簡易檢索 / 詳目顯示

研究生: 蔡宗晏
論文名稱: 不同負荷下肢複合訓練對肌電訊號與跳躍能力的影響
The effect of different loaded complex training using lower limb exercise for the EMG signal and jumping capacity
指導教授: 方進隆
學位類別: 碩士
Master
系所名稱: 體育學系
Department of Physical Education
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 75
中文關鍵詞: 複合訓練均方根肌電屈膝反彈跳
英文關鍵詞: complex training, root mean square EMG, counter movement jump
論文種類: 學術論文
相關次數: 點閱:336下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不同負荷下肢複合訓練對肌電圖訊號與跳躍能力的影響
    2005年6月 研究生:蔡宗晏
    指導教授:方進隆

    摘要

    本研究的目的在探討不同負荷下肢複合訓練(先實施重量訓練+ 隨後進行增強式訓練的組合)對於肌肉活化的程度與隨後增強式運動表現的影響。以12名師大乙組排球隊選手為本實驗受試者,平均身高176.8±6.9公分,體重68.7±5.9公斤,年齡20.9±1.4歲,1/2蹲舉最大肌力135.6±18公斤。受試者經過標準化的熱身後,在測力板進行 連續5次屈膝反彈跳(counter movement jump, CMJ),作為基準值, 4分鐘後,受試者依照隨機分派和次序平衡,完成高負荷複合訓練(85%1RM 高強度1/2蹲舉5下+CMJ5下)和中負荷複合訓練(65%1RM 1/2中強度蹲舉5下+ CMJ5下)兩個流程。不同負荷實驗處理的休息間隔時間為10分鐘,而1/2蹲舉和CMJ的休息時間為3分鐘。以Biovision 肌電系統紀錄股直肌、股二頭肌、比目魚肌、腓腸肌肌電訊號,和使用kistler 9287測力板取得平均垂直反作用力、衝量和跳躍高度。並分別以相依樣本t考驗分析不同負荷重量訓練之均方根(root meant square, RMS)肌電,和重複量數單因子變異數分析3次連續5下CMJ過程中,與地面作用期間時的RMS肌電和動力學參數,作為統計分析。獲致以下結果:

    1. 高強度重量訓練過程中,股直肌RMS肌電 > 中強度重量訓練(p<.05),但股二頭肌、比目魚肌、腓腸肌並沒有顯著差異(p>.05)。

    2. 除了中負荷重量訓練後反覆CMJ股直肌RMS肌電最大值顯著小於基準值外,三個反覆5次CMJ過程中時,各肌群的5次RMS肌電平均值、平均垂直反作用力(1655 ±315.05 vs 1657.86 ±272.73 vs 1665.62 ±231.28)、衝量(577.31±99.74 vs 578.54 ± 109.98 vs 582.58 ± 103.47)和跳躍高度(29.83 ± 3.71 vs 30.02 ± 4.18 vs 30.82 ± 3.95)皆沒有顯著差異(p>.05)。

    結論:高負荷重量訓練比中強度重量訓練徵召更多主作用肌運動單位,但肌肉活化的效果並未延續到隨後的增強式運動表現。亦即高負荷複合訓練與中負荷複合訓練對於增強式運動表現和神經肌肉的刺激為中性的,並無提升的效果。

    The effect of different loaded complex training using lower limb exercise for the EMG signal and jumping capacity

