簡易檢索 / 詳目顯示

研究生: 方乃弘
Nai-Hong Fang
論文名稱: 基於Kinect感測器之智慧型履帶機械人 於未知坡道環境行走設計
Study of an intelligent track robot equipped with a Kinect sensor for an unknown slope environment
指導教授: 王偉彥
Wang, Wei-Yen
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 83
中文關鍵詞: 履帶機器人Kinect模糊控制
英文關鍵詞: Track robot, Kinect, Interval type-2 fuzzy control
論文種類: 學術論文
相關次數: 點閱:289下載:29
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了使履帶機械人在未知環境中可以有效克服特殊的地形,本論文提出利用Kinect感測器為基礎之履帶機械人的控制方法,其中控制模式包括尋找模式、對準模式、近距離模式及爬坡模式。目前大部份智慧型機器人在未知環境中尋找目標物或辨識物體需靠CCD去辨識,然而在顏色複雜環境下會導致辨識效果大幅度降底,本論文利用Kinect感測器抓取出目標物的深度資訊來進行物體辨識,利用深度影像灰階圖去辨識目標物,可改善傳統CCD在影像辨識上的光線影響,並且可引進新穎的深度辨識概念。傳統機械人在不同控制模式間的轉換都以階段式為主,階段式的控制方法若在某個模式中發生問題,則在後面的模式將無法執行,所以在本論文中引進了第二類區間式模糊系統設計(interval type-2 fuzzy fusion)來平行整合不同控制模式,第二類區間式模糊系統會即時進行調整每項控制模式的權重值,調整權重後,各項控制模式會按照權重要性決策輸出。最後在本論文中,我們利用在未知環境中搜尋斜坡並完成爬坡的實驗來驗證本論文的行為模式和智慧型機器人的效能。

    To achieve the goal of overcoming the special terrain in an unknown environment, several control modes based on a single Kinect sensor for a tracked robot are proposed in this thesis. The control modes include a search mode, an alignment mode, a closing mode and a climbing mode. In general, most of intelligent robots must be relied on CCD sensors to find the target or identify objects. However, measuring color changes frequently when robots place in the complex environment and it leads to the difficulty of identifying the objects. In this thesis, according to depth information of the measured objects provided by Kinect sensor, the track robot can recognize objects without considering the change of light. Two kinds of decision method are used to change the modes when the track robot is during performing specific tasks. One is the traditional staged decision method, which is easy to program but is low reliability, and the other is the interval type-2 fuzzy decision method, which can smoothly change mode because of the ability of parallel computation and system uncertainties involved. Finally, the slope climbing experiments in an unknown environment are used to show performance of our proposed control method for the track robot.

    中文摘要 i 英文摘要 ii 致謝 iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 1.1 前言 1 1.2 研究目的 5 第二章 模糊系統 6 2.1 模糊邏輯系統之理論背景 6 2.2 模糊系統架構 6 2.3 模糊化 7 2.4 模糊推論引擎 10 2.5 模糊規則庫 10 2.6 解模糊化 11 2.7 第二類模糊區間系統設計 12 第三章 機器人之軟、硬體系統架構與設計 15 3.1 機器人機構 15 3.2 馬達動力系統 16 3.2.1 馬達驅動器 16 3.2.2 馬達規格配置 17 3.2.3 馬達控制系統 19 3.3 Kinect感測器 19 3.3.1 Kinect馬達 20 3.3.2 Kinect深度感測器與RGB camera 21 3.4 電源系統 23 3.5 OpenNI的架構設定 24 3.6 馬達程式設計 25 第四章 機器人模式設計與第二類區間式模糊系統設計 31 4.1機器人模式設計 31 4.1.1 尋找模式設計 31 4.1.2 對準模式設計 37 4.1.2.1 對準斜坡前進與旋轉控制方法 42 4.1.3 近距離模式設計 44 4.1.4 爬坡模式設計 47 第五章 實驗與討論-階段式決定模式及第二類區間式模糊決定模式 51 5.1階段式模式設計 51 5.1.1階段式模式設計-搜尋模式 52 5.1.2階段式模式設計-對準模式實驗 56 5.1.3階段式模式設計-近距離和爬坡模式 59 5.2第二類區間式模糊系統設計 65 第六章 結論與未來展望 78 6.1 結論 78 6.2 未來展望 78 參考文獻 80

