簡易檢索 / 詳目顯示

研究生: 卓文中
Cho, Wen-Chong
論文名稱: NaxCoO2 (x = 0.68 and 0.75) 薄膜劣質化效應之光譜性質研究
Degradation effect on optical properties of NaxCoO2 (x = 0.68 and 0.75) thin films
指導教授: 劉祥麟
Liu, Hsiang-Lin
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 160
中文關鍵詞: 熱電材料拉曼散射光譜橢圓偏光光譜
英文關鍵詞: NaxCoO2, thermoelectric, seebeck effect, raman, ellipsometry
論文種類: 學術論文
相關次數: 點閱:321下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們量測 NaxCoO2 (x = 0.68 與 0.75;膜厚 100 nm、280 nm 及 500 nm) 薄膜系統的雷射拉曼散射光譜與橢圓偏光光譜,藉由拉曼活性振動模與電子結構隨時間的變化,探討 NaxCoO2 薄膜的劣質化效應。
    先前許多參考文獻指出 [22, 33, 49, 56, 61],NaxCoO2 (x = 0.68 與 0.75) 單晶樣品的拉曼散射光譜展現二個顯著的特徵峰,其頻率位置約 465 cm-1 與 580 cm-1,我們的新鮮薄膜樣品 (x = 0.75;膜厚 280 nm 與 500 nm) 也有相似的結果。有趣地是,我們觀察到所有新鮮之 NaxCoO2 薄膜 (x = 0.68、膜厚 100 nm、280 nm 及 500 nm 與 x = 075、膜厚 100 nm) 多顯示了一個拉曼散射峰,其頻率位置約為 445 cm-1,此特徵峰對應鈉離子的 E2g (Na) 振動模,且隨著樣品老化而消逝。因此,445 cm-1 之拉曼峰便成為我們判別鈉離子由有序性排列轉為無序性排列的重要指標。另外,我們發現新鮮之 x = 0.68 薄膜樣品表面上散佈大小約為 40 m 的黑點,藉由量測其外圍、邊緣及中心三區域之拉曼散射光譜隨著時間的變化,得知在八天時間內,外圍與邊緣之鈉離子即明顯地向中心擴散。
    最後,不論是 x = 0.68 或是 0.75 薄膜樣品,我們皆觀察到其高頻光學電導率隨著劣質化效應影響而呈現出不規則的變化,暗示因為鈉離子的無序性排列,改變了鈷氧層的電子結構。

    We report the degradation effects on optical properties of NaxCoO2 (x = 0.68 and 0.75, thickness 100 nm, 280 nm, and 500 nm) thin films. Our primary techniques are Raman-scattering and ellipsometric spectroscopy.
    Previous Raman-scattering spectra of NaxCoO2 single crystals (x = 0.68 and 0.75) show two significant Raman-active phonons at about 465 cm-1 and 580 cm-1 [22, 33, 49, 56, 61].Our fresh x = 0.75 thin film with thickness 280 nm and 500 nm exhibit similar results. Interestingly, other fresh NaxCoO2 thin films (x = 0.68, thickness 100 nm, 280 nm, and 500 nm;x = 075, thickness 100 nm) demonstrate additional phonon mode at about 445 cm-1, corresponding to sodium ion’s E2g (Na) vibrations. Notably, this phonon peak gradually diminishes with time in that sensitively gauges the Na ion’s order-disorder effects. Moreover, we observe lots of black dots with dimesion 40 m on the surface of fresh x = 0.68 thin film. Raman-scattering spectra indicate dramatic Na ion’s diffusion occurs toward the center area.
    Finally, optical conductivity obtain from the ellipsometric measurements in both x = 0.68 and 0.75 thin films displays complicated varations with time, suggesting degradation effects also induce changes in the electronic structure of CoO2 layer.

    致謝.....i 摘要.....ii Abstract.....iv 目錄.....vi 表目錄.....viii 圖目錄.....x 第一章 緒論.....1 第二章 研究背景.....9 第三章 實驗儀器設備與基本原理.....30 3-1 拉曼散射光譜儀與基本原理.....30 3-2 橢圓偏光光譜儀與基本原理.....34 第四章 實驗樣品特性.....49 4-1 NaxCoO2 薄膜樣品製備.....49 4-2 NaxCoO2.yH2O 薄膜樣品製備.....53 4-3 NaxCoO2 與 NaxCoO2.yH2O 物理性質量測.....54 第五章 實驗結果與討論.....68 5-1 雷射拉曼散射光譜.....68 5-2 橢圓偏光光譜.....88 第六章 結論與未來展望.....150 參考文獻.....153

    [1] C. Fouassier, G. Matejka, J. M. Reau, and P. Hagenmuller, “Sur de nouveaux bronzes oxygénés de formule NaxCoO2 (χ1) Le système cobalt-oxygène-sodium”, J. Solid State Chem. 6, 532 (1973).
