簡易檢索 / 詳目顯示

研究生: 林俊誠
Chun-Cheng Lin
論文名稱: 矽上絕緣層矽晶元件應用在光學讀取系統之研究
Study of SOI Devices Applied to Optical Pickup Head Systems
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 101
中文關鍵詞: 矽上絕緣層矽晶光學讀取頭光子晶體光子能隙多模干涉脊狀波導
英文關鍵詞: SOI, optical pickup head, photonic crystal, PBG, multimode interference, rib waveguide
論文種類: 學術論文
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出利用矽上絕緣層矽晶元件建立光學讀取系統結合多模干涉型光學能隙波導光分歧器及光子晶體Mach-Zehnder結構。我們利用二維光子晶體週期性結構及線狀缺陷的技術並針對不同的能隙結構來控制光在光子晶體波導中行進的路徑,以便達到縮小積體光學元件之體積。多模干涉型光學能隙波導光分歧器是基於自成像現象設計而成。我們利用自成像現象在矽上絕緣層矽晶脊狀光波導設計多模干涉光分歧器並進一步研究自成像現象在光子晶體傳播情形來設計光學能隙波導光分歧器。此外,我們利用六角形晶格光子晶體的Mach-Zehnder結構來達成干涉現象,並藉此設計光學讀寫系統。

    In this thesis, we design optical pickup head system by MMI-based PBG waveguide optical splitter with a square-lattice photonic crystal and Mach-Zehnder structure with a hexagonal-lattice photonic crystal building on SOI wafer. MMI-based PBG waveguide optical splitter with a square-lattice photonic crystal is based on self-image phenomenon. We design the device according to the self-image phenomenon in MMI optical splitter based on SOI rib waveguide. We use the technique of photonic bandgap and line defect to control the direction of the light wave propagation in a waveguide. Besides, Mach-Zehnder structure with a hexagonal-lattice photonic crystal is also used to design as an interferometer.

    Contents Chinese Abstract………………………………………………………i English Abstract………………………………………………………ii Acknowledgment………………………………………………………iii Contents ………………………………………………………………iv List of Figures ……………………………………………………vii List of Tables ……………………………………………………xi Chapter 1 Introduction ………………………………………………1 Chapter 2 Design and Analysis of 1x(2N+1) MMI Optical Splitters Based on SOI Rib Waveguide………………………5 2-1 Introduction of the Technique of SOI Waveguide…………6 2-1-1 Mathematic Formulation of Beam Propagation Method…………7 2-1-2 SOI Single mode Rib Waveguide…………………………10 2-1-3 SOI S-Shaped Waveguide………………………………….12 2-1-4 SOI Directional Coupler including S-Shaped Waveguide…………14 2-2 Introduction of the Technique of MMI Structure…………15 2-2-1 Mathematic Formulation of MMI Structure……16 2-3 Simulation Results of 1x(2N+1) MMI Optical Splitters Based on SOI Waveguide………………………………………………19 2-3-1 1x3 MMI Optical Splitter……………………………………20 2-3-2 1x5 MMI Optical Splitter……………………………………21 2-3-3 1x7 MMI Optical Splitter……………………………………23 2-3-4 1x9 MMI Optical Splitter……………………………………24 2-4 Summary……………………………………………………………26 Chapter 3 Design and Analysis 1x(2N+1) MMI-based PBG Waveguide Optical Splitters………………………………………43 3-1 Introduction of photonic crystals and two-dimensional photonic band gap waveguide………………………………………44 3-2 Mathematical formulation of two-dimensional photonic band gap structure and finite difference time domain method…………………………45 3-2-1 Mathematical formulation of the photonic band gap structure……………………46 3-2-2 Mathematical formulation of finite difference time domain method………………………………………………………48 3-3 Simulation results of 1x(2N+1) MMI-based square lattice PBG waveguide optical splitters…………………………………50 3-3-1 1x3 MMI optical splitter………………………………52 3-3-2 1x5 MMI optical splitter………………………………52 3-3-3 1x7 MMI optical splitter………………………………53 3-3-4 1x9 MMI optical splitter………………………………54 3-4 Summary……………………………………………………………55 Chapter 4 Applications of Optical Pickup Head System………68 4-1 Introduction of the optical pickup head system…………69 4-2 Design and analysis of optical pickup head system based on PBG waveguide with Mach-Zehnder structure…………………69 4-2-1 Original System…………………………………………………70 4-2-2 Improved System………………………………………………71 4-3 Design and analysis of integrated two-dimensional photonic band gap optical pickup head system with MMI-based PBG waveguide optical splitter on SOI wafer…………………72 4-4 Summary……………………………………………………………74 Chapter 5 Conclusions………………………………………………86 Reference………………………………………………………………88 Publication Lists.