    [1] http://www.ifr.org/
    [2] Y. Su and C. H. Zheng, “A Simple Nonlinear PID Control for Finite-Time Regulation of Robot Manipulators,” IEEE International Conference on Robotics and Automation, vol. 60, pp. 2569-2574, 2009.
    [3] B. Zhou, J. Han and X. Z Dai, “Backstepping Based Global Exponential Stabilization of a Tracked Mobile Robot with Slipping Perturbation,” Journal of Bionic Engineering, vol. 8, pp. 69-76, 2011.
    [4] T. Iwamoto and H. Yamamoto, “Mechanical design of variable configuration tracked vehicle,” Journal of Mechanical Design, vol. 112, pp. 289-294, 1990.
    [5] T. Matsuda, K. Takagi and T. Sakamoto, “Rough terrain robot with 4 turn-over track frames:a feasibility study on the mechanism,” IEEE SMC '99 Conference Proceedings, vol. 4, pp. 842-847, 1999.
    [6] C. H. Cho, C. W. Park, S. Kang, M. Kim, C. H. Lee and Y. K. Kwak, “ROBHAZ-DT: Variable Configuration Double-Track Mobile Robot for Hazardous Environment Applications,’’ Proc. Int. Conf. Control, Automation and Systems, Cheju, Korea, pp. 150-153, Oct. 2001.
    [7] F. Michaud et al., “AZIMUT, a Leg-Track-Wheel Robot,’’ IEEE International Conference on Intelligent Robots and Systems, vol. 3, pp. 2553-2558, 2003.
    [8] H. Schempf et al., “Pandora: autonomous urban robotic reconnaissance system,’’ IEEE International Conference on Robotics and Automation, vol. 3, pp. 2315-2321, 1999.
    [9] M. Tomoo, T. Kimihiko and S. Takuya, “Rough terrain robot with 4 turn-over track frames-a feasibility study on the mechanism,’’ Proceedings of the IEEE International Conference on Systems, vol. 4, pp. IV-842 - IV-847, 1999.
    [10] P. J. Lewis et al., “Chaos an intelligent ultra-mobile SUGV: Combining the mobility of wheels, tracks, and legs,’’ Proceedings of SPIE - The International Society for Optical Engineering, vol. 5804, no. 50, pp. 427-438, 2005.
    [11] S. K. Lim, D. I. Park, Y. K. Kwak, B. S. Kim and S. W. Jeon, “Variable geometry single-tracked mechanism for a rescue robot,’’ IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 111-115, 2005.
    [12] S. Yokota, K. Kawabata, P. Blazevic and H. Kobayashi, “Control Law for Rough Terrain Robot with Leg-type Crawler,’’ IEEE International Conference on Mechatronics and Automation, no. 4026119, pp. 417-422, 2006.
    [13] S. A. A. Moosavian, H. Semsarilar and A. Kalantari, “Design and manufacturing of a mobile rescue robot,’’ IEEE International Conference on Intelligent Robots and Systems, no. 4059030, pp. 3982-3987, 2006.
    [14] D. Xingguang et al., “MOBIT, A small wheel -track- leg mobile robot,’’ Proceedings of the World Congress on Intelligent Control and Automation, vol. 2,no. 1713772, pp. 9159-9163, 2006.
    [15] S. Yokota et al., “The development of crawler type robot that can move in all over the house,’’ SICE-ICASE International Joint Conference, no. 4108262, pp. 4266-4269, 2006.
    [16] H. C. Keun, K. J. Hae, H. H. Kyung, D. C. Hyun and K. K. Yoon, “Obstacle negotiation for the rescue robot with variable single-tracked mechanism,’’ IEEE/ASME International Conference on Advanced Intelligent Mechatronics, no. 4412417, pp. 1-6, 2007.