    [2] T. Tanaka, Y. S. Nakamura, and S. Ilda, “Observation of distinct metallic conductivity in NaCo2O4”, Jpn. J. Appl. Phys. 33, L581 (1994).
    [3] K. Takada, H. Sakurai, E. T. Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, “Superconductivity in two dimensional CoO2 layers”, Nature 422, 53 (2003).
    [4] I. Terasaki, Y. Sasago, and K. Uchinokura, “Large thermoelectric power in NaCo2O4 single crystals”, Phys. Rev. B 56, R12685 (1997).
    [5] M. L. Foo, Y. Wang, S. Watauchi, H. W. Zandbergen, T. He, R. J. Cava, and N. P. Ong, “Charge ordering, commensurability, and metallicity in the phase diagram of the layered NaxCoO2”, Phys. Rev. Lett. 92, 247001 (2004).
    [6] N. P. Ong and R. J. Cava, “Electronic frustration on a triangular lattice”, Science 305, 52 (2004).
    [7] 施政行,X 光吸收光譜對錳摻雜之 NaCo2O4 的研究,私立淡江大學物理研究所碩士論文,94 年 6 月。
    [8] G. J. Snyder and T. S. Ursell, “Thermoelectric efficiency and compatibility”, Phys. Rev. Lett. 91, 148301 (2003).
    [9] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, “Thin film thermoelectric devices with high room temperature figures of merit”, Nature 413, 597 (2001).
    [10] B. C. Sales, “Smaller is cooler”, Science 295, 1248 (2002).
    [11] H. K. Onnes, “The disappearance of the resistivity of mercury”, Comm. Phys. Lab. Univ. Leiden 122B (1911).
    [12] W. Meissner and R. Ochsenfeld, “Ein neuer effekt bei eintritt der supraleitfähigkeit”, Naturwissenschaften 21, 787 (1933).
    [13] L. N. Cooper, “Bound electron pairs in a degenerate fermi gas”, Phys. Rev. 104, 1189 (1956).
    [14] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity”, Phys. Rev. 106, 162 (1957).
    [15] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity”, Phys. Rev. 108, 1175 (1957).
    [16] I. Terasaki, I. Tsukada, and Y. Iguchi, “Impurity induced transition and impurity enhanced thermopower in the thermoelectric oxide NaCo2-xCuxO4”, Phys. Rev. B 65, 195106 (2002).
    [17] M. Mikami, M. Yoshimura, Y. Mori, T. Sasaki, R. Funahashi, and M. Shikano, “Thermoelectric properties of two NaxCoO2 crystallographic phases”, Jpn. J. Appl. Phys. 42, 7383 (2003).
    [18] G. Baskaran, “Electronic model for CoO2 layer based systems:chiral resonating valence bond metal and superconductivity”, Phys. Rev. Lett. 91, 097003 (2003).
    [19] T. Kroll, A. A. Aligia, and G. A. Sawatzky, “Polarization dependence of x-ray absorption spectra of NaxCoO2:Electronic structure from cluster calculations”, Phys. Rev. B 74, 115124 (2006).
    [20] 徐家治,NaxCoO2 近緣吸收光譜之極性相依現象探討與比熱研究,國立交通大學物理研究所碩士論文,97 年 7 月。
    [21] L. Viciu, J. W. G. Bos, H. W. Zandbergen, Q. Huang, M. L. Foo, S. Ishiwata, A. P. Ramirez, M. Lee, N. P. Ong, and R. J. Cava, “Crystal structure and elementary properties of NaxCoO2 (x = 0.32, 0.51, 0.6, 0.75, and 0.92) in the three-layer NaCoO2 family”, Phys. Rev. B 73, 174104 (2006).
    [22] Q. Huang, M. L. Foo, R. A. Pascal Jr, J. W. Lynn, B. H. Toby, T. He, H. W. Zandbergen, and R. J. Cava, “Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2”, Phys. Rev. B 70, 184110 (2004).
    [23] Q. Huang, M. L. Foo, J. W. Lynn, H. W. Zandbergen, G. Lawes, Y. Wang, B. H. Toby, A. P. Ramirez, N. P. Ong, and R. J. Cava, “Low temperature phase transitions and crystal structure of Na0.5CoO2”, J. Phys.:Condens. Matter 16, 5803 (2004).
    [24] Y. Ono, R. Ishikawa, Y. Miyazaki, Y. Ishii, Y. Morii, and T. Kajitani, “Crystal structure, electric and magnetic properties of layered cobaltite -NaxCoO2”, J. Solid State Chem. 166, 177 (2002).
