 結論…………………………………………………………………………143 4.1.1在成長微米晶鑽石薄膜中添加不同比例之氬氣…………………143 4.1.2改變沉積微米晶鑽石薄膜之時間…………………………………144 4.2 未來展望……………………………………………………………………144 第五章 參考文獻…………………………………………………………………146 次研究 S1臨場監控脈衝雷射鍍膜法合成光電用氧化鋅薄膜的電漿發射光譜………157 S2脈衝雷射鍍膜法合成氧化鋅薄膜的晶相與電性研究………………………161 S3 CVD鑽石薄膜隨甲烷流量變化之物性研究…………………………………165 S4 Flow rate dependant growth and structural properties of CVD diamond films, NDNC 2008…169 本研究發表於美國國際期刊之重要研究成果 Hsiu-Fung Cheng, Horng-Yi Chiang, Chuang-Chi Horng, Huang-Chin Chen, Chuan-Sheng Wang, and I-Nan Lin, “Enhanced electron field emission properties by tuning the microstructure of ultrananocrystalline diamond film,” Journal of Applied Physics, 109 033711-1-033711-8 (2011)……170

    [1]J. E. Field, “The Properties of Diamonds,” (Academic, London, 1979).
    [2]Z. H. Huang, P. H. Cutler, N. M. Miskovsky, and T. E. Sullivan, “Calculation of electron field emission from diamond surface,” revue,“Le Vide, Les Couches Minces”-Supplement au No 271-Mars-Avril, 92 (1994).
    [3]C. Wang, A. Garcia, D. C. Ingram, M. Lake, and M. E. Kordesch, “Cold field-emission from CVD diamond films observed in emission electron-microscopy,” Electronics Letters, 27 (16), 1459-1461 (1991).
    [4]N. S. Xu, R. V. Latham, and Y. Tzeng, “Field-dependence of the area-density of cold electron-emission sites on broad-area CVD diamond films,” Electronics Letters, 29 (18), 1596-1597 (1993).
    [5]A. Modinos, Field, “Thermionic, and Secondary Electron Emission Spectroscopy,” (Plenum, New York, 1984).
    [6]A. L. Lavoisier, “Memoire Academie des Science,” 564 (1882).
    [7]P. W. Bridgman, “Synthetic Diamonds,” Scient. Am., 193, 42 (1955).
    [8]W. G. Eversole, U.S. Patent No. 3, 030,188 (1962).
    [9]Yung-Hsin Chen, Chen-Ti Hu, and I-Nan Lin, “Defect structure and electron field-emission properties of boron-doped diamond films,” Applied Physics Letters, 75 (18), 2857-2859 (1999).
    [10]C. Y. Wang, F. L. Zhang, T. C. Kuang, and C. L. Chen, “Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3,” Thin Solid Films, 496 (2), 698-702 (2006).
    [11]Nevin N. Naguib, Jeffrey W. Elam, James Birrell, Jian Wang, David S. Grierson, and Bernd Kabius, “Enhanced nucleation, smoothness and conformality of ultrananocrystalline diamond (UNCD) ultrathin films via tungsten interlayers,” Chemical Physics Letters, 430 (4-6), 345-350 (2006).
    [12]L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, and Y. Chen, “Nanocrystalline diamond from carbon nanotubes,” Applied Physics Letters, 84 (15), 2901-2903 (2004).
    [13]P. W. May and Yu. A. Mankelevich, “Experiment and modeling of the deposition of ultrananocrystalline diamond films using hot filament chemical vapor deposition and Ar/CH4/H2 gas mixtures: A generalized mechanism for ultrananocrystalline diamond growth,” Journal of Applied Physics, 100 024301-1-024301-9 (2006).
    [14]L. Kreines, G. Halperin, I. Etsion, M. Varenberg, A. Hoffman, and R. Akhvlediani, “Fretting wear of thin diamond films deposited on steel substrates,” Diamond and Related Materials, 13 (9), 1731-1739 (2004).