    June 2005 Student: Zong-Yan Cai
    Advisor: Frank Chin-Lung Fang

    Abstract

    The purpose of this study was to investigate different loaded complex training (combination of a pre weight training followed by plyometric training ) on the muscle activation level and its effect for subsequent plyometric performance. Twelve National Taiwan Normal University volleyball team players were participated as the subjects of this experiment. Subjects were 176.8±6.9cm in height, 68.7±5.9 in weight,20.9±1.4 years of age,and had 135.6±18kg of maximal muscular strength in half squat. After normalized warming up, subjects were asked to performe 5 bouts continuous counter movement jump (CMJ) on force platform as a baseline. Then 4 minutes later, subjects were randomly assigned and counter balanced to perform 2 procedure of high loaded complex training (85%1RM half squat 5repetion+ 5 CMJ ) and middle loaded complex training (65%1RM half squat 5repetion+ 5 CMJ ). The rest interval between different loaded complex training experiment treatments were 10 minutes, and the CMJ was performed 3 minutes later after the half squat. The EMG signal was recorded from the the rectus femoris, biceps femoris, gastrocenmius, and soleus of the Biovision EMG system. Mean vertical ground reaction force, impulse and jump height were acquired via the kistler 9287 force platform. Paired sample t-test was used to analyze the RMS EMG of the two different intensity weight training, and One way ANOVA repeated measure was used for the RMS EMG and kinetic parameters during the period of contacting with the ground from the process of 3 sets, 5 bouts continuous CMJ for statistic analyzation. The results were obtained as follows:

    1. The RMS EMG of the rectus femoris is greater during the process of high intensity weight training than the middle intensity weight training (p<.05), but no significant difference was found of biceps femoris, gastrocenmius, and soleus (p>.05).

    2. Except for the maximal RMS EMG of the rectus femoris during the repeated CMJ following middle loaded weight training is significantly lower than the basline, there were no significant difference for any muscle groups of the maen RMS EMG and mean vertical ground reaction force (1655±315.05 vs 1657.86 ±272.73 vs 1665.62 ± 231.28), impulse (577.31±99.74 vs 578.54 ± 109.98 vs 582.58 ± 103.47), jump height (29.83 ± 3.71 vs 30.02 ± 4.18 vs 30.82 ± 3.95) between the 3 sets 5repeated bouts CMJ (p>.05).

    In conclusion, high intensity weight training recruits more motor units from the primary muscle than middle intensity weight training, but the effect of muscle activation does not last to the subsequent plyometric performance. That is to say that high intensity complex training and middle intensity complex training are neutral to the neuromuscular stimulation, fail to have any enhancement effect.