…………………………………………………xii List of Figures Fig. 2-1 Structure of optical SOI rib waveguide……………28 Fig. 2-2 Simulation results of power propagation and mode pattern of an SOI straight rib waveguide with and without polymer…………………………………………………………………28 Fig. 2-3 Structure of optical SOI S-shaped waveguide………29 Fig. 2-4 Simulation results of power propagation and mode pattern of an SOI S-shaped rib waveguide with and without polymer…………………………………………………………………29 Fig. 2-5 Structure of the whole SOI directional waveguide coupler including S-bend power splitting branches with polymer cover…………………………………………………………30 Fig. 2-6 Simulation results of power propagation and mode pattern of an SOI directional waveguide coupler including S-bend power with and without polymer……………………………30 Fig. 2-7 Structure of MMI devices………………………………31 Fig. 2-8 Multimode waveguide based on Self-imaging…………31 Fig. 2-9 Structure of 1x(2N+1) MMI splitter…………………32 Fig. 2-10 Length variation of MMI waveguide of a 1x3 MMI splitter…………………………………………………………………32 Fig. 2-11 Width variation of MMI waveguide of a 1x3 MMI splitter…………………………………………………………………33 Fig. 2-12 Etched depth variation of rib waveguide of a 1x3 MMI splitter……………………………………………………………33 Fig. 2-13 Response of wavelength of a 1x3 MMI splitter……34 Fig. 2-14 Length variation of MMI waveguide of a 1x5 MMI splitter…………………………………………………………………34 Fig. 2-15 Width variation of MMI waveguide of a 1x5 MMI splitter…………………………………………………………………35 Fig. 2-16 Etched depth variation of rib waveguide of a 1x5 MMI splitter……………………………………………………………35 Fig. 2-17 Response of wavelength of a 1x5 MMI splitter…………………………………………………………………36 Fig. 2-18 Length variation of MMI waveguide of a 1x7 MMI splitter…………………………………………………………………36 Fig. 2-19 Width variation of MMI waveguide of a 1x7 MMI splitter…………………………………………………………………37 Fig. 2-20 Etched depth variation of rib waveguide of a 1x7 MMI splitter……………………………………………………………37 Fig. 2-21 Response of wavelength of a 1x7 MMI splitter…………………………………………………………………38 Fig. 2-22 Length variation of MMI waveguide of a 1x9 MMI splitter…………………………………………………………………38 Fig. 2-23 Width variation of MMI waveguide of a 1x9 MMI splitter…………………………………………………………………39 Fig. 2-24 Etched depth variation of rib waveguide of a 1x9 MMI splitter……………………………………………………………39 Fig. 2-25 Response of wavelength of a 1x9 MMI splitter…………………………………………………………………40 Fig. 2-26 Relation of LMMI and the number of output ports for 1x(2N+1) optical splitter based on SOI rib waveguide………………………………………………………………40 Fig. 2-27 Relation of WMMI and the number of output ports for 1x(2N+1) optical splitter based on SOI rib waveguide…41 Fig. 2-28 Relation of d and the number of output ports for 1x(2N+1) optical splitter based on SOI rib waveguide………41 Fig. 2-29 Relation of input wavelength response and the number of output ports for 1x(2N+1) optical splitter based on SOI rib waveguide………………………………………………………………42 Fig. 3-1 Cartesian grid configuration used to implement the FDTD method……………………………………………………………57 Fig. 3-2 Structure of photonic crystal with a square lattice of Si Rod……………………………………………………57 Fig. 3-3 Gap map for square lattice of Si rod, n=3.5………58 Fig. 3-4 TE band structure at lattice constant a=0.64μm and radius r=0.11μm of Si rod……………………………………58 Fig. 3-5(a) Structure of connection with a single mode waveguide and a multimode waveguide……………………………59 Fig. 3-5(b) Propagation in the connection with a single mode waveguide and a multimode waveguide………………………59 Fig. 