    [15]C.K. Lee, “Wear-corrosion behavior of ultra-thin diamond-like carbon nitride films on aluminum alloy,” Diamond and Related Materials, 17 (3), 306-312 (2008).
    [16]J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond,” Applied Physics Letters, 81 (12), 2235-2237 (2002).
    [17]M. Nesladek, D. Tromson, Bergonzo, P. Hubik, P. Mares, J.J. Kristofik, J. Kindl, and Gruen, D., “Low-temperature magnetoresistance study of electrical transport in N- and B-doped ultrananocrystalline and nanocrystalline diamond films,” Diamond & Related Materials, 15 (4-8), 607-613 (2006).
    [18]Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, and I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires,” Diamond and Related Materials, 17 (4-5), 753-757(2008).
    [19]P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films,” Journal of Applied Physics, 103 043720-1-043720-7 (2008).
    [20]W. Zhu, “Vacuum Microelectronics,” John Wiley & Sons (2001).
    [21]S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2,” Journal of Applied Physics, 90 118-122 (2001).
    [22]Ferrari, Andrea Carlo, Robertson, and John, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 362 2477 (2004).
    [23]M. Veres, S. Tóth, and M. Koós, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering,”Applied Physics Letters, 91 031913-1- 031913-3 (2007).
    [24]M. Veres, S. Tóth, E. Perevedentseva, A.Karmenyan, and M. Koós, “Raman spectroscopy of UNCD grain boundaries,”Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 115 (2009).
    [25]A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond,” Physical Review B, 63 121405-1-121405-4 (2001).
    [26]James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond,” Journal of Applied Physics, 93 5606-5612 (2003).
    [27]Chao Liu, Xingcheng Xiao, Hsien-Hau Wang, Orlando Auciello, and John A. Carlisle , “Electron paramagnetic resonance study of hydrogen-incorporated ultrananocrystalline diamond thin films,” Journal of Applied Physics, 101 123924-1-123924-6 (2007).
    [28]M. Wiora, K. Bruhne, A. Floter, P. Gluche, T. M. Willey, S. O. Kucheyev, A. W. Van Buuren, and H. J. Fecht, “Grain size dependent mechanical properties of nanocrystalline diamond films grown by hot-filament CVD,” Diamond & Related Materials, 18 927-930 (2009).
    [29]S. J. Ray and G. M. Hieftje, “ Microwave plasma torch -atmospheric-sampling glow discharge modulated tandem source for the sequential acquisition of molecular fragmentation and atomic mass spectra ,” Analytica Chimica Acta, 445 (1), 35 (2001).
    [30]A. T. Sowers, B. L. Ward, S. L. Englih, and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films,” Journal of Applied Physics, 86 3973-3982 (1999).
    [31]K. H. Chen, D. M. Bhusari, J. R. Yang, S. T. Lin, T. Y. Wang, and L. C. Chen,“Highly transparent nano-crystalline diamond films via substrate pretreament and methane fraction optimization,” Thin Solid Films, 332 (1-2), 34-39 (1998).
    [32]Huimin Liu and David S. Dandy, “Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages,” Noyes Publication, Park Ridge, New Jersey (1995).
    [33]Robert F. Davis, “Diamond Films and Coatings Development, Properties, and Applications,” Noyes Publications, Park Ridge, New Jersey (1992).
    [34]J. E. Green, S. A. Barnett, J. E. Sundgren, and A. Rockett, “Plasma-surface interactions and processing of materials,” 28-31(1990).
    [35]X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, “Epitaxial diamond thin films on (001) silicon substrate,” Applied Physics Letters, 62 3438-3440 (1993).
    [36]S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films,” Applied Physics Letters, 57 (25), 2646-2648 (1990).
    [37]N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films,” Journal of Crystal Growth, 242 (3-4), 362-366 (2002).
    [38]H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages,” Noyes (1995).
    [39]Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz, “Orientation
    relationship between chemical vapor deposited diamond and graphite substrates,” Journal of Applied Physics, 73(2), 711-715 (1993).