    目次 中文摘要 ………………………………………………………………Ⅰ 英文摘要 ………………………………………………………………Ⅱ 謝誌 ……………………………………………………………………Ⅲ 目次 ……………………………………………………………………Ⅳ 表次 ……………………………………………………………………Ⅶ 圖次 ……………………………………………………………………Ⅷ 第壹章 緒論 ……………………………………………………………1 一、前言…………………………………………………………………1 二、問題背景……………………………………………………………2 三﹑研究目的……………………………………………………………6 四﹑名詞操作性定義……………………………………………………6 五﹑研究範圍與限制……………………………………………………7 六﹑研究的重要性………………………………………………………8 第貳章 相關文獻探討 …………………………………………………9 一、肌電圖概述…………………………………………………………9 二、肌電圖與肌肉力量的關係…………………………………………11 三、複合訓練相關的科學研究…………………………………………15 四、本章小結……………………………………………………………19 第參章 方法 ……………………………………………………………21 一、受試者………………………………………………………………21 二、實驗儀器……………………………………………………………21 三、實驗設計……………………………………………………………22 四、實驗步驟……………………………………………………………25 五、實驗流程圖…………………………………………………………29 六、資料處理……………………………………………………………30 第肆章 結果 ……………………………………………………………33 一、受試者各項基本資料………………………………………………33 二、不同負荷1/2蹲舉重量訓練對下肢肌電訊號的影響 ……………33 三、不同負荷複合訓練對CMJ肌電訊號的影響 ………………………36 四、不同負荷複合訓練對於反覆CMJ中肌電訊號最大值 ……………40 五、不同負荷複合訓練對CMJ表現的影響 ……………………………43 第伍章 討論與結論 ……………………………………………………46一、討論…………………………………………………………………46 二、結論…………………………………………………………………54 三、建議…………………………………………………………………54 … 引用文獻…………………………………………………………………55 一、中文部份……………………………………………………………55 二、英文部分……………………………………………………………56 附錄 附錄一 受試者須知及同意書 ………………………………………64 附錄二 受試者各項基本資料 ………………………………………65 附錄三 不同負荷重量訓練RMS肌電…………………………………66 附錄四 不同負荷重量訓練動作時間 ………………………………67 附錄五 不同負荷複合訓練之5次CMJ股直肌RMS肌電………………68 附錄六 不同負荷複合訓練之5次CMJ股二頭肌RMS肌電……………69 附錄七 不同負荷複合訓練之5次CMJ比目魚肌RMS肌電……………70 附錄八 不同負荷複合訓練之5次CMJ腓腸肌RMS肌電………………71 附錄九 不同負荷複合訓練向心起跳後反覆CMJ觸地時間…………72 附錄十 不同負荷複合訓練之5次CMJ平均垂直地面反作用力 ……73 附錄十一 不同負荷複合訓練之5次CMJ衝量 …………………………74 附錄十二 不同負荷複合訓練之5次CMJ 跳躍高度……………………75 表次 表3-1 表面電極片黏貼位置……………………………………………26 表4-1 受試者基本資料表………………………………………………33 表4-2 不同負荷1/2蹲舉重量訓練之RMS肌電…………………………35 表4-3 不同負荷複合訓練CMJ之RMS肌電………………………………40 表4-4 不同強度複合訓練對於連續5次CMJ各參數值之平均值………44 表4-5 不同負荷複合訓練對於連續5次CMJ中各參數值之最大值……45 圖次 圖3-1 重量訓練器材架設圖…………………………………………22 圖3-2 實驗設計圖……………………………………………………24 圖3-3 表面肌電電極片黏貼位置……………………………………27 圖3-4 表面肌電電極片黏貼位置……………………………………27 圖3-5 實驗流程圖……………………………………………………29 圖3-6 CMJ向心動作開始與反覆5次CMJ觸地時間之下肢肌 群肌電訊號……………………………………………………30 圖3-7 1號受試者85% 1RM重量訓練之肌電訊號擷取時間…………31 圖4-1 不同負荷1/2蹲舉重量訓練股直肌整流肌電圖 ……………33 圖4-2 不同負荷1/2蹲舉重量訓練股二頭肌整流肌電圖 …………34 圖4-3 不同負荷1/2蹲舉重量訓練比目魚肌整流肌電圖 …………34 圖4-4 不同負荷1/2蹲舉重量訓練腓腸肌整流肌電圖 ……………34 圖4-5 不同負荷複合訓練之CMJ股直肌整流肌電圖 ………………36 圖4-6 不同負荷複合訓練之CMJ股二頭肌整流肌電圖 ……………37 圖4-7 不同負荷複合訓練之CMJ比目魚肌整流肌電圖 ……………38 圖4-8 不同負荷複合訓練之腓腸肌整流肌電圖……………………39 圖4-9 反覆CMJ股直頭肌RMS肌電最大值……………………………41 圖4-10 反覆CMJ股二頭肌RMS肌電最大值……………………………41 圖4-11 反覆CMJ比目魚肌RMS肌電最大值……………………………42 圖4-12 反覆CMJ比目魚肌RMS肌電最大值……………………………42 圖4-13 不同負荷複合訓練之CMJ 力量分析圖………………………43