    [25] M. N. Iliev, A. P. Litvinchuk, R. L. Meng, Y. Y. Sun, J. Cmaidalka, and C. W. Chu, “Raman phonons and ageing related surface disorder in NaxCoO2”, Physica C 402, 239 (2004).
    [26] J. P. Doumerc, M. Blangero, M. Pollet, D. Carlier, J. Darriet, R. Berthelot, C. Delmas, and R. Decourt, “Transition metal oxides for thermoelectric generation”, J. of electronic material. 38, 1078 (2009).
    [27] G. J. Shu, A. Prodi, S. Y. Chu, Y. S. Lee, H. S. Sheu, and F. C. Chou, “Searching for stable Na ordered phases in single crystal samples of -NaxCoO2”, Phys. Rev. B 76, 184115 (2007).
    [28] R. Ray, A. Ghoshray, K. Ghoshray, and S. Nakamura, “59Co NMR studies of metallic NaCo2O4”, Phys. Rev. B 59, 9454 (1999).
    [29] Y. Wang, N. S. Rogado, R. J. Cava, and N. P. Ong, “Spin entropy as the likely source of enhanced thermopower in NaxCo2O4”, Nature 423, 425 (2003).
    [30] M. Lee, L. Viciu, L. Li, Y. Wang, M. L. Foo, S. Watauchi, R. A. Pascal Jr., R. J. Cava, and N. P. Ong, “Large enhancement of the thermopower in NaxCoO2 at high Na doping”, Nature materials 5, 537 (2006).
    [31] M. L. Foo, R. E. Schaak, V. L. Millera, T. Klimczuk, N. S. Rogado, Y. Wang, G. C. Lau, C. Craley, H. W. Zandbergen, N. P. Ong, and R. J. Cava, “Chemical instability of the cobalt oxyhydrate superconductor under ambient conditions”, Solid State Commun. 127, 33 (2003).
    [32] M. Cyrot and D. Pauna, “Introduction to superconductivity and high-Tc materials”, World Scientific (1992).
    [33] A. Smekal, Naturwiss. 11, 873 (1923).
    [34] J. R. Ferraro, K. Nakamoto, and C. W. Brown, “Introductory Raman spectroscopy”, Academic Press (2003).
    [35] 陳炳州,以拉曼光譜研究由磁控濺鍍合併電子迴旋共振系統所成長的類鑽石薄膜,國立成功大學物理研究所碩士論文,91 年 7 月。
    [36] 徐旻宏,熱電材料 NaxCoO2 (x = 0.68, 0.75, and 0.84) 之光譜性質研究,國立臺灣師範大學物理研究所碩士論文,96 年 6 月。
    [37] J. D. Jackson, “Classical electrodynamics”, New York:Wiley (1999).
    [38] 黃毓中,利用調制式橢圓偏光術於研究光學參數、薄膜厚度與光學性質,私立逢甲大學電子工程學系碩士論文,91 年 7 月。
    [39] 沈稚強,有機半導體薄膜之光譜性質研究,國立臺灣師範大學物理研究所碩士論文,96 年 6 月。
    [40] 陳雅玲,水分子嵌入對 NaxCoO2.yH2O 電子結構的影響,國立交通大學物理研究所碩士論文,97 年 1 月。
    [41] K. Sugiura, H. Ohta, K. Nomura, H. Yanagi, M. Hirano, H. Hosono, and K. Koumoto, “Epitaxial film growth and superconducting behavior of sodium cobalt oxyhydrate, NaxCoO2.yH2O (x ~ 0.3, y ~ 1.3)”, Inorg. Chem. 45, 1894 (2006).
    [42] H. Ohta, S. W. Kim, S. Ohta, K. Koumoto, M. Hirano, and H. Hosono, “Reactive solid phase epitaxial growth of NaxCoO2 (x ~ 0.83) via lateral diffusion of Na into a cobalt oxide epitaxial layer”, Crystal Growth & Design 5, 25 (2005).
    [43] W. J. Chang, C. C. Hsieh, T. Y. Chung, S. Y. Hsu, K. H. Wu, T. M. Uen, J. Y. Lin, J. J. Lin, C. H. Hsu, Y. K. Kuo, H. L. Liu, M. H. Hsu, Y. S. Gou, and J. Y. Juang, “Fabrication and low temperature thermoelectric properties of NaxCoO2 (x = 0.68 and 0.75) epitaxial films by the reactive solid phase epitaxy”, Appl. Phys. Lett. 90, 061917 (2007).
    [44] T. Motohashi, E. Naujalis, R. Ueda, K. Isawa, M. Karppinen, and H. Yamauchi, “Simultaneously enhanced thermoelectric power and reduced resistivity of NaxCo2O4 by controlling Na nonstoichiometry”, Appl. Phys. Lett. 79, 1480 (2001).
