簡易檢索 / 詳目顯示

研究生: 陳昱榮
Chen,Yu-Rong
論文名稱: 汽車空調系統使用HC-600a冷媒之性能評估
The Performance Evaluation of Automotive Air Conditioning System Uses HC-600a Refrigerant
指導教授: 呂有豐
Lue, Yeou-Feng
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: 替代冷媒汽車空調HC-600a冷媒碳氫冷媒
英文關鍵詞: Alternate refrigerants, Automobile air-conditioning, HC-600a refrigerants, Hydrocarbon refrigerants
DOI URL: http://doi.org/10.6345/NTNU202000732
論文種類: 學術論文
相關次數: 點閱:150下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究針對汽車空調系統換裝HC-600a冷媒之性能評估之研究。研究使用汽車空調模擬器作為實驗設備,並參考CNS 14464與CNS 7897規範所設定,研究探討系統的蒸發口溫度、壓縮比、冷凍效果、性能係數、能源效率。首先選擇汽車空調系統HFC-134a冷媒最佳充填量,以400 g、500 g、550 g、600 g與650 g充填實驗,實驗以蒸發器出口溫度、壓縮比、冷凍效果、性能係數、能源效率進行判斷,實驗以500 g冷媒的蒸發器出口溫度9.9 ℃、壓縮比6.4、冷凍效果146 kJ/kg、性能係數3.09與能源效率3.25最佳。HC-600a冷媒充填以HFC-134a冷媒500 g的30 %、35 %、40 %與50 %進行1hr長時間運轉實驗並選擇最佳HC-600a冷媒充填量。實驗結果得知在HC-600a冷媒35 %充填量比其他HC-600a冷媒35 %、40 %與50 %來的較佳,在與HFC-134a冷媒500 g進行比較分析其壓縮比低42.9 %、冷凍能力高49.12 %、性能係數高35.2 %與能源效率44.57 %。在選擇最佳HC-600a冷媒與HFC-134a冷媒充填量後,進行轉速實驗與環境負載實驗測試。轉速實驗以1000 rpm - 1800 rpm - 3000 rpm進行,實驗結果1000 rpm時,HC-600a冷媒壓縮比低於52.6 %、冷凍能力高於51.7 %、性能係數高於32.7 %及能源效率32.73。3000 rpm 時,HC-600a冷媒壓縮比低於28.79 %、冷凍能力高於49.71 %、性能係數高於41.9 %及能源效率41.8 %。環境負載實驗以30 ℃ - 35 ℃ - 40 ℃ - 45 ℃。在45 ℃時,HC-600a冷媒壓縮比低於46.66 %、冷凍能力高於49.7 %、性能係數高於93.84 %及能源效率37.8。在40 ℃時,HC-600a冷媒壓縮比低於45.73 %、冷凍能力高於48.6 %、性能係數高於37.04 %及能源效率39.4。在30 ℃時,HC-600a冷媒壓縮比低於45.2 %、冷凍能力高於47.3 %、性能係數高於38.23 %及能源效率46.11。本研究探討結果,可評估HC-600a冷媒直接換裝HFC-134a冷媒數據參考,有助於未來使用碳氫冷媒運用在汽車空調之研究。