    一、中文部份

    林政東(2000)。兩種不同牽張幅度深跳動作的生物力學要素與肌電現象之分析。未出版碩士論文,國立體育學院運動教練研究所,桃園縣。

    林政東(2004)。運動員肌力訓練。台北市:師大書苑。

    吳顥照(2003)。複合訓練的理論與應用。中華體育,66, 1-10。

    洪彰岑、莊榮仁、劉宇(1997)。直膝與屈膝垂直跳的生物力學分析
    比較。大專體育雙月刊。29, 105-111。

    陳九州、鄭鴻文(2000)。增進跳躍能力、瞬發力以及速度的有效方法—複合訓練之介紹。大專體育雙月刊,51, 103-108。

    黃紹禮、蔚順華(1998)。神經肌肉電刺激對增強肌力功效之探討。
    大專體育雙月刊。37, 21-26。

    賴亮全、林則彬、林富美譯(2001)。蓋統生理學─生理及疾病機轉 (弟六版) 。台北市:華杏 (Guyton, A. C., & Hall, J. E., 1998)。

    蔡崇濱(1991)。集中式肌力訓練的理論與實際。中華體育, (5) 3,
    79-86。
    二、英文部分

    Abdessemed, D., Duch&eacute;, P., Hautier, C., Poumarat, G., & Bedu, M. (1999). Effect of recovery duration on muscular power and blood lactate during the bench press exercise. International Journal of Sports Medicine, 20(6), 368-373.

    Adams, K., O'Shea, J. P., O'Shea, K. L., & Climstein, M. (1992). The effect of six weeks of squat, plyometric and squat-plyometric training power production. Journal of Applied Sports Science Research, 6, 36-41.

    Alkner, B. A., Tesch, P. A., & Berg, H. E. (2000). Quadriceps EMG / force relationship in knee extension and leg press. Medicine and
    science in sports and exercise, 32(2), 459-463.

    Baker D, Nance S, Moore M. (2001). The load that maximizes the average mechanical power output during jump squats in power-trained athletes. Journal of Strength and Conditioning Research, 15(1), 92-97.

    Baker, D. (2003). Acute effect of alternating heavy and light resistances on power output during upper-body complex power training. Journal of Strength and Conditioning Research, 17(3), 493-497.

    Blakey, J. B., & Southard, D. (1987). The combined effect of weight training and plyometrics on dynamic leg strength and leg power. Journal of Applied Sports Science Research, 1, 14-16.

    Bompa, T. O. (1999). Periodization: Theory and Methodology of Training. (4th ed.). Champaign, Ill.: Human Kinetics Publishers.
    Chu, D.A. (1992). Jumping Into Plyometrics. Champaign, Ill.: Leisure Press.

    Chu, D.A. (1996). Explosive Power and Strength: complex training for maximum results. Champaign, Ill.: Human Kinetics Publishers.

    Cronin, J. B., McNair, P. J.,& Marshall, R., N. (2003). Force-velocity analysis of strength-training techniques and load: implications for
    training strategy and research. Journal of Strength and Conditioning Research, 17(1), 148-155.

    Dietz, V. & Noth, J. (1978). Spinal stretch reflexes of triceps surae in active and passive movements [proceedings]. Journal of Physiology, 284, 180P-181P.

    Ebben, W, P., & Watts, P. B. (1998). A review of combined weight training and plyometric training modes: complex training. Journal of Strength and Conditioning, 20, 18-27.

    Ebben, W, P., & Jensen, R, L. (2000). Electromyographic and kinetic analysis of complex training variables. Journal of Strength and Conditioning Research, 14, 451-456.

    Edwards, R. G., & Lippold, O. C. J. (1956). The relationship between force and integrated electrical activity in fatigued muscle. Journal of Physiology (Lond.), 132, 677-681.
    Finsterer, J. (2001). EMG-interference pattern analysis. Journal of Electromyography and Kinesiology, 11, 231-246.

    Fleck, S., & Kontor, K. (1986). Complex training. National Strength Conditioning Association, 8, 66-69.
    Fleck, S. (1999). Periodized strength training: a critical review. Journal of
    Strength and Conditioning Research,13(1), 82-89.

    Giakas, G. (2004). Power spectrum analysis and filtering. In N. Stergiou (Ed.). Innovative analyses of human movement (pp. 223-256). Champaign, IL: Human Kinetics.