3-6(a) Propagation in the connection with a single mode waveguide and a multimode waveguide………………………60 Fig. 3-6(b) Propagation in the 1x3 MMI PBG splitter with LMMI =11a………………………………………………………………………60 Fig. 3-7(a) Structure of connection with a single mode waveguide and a multimode waveguide……………………………61 Fig. 3-7(b) Propagation in the connection with a single mode waveguide and a multimode waveguide………………………61 Fig. 3-8(a) Structure of 1x5 MMI PBG splitter with LMMI =22a………………………………………………………………………62 Fig. 3-8(b) Propagation in the 1x5 MMI PBG splitter with LMMI =22a………………………………………………………………62 Fig. 3-9(a) Structure of connection with a single mode waveguide and a multimode waveguide……………………………63 Fig. 3-9(b) Propagation in the connection with a single mode waveguide and a multimode waveguide………………………63 Fig. 3-10(a) Structure of 1x7 MMI PBG splitter with LMMI =33a……………………………………………………………………64 Fig. 3-10(b) Propagation in the 1x7 MMI PBG splitter with LMMI =33a………………………………………………………………64 Fig. 3-11(a) Structure of connection with a single mode waveguide and a multimode waveguide……………………………65 Fig. 3-11(b) Propagation in the connection with a single mode waveguide and a multimode waveguide………………………65 Fig. 3-12(a) Structure of 1x9 MMI PBG splitter with LMMI =44a………………………………………………………………………66 Fig. 3-12(b) Propagation in the 1x9 MMI PBG splitter with LMMI =44a………………………………………………………………66 Fig. 4-1 Structure of photonic crystal with a hexagonal lattice of Si rod……………………………………………………75 Fig. 4-2 Structure of original system with PBG interferometer 1………………………………………………………75 Fig. 4-3 Optical field distribution of PBG interferometer 1…………………………………………………………………………76 Fig. 4-4 Output field intensity profile of PBG interferometer 1………………………………………………………77 Fig. 4-5 Structure of improved system with PBG interferometer 1………………………………………………………77 Fig. 4-6 Optical field distribution of PBG interferometer 2…………………………………………………………………………78 Fig. 4-7 Output field intensity of PBG interferometer 2…………………………………………………………………………79 Fig. 4-8 Optical field distribution of improved system launched on land region of disk………………………………………………………………………79 Fig. 4-9 Output field intensity of improved system launched on land region of disk………………………………………………80 Fig. 4-10 Optical field distribution of improved system launched on pit region of disk……………………………………80 Fig. 4-11 Output field intensity of improved system launched on pit region of disk……………………………………81 Fig. 4-12 TE band structure for lattice constant a=0.64μm and radius r=0.11μm of Si rod with a hexagonal lattice…81 Fig. 4-13 Structure of our designed optical pickup system based on MMI PBG waveguide…………………………………………82 Fig. 4-14 Optical field distribution of optical pickup system…………………………………………………………………82 Fig. 4-15 Output field intensity of optical pickup system…………………………………………………………………83 Fig. 4-16 Optical field distribution of optical pickup system launched on land region of disk…………………………83 Fig. 4-17 Output field intensity of improved system launched on land region of disk…………………………………84 Fig. 4-18 Optical field distribution of optical pickup system launched on pit region of disk…………………………84 Fig. 4-19 Output field intensity of optical pickup system launched on pit region of disk……………………………………85 List of Tables Table 3-1 Design parameters of 1x(2N+1) optical splitters with square-lattice photonic crystals…………………………67 Table 4-1 FWHM of PBG interferometer 1 [Unit: μm]…………76 Table 4-2 FWHM of PBG interferometer 2 [Unit: μm]…………78

    [1] L. Krusin-Elbaum, T. Shibauchi, B. Argyle, L. Gignac, and D. Weller, “Stable ultrahigh-density magneto-optical recordings using introduced linear defects,” Nature, vol. 410, pp. 444-446, 2001.
