簡易檢索 / 詳目顯示

研究生: 廖莉菱
Li-Ling Lia
論文名稱: 熱電材料應用於散熱微致冷晶片之技術開發
Development of micro cooler using thermoelectric material
指導教授: 楊啓榮
Yang, Chii-Rong
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 164
中文關鍵詞: 熱電材料電化學沉積技術界面活性劑熱傳導係數微致冷晶片
英文關鍵詞: Thermoelectric material, electrochemical deposition technology, surfactant-added technique, thermal conductivity, micro-cooler
論文種類: 學術論文
相關次數: 點閱:235下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用特殊界面活性劑添加於熱電材料鍍液中,以電化學沉積的方式電鑄n-type Bi-Te及p-type Sb-Te熱電材料,探討因添加界面活性劑而產生的碳原子與氧原子,是否跟隨著熱電材料同時產生。同時,藉由平行線量測法對電化學沉積的熱電材料,量測其有無界面活性劑條件下之熱傳導係數,並獲得相關的熱電特性。最後,利用已知熱電特性的熱電材料,搭配微機電製程技術,進行微致冷晶片之研製。
    進行熱電鑄層分析結果證實,添加界面活性劑MA後所產生的碳原子,乃一開始即伴隨熱電材料同時沉積,而氧原子則因鑄層表面與空氣接觸後產生氧化反應。以平行線量測法成功量取熱電材料的熱傳導係數,量測結果未添加界面活性劑MA的Bi-Te熱電材料,其熱傳導係數為0.241 W/mK,而未添加界面活性劑MA的Sb-Te熱電材料,其熱傳導係數為0.415 W/mK;添加界面活性劑MA後的Bi-Te熱電材料,其熱傳導係數為0.422 W/mK。藉由熱電優值公式獲得未添加界面活性劑MA的Bi-Te熱電材料,其熱電優值為4.838×10-4 /K,在常溫工作環境下的ZT值為0.145;而未添加界面活性劑MA的Sb-Te熱電材料,其熱電優值為14.7×10-4 /K,在常溫工作環境下的ZT值為0.441。添加界面活性劑MA後的Bi-Te熱電材料,其熱電優值為2.571×10-4 /K,在常溫工作環境下的ZT值為0.077。最後,將已知熱電特性的熱電材料,藉由電化學沉積搭配微機電製程技術,成功研製出18對及50對的微致冷晶片,其熱電接腳尺寸為80 m的方形陣列,電鑄高度約為8 m,後續將量測其致冷性能,並比較在不同對數條件下的致冷能力。

    In this study, n-type Bi-Te and p-type Sb-Te thermoelectric materials are electroformed by surfactant-added electrochemical deposition method. The amounts of carbon and oxygen elements generated from the addition of surfactant were evaluated to analyze whether they were simultaneously deposited with thermoelectric materials. For thermoelectric materials which were electrodeposited with or without surfactant addition, the thermal conductivity and related thermoelectric characteristics were measured by parallel line method. Finally, the n-type Bi-Te and p-type Sb-Te materials with known properties were applied to fabricate micro-cooler by MEMS process.
    The composition analysis shows that the carbon element generated from surfactant (MA) addition were deposited with thermoelectric materials simultaneously, and the oxygen element on the surface of thermoelectric materials came from the oxidation reaction of electroformed layer. For Bi-Te material without MA addition, the thermal conductivity is 0.241 W/mK, the figure of merit is 4.838×10-4 /K, and room-temperature ZT value is 0.145. For Sb-Te material without MA addition, the thermal conductivity is 0.415 W/mK, the figure of merit is 14.7×10-4 /K, and room-temperature ZT value is 0.441. On the other hand, for Bi-Te material with MA addition the thermal conductivity is 0.422 W/mK, the figure of merit is 2.571×10-4 /K, and room-temperature ZT value is 0.077. Finally, micro-coolers with 18 and 50 Bi2Te3/Sb2Te3 pairs were fabricated by electrochemical deposition and MEMS techniques, in which the dimension of the thermoelectric legs is 80 m and thickness of the electroform is 8 m. Furthermore, the comparison of the cooling capability under different conditions will be measured.