This study focuses on the evaluation of the performance of replacing HC-600a refrigerant in automotive air conditioning systems. Study the use of automobile air conditioning simulator as experimental equipment, and refer to the specifications of CNS 14464 and CNS 7897 to study the temperature and compression ratio of the evaporator of the system. First, select the optimal refrigerant filling amount of the automobile air conditioning system HFC-134a, 400 g, 500 g, 550 g, 600 g and 650 g filling experiments. The experiment is judged by the evaporator outlet temperature, compression ratio, refrigerant effect , coefficient of performance, and energy efficiency ratio. The experiment uses 500 g refrigerant evaporator outlet temperature of 9.9 ° C and compression ratio of 6.4, The refrigerant effect is 146 kJ / kg, the coefficient of performance is 3.09 and the energy efficiency ratio is 3.25. The HC-600a refrigerant is filled with 30 %, 35 %, 40 % and 50 % of HFC-134a refrigerant 500g for 1-hour continuous operation experiment and the best HC-600a refrigerant charge is selected. The 35 % filling volume is better than other HC-600a refrigerants 35 %, 40 % and 50 %. Compared with HFC-134a refrigerant 500 g, the compression ratio is 42.9 % lower, the refrigerant effect is 49.12 % higher, the performance coefficient is 35.2% higher and energy efficiency ratio is 44.57 %. After selecting the best HC-600a refrigerant and HFC-134a refrigerant charge, the speed test and environmental load test were carried out. The speed test is conducted at 1000 rpm-1800 rpm-3000 rpm. At 1000 rpm, the HC-600a refrigerant compression ratio is below 52.6 %, the refrigerant effect is above 51.7 %, the coefficient of performance is 32.7 % higher and energy efficiency ratio is 32.73 %. The compression ratio of 3000 rpm HC-600a refrigerant is lower than 28.79 %, the refrigerant effect is higher than 49.71 %, the coefficient of performance is higher than 41.9 % higher and energy efficiency ratio is 41.8 %. Environmental load test is based on 30 ℃ -35 ℃ - 40 ℃ -45 ℃. At 45 ℃, The compression ratio of HC-600a refrigerant is lower than 46.66 %, the refrigerant effect is higher than 49.7 %, the coefficient of performance is higher than 93.84% and energy efficiency ratio is 37.8 %. At 40 ° C, the compression rate of HC-600a refrigerant is lower than 46.66 %, the refrigerant effect is higher than 49.7 %, the coefficient of performance is higher than 44.4 % and energy efficiency ratio is 39.4 %.At 30 ℃, the compression rate of HC-600a refrigerant is lower than 45.2 %, the refrigerant effect is higher than 47.3 %, the coefficient of performance is higher than 38.23 % and energy efficiency ratio is 46.11 %. The results of this study can be used to evaluate the data reference for directly replacing HC-600a refrigerant with HFC-134a refrigerant, which will help in future research on the use of hydrocarbon refrigerants in automotive air conditioning.

摘要 i Abstract iii 目次 v 表次 vii 圖次 viii 第一章 緒論 1 1.1 前言 1 1.2 研究目的 2 1.3 研究流程 3 1.4 研究背景 5 1.5 論文架構 8 1.6 文獻回顧 8 第二章 相關理論 19 2.1 汽車空調循環系統之基本原理 19 2.1.1 汽車空調系統循環機件功用 20 2.1.2 理想汽車空調蒸汽壓縮循環 21 2.1.3 實際蒸汽壓縮循環 22 2.1.4 汽車空調系統計算與熱力分析 24 2.2 環保替代冷媒 26 2.2.1 自然冷媒基本性質介紹 27 2.2.2碳氫冷媒(異丁烷)基本性質介紹 28 2.3碳氫化合物冷媒特性與安全性評估 28 2.4感溫式膨脹閥的功用 30 2.4.1感溫式膨脹閥的作用 30 第三章 實驗方法與實驗方法 33 3.1 CNS標準測試方法 33 3.2汽車空調實驗系統設備 35 3.3汽車空調系統實驗測量儀器 37 3.4汽車空調系統處理發法與實驗流程 41 3.4.1 HFC-134a冷媒充填實驗測量步驟 43 3.4.2 HC-600a冷媒與最佳HFC-134a冷媒充填長時間實驗測量步驟 44 3.5汽車系統實驗用冷媒相關資料 45 3.6實驗變項 46 3.6.1轉速實驗測量步驟 47 3.6.2環境實驗測量步驟 48 3.7實驗數據測量與分析 49 3.7.1實驗測量狀態點 49 3.7.2實驗數據分析 51 第四章 實驗結果與討論 53 4.1 HFC-134a充填量選擇 53 4.2 HC-600a冷媒汽車空調長時間運轉試驗 61 4.3 HC-600a冷媒汽車空調系統轉速試驗 72 4.4汽車空調系統環境試驗 80 4.5綜合試驗分析 88 第五章 結論與建議 91 5.1 結論 91 5.2 後續研究與建議 92 參考文獻與符號釋義 93