    [2] K. Manoh, H. Yoshida, T. Kobayashi, M. Takase, K. Yamauchi, S. Fujiwara, T. Ohno, N. Nishi, M. Ozawa, M. Ikeda, T. Tojyo, and T. Taniguchi, “Small integrated optical head device using a blue-violet laser diode for Blue-ray Disc system,” IEEE Optical Memory and Optical Data Storage Topical Meeting, pp. 386-388, 2002.
    [3] N. Kobayashi, and C. Egami, “High-resolution optical storage by use of minute spheres,” Opt. Lett., vol. 30, no. 3, pp. 299-301, 2005.
    [4] S. Ura, T. Suhara, H. Nishihara, and J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol., vol. 4, no. 7, pp. 913-918, 1986.
    [5] H. Ukita, Y. Sugiyama, H. Nakada, and Y. Katagiri, “Read/write performance and reliability of a flying optical head using a monolithically integrated LD-PD,” Appl. Opt., vol. 30, no. 26, pp. 3770-3776, 1991.
    [6] T. Shiono, and H. Ogawa, “Planar-optic-disk pickup with diffractive micro-optics,” Appl. Opt., vol. 33, no. 31, pp. 7350-7355, 1994.
    [7] L. Y. Lin, S. J. Shen, S.S. Lee, M.C. Wu, “Realization of novel monolithic free-space optical disk pickup heads by surface micromachining,” Opt. Lett., 21, pp. 155-157, 1996.
    [8] S. G. Tang, T. D. Milster, J. K. Erwin, and W. L. Bletscher, “High-performance readout and recording by a combination aperture,” Opt. Lett., vol. 26, no. 24, pp. 1987-1989, 2001.
    [9] T. Liu, A. R. Zakharian, R. Rathnakumar, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Applications of photonic crystals in optical data storage,” Proceeding of SPIE International Society Optical Engineering, vol. 5380, pp. 430-438, 2004.
    [10] S. L. Tsao and K. C. Lo, “Near field analysis of a compact optical pickup head based on SOI substrate,” Proceeding of SPIE International Society Optical Engineering, vol. 5511, pp. 182-191, 2004
    [11] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronic,” Phys. Rev. Lett., vol. 58, pp. 2059-2062, 1987.
    [12] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., vol. 58, no. 23, pp. 2486-2489, 1987.
    [13] J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature, vol. 386, pp. 143-149, 1997.
    [14] A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Guiding mechanisms in dielectric-core photonic-crystal optical waveguides,” Phys. Rev. B, vol. 64, no. 3, pp. 033308, 2001.
    [15] M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H.-Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express, vol. 12, no. 8, pp. 1551-1561, 2004.
    [16] R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, and K. Kash, “Novel applications of photonic band materials: Low-loss bends and high Q cavities,” J. Appl. Phys., vol. 75, no. 9, pp. 4753-4755, 1994.
    [17] P. D. Trinh, S. Yegnanarayanan, and B. Jalali, “Integrated optical directional couplers in silicon-on-insulator,” Electron. Lett., vol. 31, pp. 2097-2098, 1995.
    [18] B. Pezeshki, F. Agahi, J. A. Kash, J. J. Welser, and W. K. Wang, “Wavelength selective waveguide photodetectors in silicon-on-insulator,” Appl. Phys. Lett., vol. 68, no. 6, pp. 741-743, 1996.