    中文摘要...........I 英文摘要...........II 總目錄..........III 表目錄..........VI 圖目錄..........VIII 第一章 緒論..........1 1.1 前言..........1 1.2 微機電系統簡介..........3 1.3 熱電材料簡介...........5 1.4 界面活性劑簡介..........6 1.5 微致冷技術簡介..........10 1.6 研究動機與目的..........18 1.7 論文架構...........19 第二章 理論探討與文獻回顧..........20 2.1 熱電效應..........20 2.1.1 席貝克效應..........20 2.1.2 帕耳帖效應..........21 2.1.3 湯姆森效應..........22 2.2 熱電優值..........26 2.3 熱傳導量測法..........30 2.3.1 熱擴散法..........31 2.3.2 熱傳導法..........35 2.3.2 三倍頻法..........37 2.4 熱電材料製造技術..........46 2.4.1 傳統製造技術..........46 2.4.1.1 布里茲曼法..........46 2.4.1.2 CZ法..........47 2.4.1.3 熱壓成形法..........47 2.4.1.4 熱擠壓成形法..........48 2.4.2 微加工製造技術..........51 2.4.2.1 火花電漿燒結法..........51 2.4.2.2 物理氣相沉積法..........51 2.4.2.3 化學氣相沉積法..........52 2.4.2.4 電化學沉積法..........53 2.5 電化學沉積原理..........65 2.5.1 法拉第定律與電流效率..........65 2.5.2 極電位與極化..........68 第三章 實驗設計與規劃..........70 3.1 實驗規劃..........70 3.2 實驗流程..........75 3.2.1 黃光微影製程..........75 3.2.2 電鑄製程..........75 3.3 製程與量測設備..........76 3.4 熱電特性量測與設備..........83 3.4.1 席貝克係數量測..........83 3.4.2 導電率量測..........83 3.4.3 熱傳導係數量測..........85 3.5 量測熱傳導係數之試片研製..........93 3.6 微致冷晶片之研製..........95 第四章 實驗結果與討論..........99 4.1 鑄層成份之分析..........99 4.1.1 Bi-Te添加界面活性劑MA..........99 4.1.2 Sb-Te添加界面活性劑MA..........100 4.2 製作熱傳導量測之試片..........104 4.2.1 SiO2絕緣層的試片製作..........104 4.2.2 聚合物絕緣層的試片製作..........105 4.3 熱傳導係數量測..........111 4.3.1 聚合物薄膜之熱傳導係數量測..........111 4.3.2 Bi-Te薄膜之熱傳導係數量測..........112 4.3.3 Sb-Te薄膜之熱傳導係數量測..........113 4.3.4 添加界面活性劑之Bi-Te薄膜熱傳導係數量測..........115 4.3.5 添加界面活性劑之Sb-Te薄膜熱傳導係數量測..........116 4.4 熱電材料之特性..........137 4.5 微致冷晶片之製作..........140 第五章 結論與未來展望..........157 5.1 結論..........157 5.2 未來展望..........159 參考文獻..........160

    [1] Microsoft, http://www.microsoft.com.
    [2] 楊啟榮 等人, "微機電系統技術與應用", 精密儀器發展中心, 第四章, pp. 142, 2003.
    [3] 朱旭山, "熱電材料與元件之發展與應用", 工業材料雜誌, 第220期, 2005.
    [4] http://www.marlow.com/
    [5] http://www.sii.co.jp/
    [6] S. Wu, J. Mai, Y. C. Tai, and C. M. Hod, "Micro heat exchanger by using MEMS impinging jets", IEEE, pp. 171-176, 1999.
    [7] J. M. koo, L. Jiang, L. Zhang, P. Zhou, S. S. Banerjee, T. W. Kenny, J. G. Santiago, and K. E. Goodson, "Modeling of two-phase microchannel heat sinks for VISI chips", IEEE, pp. 422-426, 2001.
    [8] C. Tsia, R. L. Chen, C. L. Chen, and J. Denatale, "Micromachined stack component for miniature thermoacoustic refrigerator", IEEE, pp 149-151, 2002.
    [9] C. H. Amon, J. Murthy, S. C. Yao, S. Narnmanchi, C. F. Wu, and C. C. Hsieh, "MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for integrated cooling of electronics", Experimental Thermal and Fluid Science, Vol. 25, pp. 231-242, 2001.
    [10] 周政泰 等人, "微冷卻技術發展現況", 機械工業雜誌, 第245期, 2005.
