研究生: |
周于賢 |
---|---|
論文名稱: |
SUS444不銹鋼薄板應用CO2雷射之銲接性質研究 A Study on the Weldability of SUS444 Stainless Steel thin plate by CO2 Laser Welding |
指導教授: |
程金保
Cheng, Chin-Pao |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 柱狀晶結構 |
論文種類: | 學術論文 |
相關次數: | 點閱:174 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肥粒鐵系不銹鋼具有優異抗高溫氯氣氧化腐蝕性能,近年來常被運在太陽能熱水器面板、熱水槽、水管管路等。本研究針對SUS 444肥粒鐵系不銹鋼薄板施以CO2雷射銲接,利用改變不同銲接走速,探討不同入熱量對SUS 444不銹鋼銲件微觀組織及機械性質之影響。經雷射銲接之試片銲道以XRD分析及顯微鏡觀察組織變化,再分別進行拉伸測試、硬度測試與拉伸破斷面型態觀察,最後再探討銲接試片銲道附近析出物變化情況,與電化學測試做比較,以瞭解材料之抗腐蝕性變化。研究結果發現SUS 444不銹鋼在母材與銲接後之銲道皆為單相肥粒鐵相組織,利用CO2雷射銲接後,若銲接走速越慢,入熱量較高,則在銲道區域會形成粗大柱狀晶結構,導致機械性質較差。隨銲接走速提昇,銲道柱狀晶有細化現象,銲道硬度值越高,延伸率與拉伸強度亦有增加趨勢。此外,銲接走速降低也會影響銲件熱影響區析出物的型態,導致含鈮析出物團聚在晶界附近,降低材料的抗腐蝕性。
Ferritic stainless steels have recently been received increasing interest for application in the solar water heater panels and hot-water tank, due to the low thermal expansion coefficient, excellent resistance to high-temperature oxidation, and stress corrosion cracking. The objective of this study is to demonstrate the feasibility of CO2 laser welding for joining of SUS 444 ferritic stainless steel by different welding speeds. Microstructures and precipitations of the welds will be examined using optical microscopy (OM) and scanning electron microscopy (SEM). This experiment performs micro-hardness measurement in accordance with welding areas after CO2 laser welding. Moreover, the specimens have been cut vertical to weld pass after welding and then perform tensile test using universal material testing machine in order to explore the joining quality of welding joints. At the same time, SEM has been used to observe the fractured surface of the tensile testing specimens. Finally, electrochemistry experiments were performed in an aqueous solution of 3% NaCl to explore the Pitting corrosion resistance of the welds. The experimental results have found that microstructure of 444 stainless steel welds is completely ferrite single-phase structure, including base metal and welding path. However, the welding fusion zones present coarse columnar structure when the specimens have lower welding speed, which will result in the mechanical properties degradation of weldments. With the increase of welding speed, the solidification zones have fine columnar structure and the weldments show higher microhardness in the welding fusion zone. At the same time, the tensile strength and elongation have been promoted, and the fracture site appears in the base metal. Furthermore, the lower welding speed will result in the aggregation of Nb-contained precipitations in the grain boundaries of heat-affected zone, which will bring the pitting corrosion resistance degradation of weldments.
參考文獻
1. X. Wang, H. Ishii, K. Sato, “Fatigue and microstructure of welded joints of metal sheets for automotive exhaust system”, JSAE Rev, 24, (2003), pp. 295-301.
2. N. Fujita, K. Ohmura, A. Yamamoto, “Changes of microstructures and high temperature properties during high temperature service of Niobium added ferritic stainless steels”, Mater Sci Eng A, 351, (2003), pp. 81-272.
3. E. Folkhard, “Welding metallurgy of stainless steels”, New York:Spring-Verlag Wien, (1988).
4. N. Fujita, H. Bhadeshia, M. Kikuchi, “Precipitation sequence in niobium-alloyed ferritic stainless steel”, Modelling Simul Mater Sci Eng, 12, (2004), pp. 273-284.
5. N. Fujita, K. Ohmura, A. Yamamoto, “Changes of micro structures and high temperature properties during high temperature service of Niobium added ferritic stainless steels”, Mater Sci Eng A, 351, (2003), pp. 81-272.
6. Y. Yazawa, Y. Ozaki, Y. Kato. “Development of ferritic stainless steel sheets with excellent deep drawability by ﹛1 1 1﹜ recrystallization texture control”, JSAE Rev, 24, (2003), pp8-483.
7. V. Kuzucu, M. Aksoy, M.H. Korkut, “The effect of string carbide-forming elements such as Mo, Ti, V and Nb on the microstructure of ferritic stainless steel”, J Mater Process Technol, 82, (1998), pp. 165-171.