    [19] E. Cassan, S. Laval, S. Lardenois, and A. Koster, “On-chip optical interconnects with compact and low-loss light distribution in silicon-on-insulator rib waveguides,” J. Selected Topics in Quantum Electron., vol. 9, no. 2, pp. 460-464, 2003.
    [20] V. Milanovic, “Multilevel beam SOI-MEMS fabrication and applications,” J. Microelectromechanical Systems, vol. 13, no. 1, pp. 19-30, 2004.
    [21] B. Luyssaert, P. Vandersteegen, D. Taillaert, P. Dumon, W. Bogaerts, P. Bienstman, D. Van Thourhout, V. Wiaux, S. Beckx, and R. Baets, “A compact photonic horizontal spot-size converter realized in silicon-on-insulator,” Photon. Technol. Lett., vol. 17, no. 1, pp. 73-75, 2005.
    [22] U. Fischer, T. Zinke, J. R. Kropp, F. Arndt, and K. Petermann, “0.1dB/cm waveguide losses in single-mode SOI rib waveguides,” Photon. Technol. Lett., vol. 8, no. 5, pp. 647-648, 1996.
    [23] T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-no-insulator ridge waveguides,” J. Lightwave Technol., vol. 19, no. 12, pp. 1938-1942, 2001.
    [24] S. G. Lee, “Study of WDM Optical SOI Waveguide Michelson Interferometer Temperature Sensor Networks,” M.S. degree thesis, Taiwan, R.O.C., 2000.
    [25] L. Vincetti, A. Cucinotta, S. Selleri and M. Zoboli, “Three-dimensional finite-element beam propagation method: assessments and developments,” J. Opt. Soc. Am. A, vol. 17, no. 6, pp. 1124-1131, 2000.
    [26] M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index optical fibers,” Appl. Opt., vol. 17, no. 24, pp. 3990-3998, 1978.
    [27] P. Danielsen, “Two-dimensional propagating beam analysis of an electrooptic waveguide modulator,” J. Quantum Electron., vol. 20, no. 9, pp. 1093-1097, 1984.
    [28] Y. Chung and N. Dagli, “An assessment of finite difference beam propagation method,” J. Quantum Electron., vol. 26, no. 8, pp. 1335-1339, 1990.
    [29] P. Yeh, Optical waves in layered media, chapter 1, Canada, John Wiley & Sons, 1988.
    [30] R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical Techniques for Modeling Guided-Wave Photonic Devices,” J. Selected Topics in Quantum Electron., vol. 6, no. 1, pp. 150-162, 2000.
    [31] G. R. Hadley, “Transparent boundary condition for the beam propagation method,” Opt. Lett., vol. 16, pp. 624-626, 1991.
    [32] W. P. Huang and C. L. Xu, “Simulation of three-dimensional optical waveguides by a full-vector beam propagation method,” J. Quantum Electron., vol. 29, pp. 2639, 1993.
    [33] N. Takato, T. Kominato, A. Sugita, K. Jinguri, H. Toba, and M. Kawachi, “Silica-based integrated optic Mach-Zehnder multi/demultiplexer family with channel spacing of 0.01dB/250nm,” J. Sel. Areas Communication, vol. 8, pp. 1120-1127, 1990.
    [34] R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single mode rib waveguides in GeSi-Si and Si-on-SiO2,” J. Quantum Electron., vol. 27, pp. 1971-1974, 1991.
    [35] J. Lousteau, D. Furniss, A.B. Seddon, T.M. Benson, A. Vukovic, and P. Sewell, “The single-mode condition for Silicon-on-insulator optical rib waveguides with large cross section,” J. Lightwave Technol., vol. 22, no. 8, pp. 1923-1929, 2004.
    [36] L. D. Hutcheson, I. A. White, and J. J. Burke, “Comparison of bending losses in integrated optical circuits,” Opt. Lett., pp. 276-278, 1980.
    [37] H. Nishihara, M. Haruna, T. Suhara, Optical integrated circuits, Chap. 9, New York, McGraw-Hill publishing company, 1985.
    [38] L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995.
    [39] O. Bryngdahl, “Image formation using self-imaging techniques,” J. Opt. Soc. Amer., vol. 63, pp. 416-418, 1973.