    [11] Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, and J. L. Schanen, "Thermal analysis of thermal spreaders used in power electics cooling", IEEE, Vol. 1, pp. 216-221, 2002.
    [12] J. Kim, and E. Golliher, "Steady State Model of a Micro Loop Heat Pipe", IEEE, pp. 137-144, 2002.
    [13] R. Schweickart, L. Ottenstein, B. Cullimore, C. Egan, and Dave Wolf, "Testing of a controller for a hybrid capillary pumped loop thermal control system", IEEE, pp. 69-74, 1989.
    [14] D. M. Rowe, "Thermoelectrics handbook micro to nano", 2006.
    [15] D. J. Yao, "In-plane MEMS thermoelectric microcooler", Ph. D. dissertation of UCLA, USA, 2001.
    [16] 簡恆傑, "微尺度薄膜熱傳導性能量測方法", 工業材料雜誌, 第247期, 2007.
    [17] K. E. Goodson, and M. I. Flik, "Solid layer thermal conductivity measurement techniques", Appl. Mech. Rev., Vol. 47, pp. 101-112, 1994.
    [18] D. G. Cahill, "Heat transport in dielectric thin films and at solid-solid interfaces", Nanoscale and Microscale Thermophysical Engineering, Vol. 1, pp. 85-108, 1997.
    [19] A. J. Ångström, "Neue methode, das wärmeleitungsvermögen der körper zu bestimmen", Annalen der Physik, Vol. 114, pp. 513-530, 1861.
    [20] T. Yao, "Thermal properties of AlAs/GaAs superlattices", Appl. Phys. Lett., Vol. 51, No. 30, pp. 1798-1800, 1987.
    [21] G. Chen, C. L. Tien, X. Wu, and J. S. Smith, "Thermal diffusivity measurement of GaAs/AlGaAs thin-film structures", Journal of Heat Transfer, Vol. 116, pp. 325-331, 1994.
    [22] E. Jansen, and E. Obermeier, "Thermal conductivity measurements on thin films based on micromechanical devices", J. Micromech. Microeng., Vol. 6, pp. 118-121, 1996.
    [23] O. W. Käding, H. Shurk, and K. E. Goodson, "Thermal conduction in metallized silicon-dioxide layers on silicon", Appl, Phys. Lett., Vol. 65, pp. 1629-1631, 1994.
    [24] D. G. Cahill, "Thermal conductivity measurements from 30K-750K: The 3 omega method", Rev. Sci. Instrum., Vol. 61, pp. 802-808, 1990.
    [25] N. O. Birge, and S. R. Nagel, "Wide-Frequency specific heat spectrometer", Rev. Sci. Instrum., Vol. 58, pp. 1464-1470, 1987.
    [26] A. Borshchevsky, "Handbook of thermoelectrics", 1995.
    [27] O. Yamashita, S. Tomiyoshi, and K. Makita, "Bismuth telluride compounds with high thermoelectric figures of merit", Journal of Applied Physics, Vol. 93, Issue 1, January 1, pp. 368-374, 2003.
    [28] D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, and C. W. Hwang, "Thermoelectric properties of the n-type 85 % Bi2Te3-15 % Bi2Se3 alloys doped with Sbl3 and CuBr", Journal of Materials Science, Vol. 33, pp. 5595-5600, 1998.
    [29] http://www.alexandrite.cc/
    [30] L. D. Ivanova, Y. V. Granatkina, N. V. Polikarpova, and E. I. Smirnova, "Selenium-doped Sb2Te3-Bi2Te3 crystals", Inorganic Materials Vol. 33, pp. 558-561, 1997.
    [31] L. D. Ivanova, Y. V. Granatkina, and N. V. Polikarpova, "Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system", Inorganic Materials, Vol. 31, pp. 678-681, 1995.
    [32] L. D. Ivanova, S. A. Brovikova, H. Sussmann, and P. Reinshaus, "Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 single-crystals", Inorganic Materials, Vol. 31, pp. 682-686, 1995.
    [33] http://www.substech.com/dokuwiki/doku.php?id=advertising_opportunities
    [34] D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method", Journal of Materials Science Vol. 36, Number 5, pp. 1285-1291, 2001.
    [35] B. Wölfing, C. Kloc, J. Teubner, and E. Bucher, "High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity", Physical Review Letters Vol. 86, Issue 19, pp. 4350-4353, 2001.