8. H. Yan, H. Bi, X. Li, Z. Xu, “Microstructure and texture of Nb+Ti stabilized ferritic stainless steel”, Mater Charact, 59, (2008), pp. 1741-1746.
9. N. Fujita, H. Bhadeshia, M. Kikuchi, “Modeling M6C precipitation in niobium-alloyed ferritic stainless steel”, Metall Mater Trans A, 33, (2002), pp. 3339-3347.
10. E. E, K. Asakura, T .Koseki, et al, “Effect of boron, niobium and titanium on grain growth in ultra high purity 18% Cr ferritic stainless steels ISIJ Int”, 9, (2004), pp. 1568-1575.
11. M. Fujita, K. Ohmura, M. Kikuchi, “Effect of Nb on hogh-temperature properties for ferritic stainless steel”, Scripta mater, 35, (1996), 705-710.
12. M. Aksoy, V. Kuzucu, M.H. Korkut, “The effect of niobium and homogenization on the wear resistance and some mechanical properties of ferritic stainless steel containing 17-18wt% chromium”, J Mater Process Technol, 91, (1999), pp. 172-177.
13. M. Aksoy, V. Kuzucu, M.H. Korkut, “The influence of strong carbide-forming elements and homogenization on the wear resistance of ferritic stainless steel”, Wear, 211, (1997), pp. 265-270.
14. J. Rassizadehghani, H. Najafiy, M .Emamy, “Mechanical properties of V-, Nb-, and Ti-bearing as-cast microalloyed steels”, J Mater Sci Technol, 23, (2007), 779-784.
15. H. Yan, H. Bi, X. Li, Z. Xu.“Precipition and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging”,
Materials Characterization, 60, (2009), pp. 523-533.
16. 閻吉祥、鄭壽昌,“雷射原理與技術”,新文京開發出版股份有限公司,(2007) ,pp. 120-121。
17. 張國順、鄭壽昌,“現代雷射製造技術”,新文京開發出版股份有限公司,(2006)。
18. 石順祥,“物理光學與應用光學”,西安電子科技大學出版社,(2000)。
19. 丁勝懋,雷射工程導論,第三版,中央圖書出版社,(1993)。
20. 浦井直樹,西川和一,“Laser 加工HIGHTEK 文庫(2) ”,產報出版,(1993)。
21. W. Waddell, G. M. Davies, “Laser weld tailored blanks in the automotive industry”, Welding & Metal Fabrication, (1995), pp. 104.
22. W. M. Steen, “Laser Material Processing 2nd ed.”, Springer, (1998).
23. A. J. Hick, “Industrial Laser and Their Applications”, Prentice-Halln Inc, (1985).
24. D. M. Roessler, “An Introduction to the Laser Processing of Material ”, The Annual Review of Laser Processing, (1985), pp.16-30.
25. E. M. Breinan, B. H. Kear, and C. M. Banas, “Processing of Material”,
The Annual Review of Laser Processing, (1985), pp.16-30.
26. C. E. Albright, “Pulsed CO2 Laser Welding Proceeding of the ASM”,
Trends in Welding Research, New Orleans, Louisiana, (1981), pp.653-665.
27. W. W. Duley, “Laser welding”, John Wiley & Sons, Inc, (1999).
28. R. A. Wilgoss, J. H. Megaw, J. N. Clarke, “Laser Welding of steels for
Power Plant”, Optics and Laser tech, 11, (1979), pp. 117.
29. C. Banas, “High Power Laser Welding”, The Industrial Laser Annual
Handbook, (1986), pp.69-86.
30. C. E. Albright, “Shielding Gas Effects in Pulsed Carbon Dioxid Laser Spot
Welding”, Laser Material Proceeding of the 5th International Congress on Applications of laser and Electro-Optics ICALEO’86, IFS Pub, (1986), pp. 76.
31. G. Herziger, “The Influence of Laser-Induced Plasma on Laser Material
Processing”, The Industrial Laser Annual Handbook, PennWell Pub, (1986), pp.108-115.
32. Y. Arata, N. ABE, T. Oda, “Beam Hole Behavior During Laser Beam
Welding”, ICALEO’83, pp. 59-66.
33. R. Castro, and R. Tricot, “Études des transformations isothermes dans les aciers inoxydables semi-ferritiques á 17% de chrome”, Memoires Scientifiques de la Revue de Metallurgie, (1962), Part 1, 59:571-586; Part 2, 59:587-596.
34. J. C. Villafuerte, E. Pardo and H. W. Kerr, “The effect of alloy composition and welding conditions on columnar-equiaxed transitions in ferritic stainless steel gas-tungsten arc welds”, Metallurgical and Materials Transactions A, 21,(1990), pp. 2009-2019.