    [40] R. Ulrich and G. Ankele, “Self-imaging in homogeneous planar optical waveguide,” Appl. Phys. Lett., vol. 27, pp. 337-339, 1975.
    [41] R. Ulrich and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Amer., vol. 68, pp. 583-592, 1978.
    [42] E. C. M. Pennings, R. van Roijen, B. H. Verbeek, R. J. Deri, and L. B. Soldano, “Ultracompact multimode interference waveguide devices,” Proceeding of IEEE LEOS '93 Conference, pp. 193-194, 1993.
    [43] H. Wei, J. Yu, X. Zhang, and Z. Liu, “Compact 3-dB tapered multimode interference coupler in silicon-on-insulator,” Opt. Lett., vol. 26, no. 12, pp. 378-380, 2001.
    [44] M. L. Maˇsanovic´, E. J. Skogen, J. S. Barton, J. M. Sullivan, D. J. Blumenthal, and L. A. Coldren, “Multimode interference-based two-stage 1 /spl times/ 2 light splitter for compact photonic integrated circuits,” Photon. Technol. Lett., vol. 15, no. 5, pp. 706-708, 2003.
    [45] J. Leuthold and C. H. Joyner, “Multimode Interference Couplers with Tunable Power Splitting Ratios,” J. Lightwave Technol., vol. 19, no. 5, pp. 700-707, 2001.
    [46] J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. Woo, S. Kim, and B. H. O, “Design and Fabrication of a Significantly Shortened Multimode Interference Coupler for Polarization Splitter Application,” Photon. Technol. Lett., vol. 15, no. 1, pp. 72-74, 2003.
    [47] M. Takenaka and Y. Nakano, “Multimode interference bistable laser diode,” Photon. Technol. Lett., vol. 15, no. 8, pp. 1035-1037, 2003.
    [48] S. Nagai, G. Morishima, H. Inayoshi, and K. Utaka, “Multimode Interference Photonic Switches (MIPS),” J. Lightwave Technol., vol. 20, no. 4, pp. 675-681, 2002.
    [49] N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. W¨orhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol., vol. 17, no. 12, pp. 2542-2550, 1999.
    [50] L. Caruso and I. Montrosset, “Analysis of a Racetrack Microring Resonator With MMI Coupler,” J. Lightwave Technol., vol. 21, no. 1, pp. 206-210, 2003.
    [51] S. L. Tsao, H. C. Guo, and C. W. Tsai, “A novel 1 x 2 single-mode 1300/1550 nm wavelength division multiplexer with output facet-tilted MMI waveguide,” Opt. Communications, vol. 232, pp. 371-379, 2004.
    [52] T. M. Benson, P. Sewell, A. Vukovic, and D. Z. Djurdjevic, “Advances in the finite difference beam propagation method,” Opt. Networks, pp. 36-41, 2001.
    [53] M. T. Hill, X. J. M. Leijtens, G. D. Khoe, and M. K. Smit, Optimizing imbalance and loss in 2 /spl times/ 2 3-dB multimode interference couplers via access waveguide width,” J. Lightwave Technol., vol. 21, no. 10, pp. 2305-1313, 2003.
    [54] S. Rowson, A. Chelnokov, and J. M. Lourtioz, “Two-dimensional photonic crystals in macroporous silicon: from mid-infrared (10μm) to telecommunication wavelengths (1.3-1.5μm),” J. Lightwave Technol., vol. 17, no. 11, pp. 1989-1995, 1999.
    [55] M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol., vol. 18, no. 10, pp. 1402-1411, 2000.
    [56] Y. Xu, H. B. Sun, J. Y. Ye, S. Matsuo and H. Misawa, “Fabrication and direct transmission measurement of high-aspect-ratio two-dimensional silicon-based photonic crystal chips,” J. Opt. Soc. Am. B, vol. 18, no. 8, pp. 1084-1091, 2001.