    Gossen, R. E., & Sale, D. G. (2000). Effect of postactivation on dynamic knee extension performance. European Journal of Applied Physiology, 83, 524-530.

    G&uuml;llich, A., & Schmidtbleicher, D. (1995). Short-term potentiation of power performance induced by maximal volumtary contractions. XVth Congress of the International Society of Biomechanics. 348-349.

    H&auml;kkinen, K. (1994). Neuromuscular fatigue in males and females during
    strenuous heavy resistance loading. Electromyography and Clinical Neurophysiology, 34(4), 205-214.

    Hamada, T., Sale, D. G., & Macdougall, J. D. (2000). Postactivation potentiation in endurance-trained male athletes. Medicine and Science in Sports and Exercise, 32(2), 403-411.

    Hamada, T., Sale, D. G., Macdougall, J. D., & Tarnopolsky, M. A. (2000). Postactivation potentiation, fiber type, and twitch contraction time in human knee extensor muscles. Journal of Applied Physiology, 88, 2131-2137.

    Hortob&aacute;gyi, T., Lambert, N. J., Tracy, C., & Shinebarger, M. (1992). Voluntary and electromyostimulation forces in trained and untrained men. Medicine and Science in Sports and Exercise, 24, 702-707.

    Hrysomallis, C., & Kidgell, D. (2001). Effects of heavy dynamic resistive
    exercise on acute upper-body power. Journal of Strength and Conditioning Research, 15, 426-430.

    Jensen, R, L, & Ebben, W, P. (2003). Kinetic analysis of complex training rest interval effect on vertical jump performance. Journal
    of Strength and Conditioning Research, 17(2), 345-349.

    Jones, P., & Lees, A. (2003). A biomechanical analysis of the acute effects of complex training using lower limb exercises. Journal of Strength and Conditioning, 17(4), 694-700.

    Komi, P. V. (1986). Training of muscle strength and power: Interaction of neuromotoric, hypertrophic, and mechanical factors. International Journal of Sports Medicine, 7, 101-105.

    Komi, P. V., Kaneko, M., & Aura, O. (1987). EMG activity of the leg extensor muscles with special reference to mechanical efficiency in concentric and eccentric exercise. International Journal of Sports Medicine, 8, 22-29.

    Linnamo, V., H&auml;kkinen, K., & Komi, P. V. (1998). Neuromuscular fatigue and recovery in maximal compared to explosive strength loading. European Journal of Applied Physiology and Occupational Physiology, 77(1-2), 176-181.

    Mcardle, W. D., Katch, F. I., & Katch, V. L. (2003). Exercise Physiology: Energy, nutrition, and human performance. (5th ed.). Lippincott, Williams & Wilkins.

    Miller, R. G., Giannini, D., Milner-Brown, H. S., Layzer, R. B., Koretsky, A. P., Hooper, D., & Weiner, M. W. (1987). Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery. Muscle Nerve, 10(9), 810-821.

    Moritani, T., Muro, M.,& Nagata, A. (1986). Intramuscular and surface electromyogram changes during muscle fatigue. Journal of Applied Physiology, 60(4), 1179-1185.

    Mero, A., & Komi, P. V. (1986). Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and suramaximal running speeds in sprinters. European Journal of Applied Physiology and Occupational Physiology, 55(5), 553-561.

    Newton, R. V., Kraemer, W. J., H&auml;kkinen, K., Humphries, B. J., & Murphy, A. J. (1996). Kinematics, kinetics and muscle activation during explosive upper body movements. Journal of Applied Biomechanics, 12, 31-43.

    Nichols, T. R & Houk, J. C. (1976). Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. Journal of Neurophysiology, 39(1) 119-142.

    Orizio, C., Perini, R., & Veicsteinas, A. (1989). Muscular sound and force relationship during isometric contraction in man. European Journal of Applied Physiology, 58, 528-533.