參考文獻
[1] 臭氧層保護在台灣(2018),什麼是臭氧洞?。取自 https://www.saveoursky.org.tw/ozone/index2.php?option=com_content&view=article&id=595&Itemid=185&TB_iframe=1&width=700&height=260&modal=1.
[2] 經濟部標準檢驗局,CNS 1600-26 二氧化碳(CO2)採樣策略,2015年。
[3] 臭氧層保護在台灣(2019),蒙特婁議定書通過「吉佳利修正案」逐步削減HFCs。取自https://www.saveoursky.org.tw/ozone/ latest- news/765- kigali-agreement.
[4] 交通部公路總局(2019)。機動車輛數。台北市;交通部公路總局。
[5] R. K. Shah,“Automotive Air-Conditioning Systems-Historical Developments, the State of Technology, and Future Trends” Taylar & Francis, vol. 30, pp.720-735, 2009.
[6] 經濟部標準檢驗局,CNS 1600-1室內空氣-第1部:採樣策略總則,2015年。
[7] A. Kasaeian, S. M. Hosseini, M. Sheikhpour, O. Mahian, and W. M. Yan, and S. Wongwises,“Applications of eco-friendly refrigerants and nanorefrigerants: A review,” Renewable and Sustainable Energy Reviews, vol. 96, pp. 91–99, 2018.
[8] 臭氧層保護在台灣(2018),德國汽車工業對新式車用冷媒的態度(Vol.19) 。取自https://www.saveoursky.org.tw/ozone/newest-epaper/epaper-list/441-vol1921
[9] 經濟部標準檢驗局,CNS 60335-2-40 家用和類別似用途電器-安全性-第2-40部: 電熱泵、空氣調節機及除濕機之個別規定,2018。
[10] A. Naeem, K. Ali Raza, K. Nasrullah, A. Haider, Z. Saleem, and S. S. Muhammad “Natural and synthetic refrigerants, global warming: A review, ” Renewable and Sustainable Energy Reviews, vol. 90 , pp. 557-569, 2018.

[11] K. Harby “Hydrocarbons and their mixtures as alternatives to environmental
unfriendly halogenated refrigerants: An updated overview” Renewable and Sustainable Energy Reviews, vol. 73, pp. 1247-1264, 2017.
[12] R. Ciconkov “Refrigerants: There is still no vision for sustainable solutions” International journal of refrigeration, vol. 86, pp. 441-448, 2018.
[13] J. K. Vaghelaa “Comparative evaluation of an automobile air - conditioning system using R134a and its alternative refrigerants” Energy Procedia, vol. 109, pp. 153-160, 2017.
[14] M. J. Mahmood, S. H. Mohammad, R. Amir, and G. M. Fatemeh “Exergy analysis and optimization of R600a as a replacement of R134a in a domestic refrigerator system” International Journal of Refrigeration, vol. 36, pp.1233-1242, 2013.
[15] S. Selçuk, R. Ziyaddin, and G. Mehmet “Evaluation the effects of used refrigerants R134a and R600a in cooling systems on the system performance” Journal of engineering & Natural Sciences, vol. 32, pp. 290-295, 2014.
[16] P. O. Sotomayor, and J. A. R. Parise, “Characterization and simulation of an open piston compressor for application on automotive air-conditioning systems operating with R134a, R1234yf and R290” International journal of refrigeration, vol. 61, pp. 100-116, 2016.
[17] M. Rasti, S. F. Aghamiri, and M. S. Hatamipour “Energy efficiency enhancement of a domestic refrigerator usingR436A and R600a as alternative refrigerants to R134a” International Journal of Thermal Sciences, vol. 74, pp. 86-94, 2013.
[18] H. Rostamzadeh, J. Rostamzadeh, P. S. Matin, and H. Ghaebi “Novel dual-loop bi-evaporator vapor compression refrigeration cycles for freezing and air-conditioning applications,” Applied Thermal Engineering, vol. 138, pp. 563-582, 2018.
[19] S. M. R. Carvalho, L. H. P. Massuchetto, R. B. C. Nascimento, H. V. Araújo, and J. H. Angelo “Optimization of a vapor injection refrigeration cycle using hydrocarbon mixed refrigerants,” International Journal of Refrigeration, vol. 98, pp. 109-119, 2019.