    [17] Q. H. Vu, B. S. Kim and J. B. Song, “Autonomous stair climbing algorithm for a small four-tracked robot,’’ International Conference on Control, Automation and Systems, no. 4694199, pp. 2356-2360, 2008.
    [18] http://www.abprecision.co.uk/news.htm.
    [19] I. Vincent and Q. Sun, “A combined reactive and reinforcement learning controller for an autonomous tracked vehicle,” Robotics and Autonomous Systems, vol. 60, pp. 563-576, 2012.
    [20] Y. Liu and G. J. Liu, “Track–Stair Interaction Analysis and Online Tipover Prediction for a Self-Reconfigurable Tracked Mobile Robot Climbing Stairs,” IEEE/ASME Trans. on Mechatronics, VOL. 14, NO. 5, OCTOBER 2009.
    [21] H. James et al., “Type 2 fuzzy sets: An appraisal of theory and applications,” Journal of Terramechanics, vol. 43, Issue 4, pp. 527-551, Oct. 2006.
    [22] R. John, “Type 2 fuzzy sets: An appraisal of theory and applications,” Int. J. Uncertainty, Fuzziness, Knowledge Based Syst., vol. 6, no. 6, pp. 563-576, 1998.
    [23] J. M. Mendel, R. I. B. John and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Trans. on Fuzzy Syst., vol. 14, no. 6, pp. 808-821, Dec. 2006.
    [24] N. N. Karnik and J. M. Mendel, “Centroid of a type-2 fuzzy set,” Inf. Sci., vol. 132, no. 1, pp. 195-220, Feb. 2001.
    [25] 王文俊,“認識 Fuzzy-第二版,”,全華科技圖書出版社,Oct. 1997。
    [26] 汪惠健,“模糊理論與應用,”,台灣培生教育出版股份有限公司,Nov. 2006。
    [27] Q. Liang and J. M. Mendel, “Interval type-2 fuzzy logic systems: Theory and design, ”IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 535-550, Oct. 2000.
    [28] G. V. S. Raju, J. Zhou and R. A. Kisner, “Hierarchical fuzzy control,’’ Int. J. Contr., vol. 54, no. 5, pp. 1201-1216, 1991.
    [29] R. C. Arkin, “Motor schema based navigation for a mobile robot,’’ In Procs of the IEEE Int. Conf. on Robotics and Automation, pp. 264-271, 1987.
    [30] R. A. Brooks. “A robust layered control system for a mobile robot,’’ IEEE Journal of Robotics and Automation, pp.14-23, 1986.
    [31] D. W. Payton, “An architecture for reflexive autonomous vehicle control,’’ In Procs. of the IEEE Int.Conf. on Robotics and Automatzon, pp.1838-1845, San Francisco, CA, 1986.
    [32] L. A. Zadeh, “Fuzzy Sets,’’ Information and Control, vol. 8, pp. 338-353, June 1965.
    [33] 謝慶耀(2010):履帶型自走車之設計與實現,國立台北科技大學自動化科技研究所碩士論文。
    [34] http://www.1111motor.com/products.htm
    [35] http://tw.myblog.yahoo.com/csimsong@kimo.com/article?mid=34&prev=36&next=28
    [36] http://www.guardian.co.uk/technology/gamesblog/2010/jun/21/games-microsoft
    [37] http://www.jameco.com/webapp/wcs/stores/servlet/Product_10001_10001_2105164_-1
    [38] http://kheresy.wordpress.com/2011/01/19/openni_1st/
    [39] http://www.computerhope.com/msdos.htm
    [40] Mehul Thakkar and Hitesh Shah, “Edge Detection Techniques Using Fuzzy Thresholding,” 2011 World Congress on Information and Communication Technologies, pp. 307-312, 2011.

    下載圖示
    QR CODE