    [45] T. Kawata, Y. Iguchi, T. Itoh, and K. Takahata, “Na site substitution effects on the thermoelectric properties of NaCo2O4”, Phys. Rev. B 60, 10584 (1999).
    [46] K. Takada, H. Sakurai, E. T. Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, “Influences of interlayer distance and cobalt oxidation state on superconductivity of NaxCoO2”, Physica C 412, 14 (2004).
    [47] Y. Krockenberger, I. Fritsch, G. Christiani, H. U. Habermeier, L. Yu, C. Bernhard, B. Keimer, and L. Alff, “Superconductivity in epitaxial thin films of NaxCoO2.yD2O”, Appl. Phys. Lett. 88, 162501 (2006).
    [48] H. Sakurai, K. Takada, T. Sasaki, and E. T. Muromachi, “Superconducting phase diagram of NaxCoO2.yD2O”, Physica C 445, 31 (2006).
    [49] H. X. Yang, Y. Xia, Y. G. Shi, H. F. Tian, R. J. Xiao, X. Liu, Y. L. Liu, and J. Q. Li, “Raman spectroscopy study of alpha-, belta-, gamma- NaxCoO2 and gamma-(Ca, Sr)xCoO2”, Phys. Rev. B 74, 094301 (2006).
    [50] J. F. Qu, W. Wang, Y. Chen, G. Li, and X. G. Li, “Raman spectra study on nonstoichiometric compound NaxCoO2”, Phys. Rev. B 73, 092518 (2006).
    [51] A. Donkov, M. M. Korshunov, I. Eremin, P. Lemmens, V. Gnezdilov, F. C. Chou, and C. T. Lin, “Electron phonon interaction in the lamellar cobaltate NaxCoO2”, Phys. Rev. B. 77, 100504 (R) (2008).
    [52] P. Lemmens, P. Scheib, Y. Krockenberger, L. Alff, F. C. Chou, C. T. Lin, H. U. Habermeier, and B. Keimer, “Comment on “Raman spectroscopy study of NaxCoO2 and superconducting NaxCoO2.yH2O” ”, Phys. Rev. B 75, 106501 (2007).
    [53] M. Kadleíková, J. Breza, and M. Veselý, “Raman spectra of synthetic sapphire”, Microelectronics Journal 32, 955 (2001).
    [54] G. J. Shu and F. C. Chou, “Sodium ion diffusion and ordering in single crystal P2-NaxCoO2”, Phys. Rev. B 78, 052101 (2008).
    [55] Y. G. Shi, H. C. Yu, C. J. Nie, and J. Q. Li, “Superstructure, sodium ordering and antiferromagnetism in NaxCoO2 (0.75 ≤ x ≤ 1.0)”, cond-mat/0401052 (unpublished).
    [56] C. M. Julien and M. Massot, “Raman spectroscopic studies of lithium manganates with spinel structure”, J. Phys.:Condens. Matter 15, 3151 (2003).
    [57] V. G. Hadjiev, M. N. Iliev, and I. V. Vergilov, “The Raman spectra of Co3O4”, J. Phys. C:Solid State Phys. 21, L199 (1988).
    [58] P. Lemmens, K. Y. Choi, V. Gnezdilov, E. Y. Sherman, D. P. Chen, C. T. Lin, F. C. Chou, and B. Keimer, “Anomalous electronic Raman scattering in NaxCoO2.yH2O”, Phys. Rev. Lett. 96, 167204 (2006).
    [59] P. Liu, G. Chen, Y. Cui, H. Zhang, F. Xiao, L. Wang, and H. Nakano, “High temperature electrical conductivity and thermoelectric power of NaxCoO2”, Solid State Ionics 179, 2308 (2008).
    [60] T. Wu, K. Liu, H. Chen, G. Wu, Q. L. Luo, J. J. Ying, and X. H. Chen, “Rearrangement of sodium ordering and its effect on physical properties in the NaxCoO2 system”, Phys. Rev. B 78, 115122 (2008).
    [61] P. Lemmens, V. Gnezdilov, N. N. Kovaleva, K. Y. Choi, H. Sakurai, E. T. Muromachi, K. Takada, T. Sasaki, F. C. Chou, D. P. Chen, C. T. Lin, and B. Keimer, “Effect of Na content and hydration on the excitation spectrum of the cobaltite NaxCoO2.yH2O”, J. Phys.:Condens. Matter 16, S857 (2004).
    [62] http://en.wikipedia.org/wiki/Aluminium_oxide_(data_page)#StructurS_and_properties
    [63] N. L. Wang, P. Zheng, D. Wu, Y. C. Ma, T. Xiang, R.Y. Jin, and D. Mandrus, “Infrared probe of the electronic structure and charge dynamics of Na0.7CoO2”, Phys. Rev. Lett. 93, 237007 (2004).

    下載圖示
    QR CODE