35. H. Thielsch, “Physical and welding metallurgy of chromium stainless”, Welding Journal, 30, (1951), pp. 209s-250s.
36. J. J. Demo, “Structure and constitution of wrought ferritic stainless steels”, in Handbook of Stainless Steels, D. Peckner and I. M. Bernstein, eds., McGraw-Hill, New York, (1977).
37. F. J. Shprtsleeve, and M. E. Nicholson, “Transformations in ferritic chromium steels between 1100 and 1500℉ (595 and 815℃) ”, Trans.ASM, 1951, pp. 142-156.
38. H. Kiesheyer, and H. Brandis, “Ausscheidungs-und Versprödungsverhalten nickel-haltiger Superferritic (Precipitation and embrittlement of nickel containing Superferites) ”, Zeitßchrift für Werkstoffech, 8, (1977), pp.69-77.
39. E. Baserlecken, W. Fischer, and K. Lorenz, “Investigations concerning the transformation behavior, the botched impact toughness and the susceptibility to intergranular corrosion of iron-chromiun alloys with chromium contents to30%”, Stahl und Eisen, 81, (1961), pp.768.
40. M. Semchysen, A. P. Bond, and H.J. Dundas, “Effects of composition on ductility and toughness of ferritic stainless steels”, in Proceedings of the Symposium Toward Improved Ductility and Toughness, Kyoto, Japan, 1971, pp. 239.
41. J. F. Grubb, R. N. Wright, “The role of C and N in the brittle fracture of Fe-26Cr”, Metallurgical Transactions, 10A, (1979), pp. 1247-1255.
42. R. N. Wrigh, “Toughness of ferritic stainless, in Toughness of Ferritic Stainless Steels, ASTM STP 706, R. A. Lula, ed”, American Society for Testing and Materials, West Conshohocken, (1980), pp. 2-33.
43. Y. Nishio, T. Ohmae, Y. Yoshida, and A. Miura, “Weld cracking and mechanical properties of 17% chromium steel weldment”, welding Journal, 50, (1971), pp. 9s-18s.
44. D. H. Kah, D. W. Dickinson, “Weldability of ferritic stainless steels”, Welding Journal, 60, (1981), pp. 135s-142s.
45. S. DeRosa, M. H. Jacobs, D. G. Jones, and C. Sherhod, “Studies of TIG weld pool solidification and weld bend microstructure in stainless steel tubes, in Solidification and Casting of Metals”, Metals Society, London, (1979), pp. 416.
46. J. M. Sawhill, , A. P. Jr, Ductility and toughness of stainless steel welds, Welding Journal, 55, (1976), pp. 33s-41s.
47. N. G. Fontana, N. D. Greene, “Corrosion Engineering”, McGraw-Hill, (1986).
48. M. C. Baykul, “Preparation of shape gold tips for STM by using electrochemical etching method”, Materials Science and Engineer B, 74, (2000), pp. 229-233.
49. A. V. Benedetti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot, and W. G. Proud, “Electrochemical studies of copper, copper-aluminum and copper-aluminum-silver”, Electrochemica Acta, 40, (1995), pp. 2657-2668.
50. Y. Tomita, Y. Hasegawa, and K. Kobayashi, “Nano-scale Cu metal patterning by using an atomic force microscope”, Applied Surface Science, 244, (2005), pp. 107-110.
51. J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow, and P. Marcus, “Insitu STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu(111) in alkaline solutions.”, Electrochemica Acta, 48, (2003), pp.1157-1167.
52. 柯賢文,腐蝕及其防制,全華科技出版社,台北,1995,pp. 127-135。
53. 左景伊,應力腐蝕破裂, 西安交通大學出版社,陝西西安,1985。
54. W. D. Callister, “Materials Science and Engieering an Introductuin 4nd Ed”.
55. R. C. Newman, Corrosion Science, 25, (1985), pp. 331.
56. A.S.M. Paroni, and N. Alonso-Falleiros, “Sensitization and pitting corrosion resistance of ferritic stainless steel aged at 800℃”, Corrosion Engineering Section, 62, (2006), pp.1040.
57. ASTM-E8, “Standard Test Methods for Tension Testing of Metallic Materials”, (1991), pp. 150-167.
58. J. C. Villafuerte, E. Pardo, and H. W. Kerr, “The effect of alloy composition and welding conditions on columnar-equiaxed transitions in ferritic stainless steel gas-tungsten arc welds”, Metallurgical and Materials Transactions A, 21, (1990), pp. 2009-2019.
59. Kou S, “Welding metallurgy”, New York: John Wiley & Sons, (1987).
60. H. Yan, H. Bi, and X. Li, “Preciptation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging”, Materials Characterization, 60, (2003), pp. 204-209.