    Orizio, C., Perini, R., Diemont, B., Figini, M., M & Veicsteinas, A. (1990). Spectral analysis of muscular sound during isometric contraction of biceps brachii. The American Physiology Society, 28, 504-512.

    Powers, S. K., & Howely, E. T. (2001). Exercise Physiology: Theory and Application to Fitness and Performance. (4th ed). New York: Mcgraw-Hill.

    Radcliffe, J. C., & Radcliffe, J. L. (1996). Effects of different warm-up protocol on peak power output during a single response jump task [Abstract]. Medicine and Science in Sports and Exercise, 28(5), S189.

    Ricard, M. D., Ugrinowitsch, C., Parcell, A. C., Hilton, S., Rubley, M. D., Sawyer, R. et al. (2005). Effects of rate of force development on EMG amplitude and frequency. International Journal of Sports Medicine, 26(1), 66-70.

    Sale, D, G. (1988). Neural adaptation to resistance training. Medicine and Science in Sports and Exercise, 20, S135-145.

    Sale, D, G. (2002). Postactivation potntiation: Role in human performance. Exercise and Sports Science Review, 30(3), 138-143.

    Scott, S. L., & Docherty, D. (2004). Acute effects of heavy preloading on vertical and horizontal jump performance. Journal of Strength and Conditioning Research, 18(2), 201-205.

    Sweeney, H. L., Bowman, B. F., & Stull, J. T. (1993). Myosin light chain phosphorylation in veterbrate striated muscle: Regulation and function. American Journal of Physiology, 264, 1085-1095.

    Szczesna, D., Zhao, J., Jones, M., Zhi, G., Stull, J., & Potter, J. (2002). Phosphorylation of the regulatory light chains of myosin affects Ca2+ sensitivity of skeletal muscle contraction. Journal of Applied Physiology, 92, 1661-1670.

    Tesch, P. A., Komi, P. V., Jacobs, I., Karlsson, J., & Viitasalo, J. T. (1983). Influence of lactate accumulation of EMG frequency spectrum during repeated concentric contractions. Acta Physiologica Scandinavica, 119(1), 61-67.

    Toumi, H., Best, T. M., Martin, A., & Poumarat, G. (2004). Muscle plasticity after weight and combined (weight + jump) training. Medicine and Science in Sports and Exercise, 36(9), 1580-1588.

    Toumi, H., Best, T. M., Martin, A., F'Guyer, S., & Poumarat, G. (2004). Effects of eccentric phase velocity of plyometric training on the vertical jump. International Journal of Sports Medicine, 25(5), 391-398.

    Trump, M. E. (1996). Importance of muscle phosphocreatine during intermittent maximal cycling. Journal of Applied Physiology, 80(5), 1574-1580.

    Verkhoshansky, Y. (1966). Perspectives in the improvement of speed strength preparation of jumpers. Track and field, 9, 11-12.

    Verkhoshansky, Y. (1986). Speed-strength preparation and development of strength endurance of athletes in various specializations. Sov. Sports Rev, 21(3), 120-124.

    Wilson, G. J., Murphy, A, J., & Giorgi, A. (1996). Weight and plyometric training: Effects on eccentric and concentric force production. Canada Journal of Applied Physiology, 21, 301-315.

    Woods, J. J., & Bigland-Ritchie, B. (1983). Linear and non-linear surface
    EMG/force relationships in human muscles. An anatomical /functional argument for the existence of both. American Journal of Physical Medicine, 62(6), 287-299.

    Young, W. B., & Jenner, A., & Griffiths, K. (1998). Acute enhacement of power performance from heavy load squats. Journal of Strength and Conditioning Research, 12(2), 82-84.

    Zehr, E. P., & Sale, D. G. (1994). Ballistic movement: muscle activation and neuromuscular adaptation. Canada Journal of Applied Physiology, 19(4), 363-378.

    QR CODE