    [36] http://www.substech.com/dokuwiki/doku.php
    [37] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature Vol. 413, pp. 597-602, 2001.
    [38] J. Seo, K. Park, D. Lee, and C. Lee, "Microstructure and thermoelectric properties of p-type Bi0.5Sb0.5Te0.5 compounds fabricated by hot pressing and hot extrusion", Scripta Materialia, Vol. 38, Issue 3, pp. 477-484, 1998.
    [39] http://www.kompas.or.kr/mail/200311/equip.html
    [40] J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering", Scripta Materialia, Vol. 52, Issue 5, pp. 347-351, 2005.
    [41] L. W. da Silva, M. Kaviany, and C. Uher, "Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems", Journal of Applied Physics, Vol. 97, pp. 114903.1-114903.10, 2005.
    [42] L. M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, and J. H. Correia, " On-chip array of thermoelectric Peltier microcoolers", 14th International Conference on Solid-State Sensors, Actuators and Microsystems, pp. 2179-2182, 2007.
    [43] D. H. Kim, E. Byon, G. H. Lee, and S. Cho, "Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering", Thin Solid Films Vol. 510, pp. 148-153, 2006.
    [44] http://upload.wikimedia.org/wikipedia/en/9/98/GenericMOCVD.
    [45] A. Boulouz, S. Chakraborty, A. Giani, F. P. Delannoy, and A. Boyer, "Transport properties of V-VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices", Journal of Applied Physics Vol. 89, No. 9, pp. 5009-5014, 2001.
    [46] A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, and A. Boyer, "Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD", Materials Science and Engineering B, Vol. 64, pp. 19-24, 1999.
    [47] A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, and A. Boyer, "MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor", Thin Solid Films Vol. 315, pp. 99-103, 1998.
    [48] G. J. Snyder, J. R. Lim, C. K. Huang, and J. P. Fleurial, "Thermoelectric microdevice fabricated by MEMS-like electrochemical process", Nature Materials, Vol. 2, pp. 528-532, 2003.
    [49] J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, and J. P. Fleurial, "Thermoelectric microdevice fabrication process and evaluation at the jet propulsion laboratory (JPL)", 21th International Conference of Thermoelectrics, pp. 535-539, 2002.
    [50] J. P. Fleurial, A. Borshchevsky, M. A. Ryan, W. M. Philips, J. G. Snyder, T. Caillat, E. A. Kolawa, J. A. Herman, P. Mueller, and M. Nicolet, "Development of thick-Film thermoelectric microcoolers using electrochemical deposition", Materials Research Society Symposium Proceedings, Vol. 545, pp. 493-500, 1998.
    [51] J. P. Fleurial, G. J. Snyder, J. A. Herman, P. H. Giauque, W. M. Phillips, M. A. Ryan, P. Shakkottai, E. A. Kolawa, and M. A. Nicolet, "Thick-film thermoelectric microdvices", 18th International Conference of Thermoelectrics, pp. 294-300, 1999.
    [52] I. Y. Huang, J. C. Lin, K. D. She, M. C. Li, J. H. Chen, and J. S. Kuo, "Development of low-cost micro-thermoelectric coolers utilizing MEMS technology", Sensors and Actuators A, Vol. 148, pp. 176-185, 2008.
    [53] W. Ehrfeld, V. Hessel, H. Löwe, C Schulz, and L. Weber, "Materials of LIGA technology", Microsystem Technologies, Vol. 5, No. 3, pp. 105-112, 1999.
    [54] T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, and S. Hasegawa, "Anisotropy in Conductance of a Quasi-One-Dimensional Metallic Surface State Measured by a Square Micro-Four-Point Probe Method", Physical Review Letters, Vol. 9, No. 3, pp. 036805, 2003.
    [55] H. C. Chien, D. J. Yao, M. J. Huang, and T. Y. Chang, "Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film", Review Of Scientific Instruments, Vol. 79, pp. 054902, 2008.
    [56] 古耀方, "界面活性劑於電化學沉積熱電材料之特性研究", 台灣師範大學, 碩士論文, 2008.
    [57] J. H. Cheng, C. K. Liu, Y. L. Chao, and R. M. Tain, "Cooling performance of silicon-based thermoelectric device on high power LED", Proc. 24th Int. Conf. Thermoelectics, pp. 53-56, 2005.

    下載圖示
    QR CODE