    [40]D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth,” Applied Physics Letters, 54 (5), 416-417 (1989).
    [41]N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate,” Journal of Materials Research, 9 (10), 2695 (1994).
    [42]W. L. Wang, K. J. Liao, L. Fang, J. Esteve, and M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition,” Diamond and Related Materials, 10 (3-7), 383-387 (2001).
    [43]S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition,” Applied Physics Letters, 58 (10), 1036-1038 (1991).
    [44]B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy,” Physical Review B, 45 (19), 11067-11084 (1992).
    [45]J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on ilicon,” Journal of Applied Physics, 79 (8), 4388-4396 (1996).
    [46]P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films,” Physical Review B, 56 (4), 2183-2190 (1997).
    [47]R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films,” Journal of Applied Physics, 79 768-775 (1996).
    [48]R. Stöckel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions,” Journal of Applied Physics, 83 531-539 (1998).
    [49]J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si,” Applied Physics Letters, 66 (24), 3287 (1995).
    [50]S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond,” Applied Physics Letters, 66 (23), 3117-3119 (1995).
    [51]L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100),” Journal of Applied Physics 76 (11), 7483-7486 (1994).
    [52]S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step.” Journal of Applied Physics 84 (4), 1870-1880 (1998).
    [53]Debabrata Pradhan, Li-Ju Chen, Yen-Chih Lee, Chi-Young Lee, Nyan-Hwa Tai, and I-Nan Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature,” Diamond and Related Materials, 15 1779-1783 (2006).
    [54]J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor- deposition,” Journal of Materials Science, 27 (23), 6324-6330 (1992).
    [55]Serapinas, P. D. and Shalkauskas, Y. S., “Homology and concentration sensitivity in equilibrium excitation,” Zh. Prikl. Spektrosk. 251 496–501(Translation) (1976).
    [56]Podder, N. K, Johnson, J. A. III Loch S D, and Pindzola M S, “Helium line intensity ratio in microwave-generated plasmas,” Physics of Plasmas, 11 (12), 5436-5443 (2004).
    [57]顏澤宇, “硼摻雜在偏壓下對鑽石膜沈積的影響,” 國立台灣師範大學物理研究所碩士論文, 28-32 (2004).
    [58]Chiharu Kimura, Satoshi Koizumi, Mutsukazu Kamo, Takashi Sugino, “Behavior of electron emission from phosphorus-doped epitaxial diamond films,” Diamond and Related Materials, 8 (2-5), 759-762 (1999).
    [59]Yu-Fen Tzeng, Yen-Chih Lee, Chi-Young Lee, Hsin-Tien Chiu, I-Nan Lin, “Electron field emission properties on UNCD coated Si-nanowires,” Diamond and Related Materials, 17 (4-5), 753-757 (2008).
    [60]P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “ Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films,” Journal of Applied Physics 103 043720-1-043720-7 (2008).
    [61]T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond,” Encyclopedia of Nanoscience and Nanotechnology, X, I (2003).
    [62]Robert Gomer, Field emission and field ionization, American Institute of Physics, 21-29 (1993).
    [63]陳皇欽, “超奈米微晶鑽石薄膜之微結構及電子場發射特性之研究,” 淡江大學物理學系博士論文, 58-59 (2010).
    [64]羅聖全, “以先進影像能譜電鏡技術:研究銅金屬化製程中低介電常數材料之介電性質與熱穩定性,”, 國立清華大學工程與系統科學系博士論文, Ch.2 (2003).
    [65]James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “Bonding structure in nitrogen doped ultrananocrystalline diamond,” Journal of Applied Physics, 93 (9), 5606-5612 (2003).
    [66]C.Z. Wang and K.M. Ho,” Structure, dynamics, and electronic properties of diamond-like amorphous carbon,” Physical Review Letters, 71 (8), 1184-1187 (1993).
    [67]李彥志, “元件用奈米晶鑽石薄膜,” 國立清華大學材料科學與工程學系博士論文, 80-81 (2006).

    下載圖示
    QR CODE