[20] B. Xiao, H. Chang, L. He, S. Zhao, and S. Shu “Annual performance analysis of an air source heat pump water heater using a new eco-friendly refrigerant mixture as an alternative to R134a” Renewable Energy, vol. 147, pp. 2013-2023, 2020.
[21] A. L. Giovanni, S. Mancina, R. Giulia, Z. Claudio, and B. J. Steven “Assessment of the low-GWP refrigerants R600a, R1234ze(Z) and R1233zd (E) for heat pump and organic Rankine cycle applications” Applied Thermal Engineering, vol. 167, p. 114804, 2020.
[22] C. A. Daniel, N. A. Laura, C. G. Jesús ,S. Daniel, C. Ramon, and
L. Rodrigo“Thermodynamic screening of alternative refrigerants for R290 and R600a” Results in Engineering, vol. 5, p. 100081, 2020.
[23] Y. Zhang, C. Liu, T. Wang, L. Pan, W. Li, J. Shi, and J. Chen “Leakage analysis and concentration distribution of flammable refrigerant R290 in the automobile air conditioner system,” International Journal of Refrigeration, vol. 110, pp. 286-294, 2020.
[24] G. F. Hundy, A. R. Trott, and T. C. Welch, “Chapter 3: Refrigerants”
Refrigeration, Air Conditioning and Heat Pumps, pp. 41-58, 2016.
[25] R. Ren, H. Zhou, Z. Hua, S. He, and X. Wang “Statistical analysis of fire accidents in Chinese highway tunnels 2000–2016,” Tunnelling and Underground Space Technology, vol. 83, pp. 452-460, 2019.
[26] S. Selçuk, R. Ziyaddin, and G. Mehmet “Evaluation the effects of used refrigerants R134a and R600a in cooling systems on the system performance” Journal of engineering & Natural Sciences, vol. 32, pp. 290-295, 2014.
[27] Y. T. Tsai, J. Y. Liao, and C. M. Shu “Explosion characteristics of chlorodifluoromethane and isobutane at high temperature and pressure using a 20-L apparatus,” International Journal of Refrigeration, vol. 96, pp. 155-160, 2018.
[28] Z. Li, K. Liang, and H. Jiang“Comparative Study on Energy Efficiency of Low GWP Refrigerants in Domestic Refrigerators with Capacity Modulation,” Energy & Buildings, vol. 192, pp. 93-100, 2019.

[29] D. Rajadhyaksha, B. J. Wadia, A. A. Acharekar, and D. Colbourne“The first 100 000 HC-290 split air conditioners in India,” International Journal of Refrigeration, vol. 60, pp. 289-296, 2015.
[30] M. B. Adrián, M. J. Mahmood, N. E. Joaquín, M.R Carlos, B. C. Ángel, A. A. Marta, and M. Francisco “Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact” International Journal of Refrigeration, vol. 111, pp. 147-158, 2020.
[31] R. Zhai, Z. Yang, Y. Zhang, Z. Lv, and B. Feng“Effect of temperature and humidity on the flammability limits of hydrocarbons” Fuel, p. 117442, 2020.
[32] J. Wu, G. Zhou, and M. Wang “A comprehensive assessment of refrigerants for cabin heating and cooling on electric vehicles” Applied Thermal Engineering, vol. 174, p. 115258, 2020.
[33] ASHRAE, ASHRAE standard 34, 2009, USA.
[34] ASHRAE, ASHRAE standard 15, 2009, USA.
[35] 經濟部標準檢驗局,CNS 14464 B-7291無風管空氣調節機與熱泵,2010年。
[36] 經濟部標準檢驗局,CNS 7891 D3079 汽車用冷氣機檢驗法,1981年。

下載圖示
QR CODE