    [57] S. Noda, M. Imada, M. Okano, S. Ogawa, M. Mochizuki, and A. Chutinan, “Semiconductor three-dimensional and two-dimensional photonic crystals and devices,” J. Quantum Electron., vol. 38, no. 7, pp. 726-735, 2002.
    [58] P. Bhattacharya, J. Sabarinathan, W. D. Zhou, P. C. Yu, and A. McGurn, “Cavities of crystal light [photonic crystal microcavities],” IEEE Circuits and Devices Magazine, vol. 19, no. 2, pp. 25-33, 2003.
    [59] H. J. Kim, I. Park, B. H. O, S. G. Park, E. H. Lee, and S. G. Lee, “Self-Imaging Phenomena in Multi-Mode Photonic Crystal Line-Defect Waveguides: Application to Wavelength De-Multiplexing,” Opt. Express, vol. 12, no. 23, pp. 5625-5633, 2004.
    [60] T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Multimode Interference-Based Photonic Crystal Waveguide Power Splitter,” J. Lightwave Technol., vol. 22, no. 12, pp. 2842-2846, 2004.
    [61] H. Nakamura, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa and K. Asakawa, “Ultra-fast photonic crystal/quantum dot all optical switch for future photonic networks,” Opt. Express, vol. 12, no. 26, pp. 6606-6614, 2004.
    [62] W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. V. Campenhout,P. Bienstman, and D. V. Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol., vol. 23, no. 1, pp. 401-412, 2005.
    [63] H. T. Hattori, C. Seassal, X. Letartre, P. Rojo-Romeo, J. L. Leclercq, P. Viktorovitch, M. Zussy, L. d. Cioccio, L. E. Melhaoui and J. M. Fedeli, “Coupling analysis of heterogeneous integrated InP based photonic crystal triangular lattice band-edge lasers and silicon waveguides,” Opt. Express, vol. 13, no. 9, pp. 3310-3322, 2005.
    [64] W. M. Robertson, “Experimental measurement of the effect of termination on surface electromagnetic waves in one-dimensional photonic bandgap arrays,” J. Lightwave Technol., vol. 17, no. 11, pp. 2013-2017, 1999.
    [65] M. S. Kushwaha and B. Djafari-Rouhani, “Band-gap engineering in two-dimensional periodic photonic crystals,” J. Appl. Phys., vol. 88, no. 5, pp. 2877-2884, 2000.
    [66] M. Laroche, R. Carminati, and J. J. Greffet, “Resonant optical transmission through a photonic crystal in the forbidden gap,” Phys. Rev. B, vol. 71, pp. 155113, 2005.
    [67] Y. Sugimoto, N. Ikeda, N. Carlsson, K. Asakawa, N. Kawai and K. Inoue, “Theoretical and experimental investigation of straight defect waveguides in AlGaAs-based air-bridge-type two-dimensional photonic crystal slabs,” Appl. Phys. Lett., vol. 79, no. 26, pp. 4286-4288, 2001.
    [68] T. Baba, D. Mori, K. Inoshita, and Y. Kuroki, “Light localizations in photonic crystal line defect waveguides,” J. Selected Topics in Quantum Electron., vol. 10, no. 3, pp. 484-491, 2004.
    [69] K. Inoue, H. Sasaki, K. Ishida, Y. Sugimoto, N. Ikeda, Y. Tanaka, S. Ohkouchi, Y. Nakamura, and K. Asakawa, “InAs quantum-dot laser utilizing GaAs photonic-crystal line-defect waveguide,” Opt. Express, vol. 12, no. 22, pp. 5502-5509, 2004.
    [70] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. AP-14, no. 3, pp. 302-307, 1966.
    [71] S. T. Chu and S. K. Chaudhuri, “A finite-difference time-domain method for design and analysis of guided-wave optical structures,” J. Lightwave Technol., vol. 7, no. 12, pp. 2033-2038, 1989.
    [72] M. Mirotznik, W. A. Beck, D. Prather, R. Vollmerhausen, and R. Driggers, “Optical absorption modeling of thermal infrared detectors by use of the finite-difference time-domain method,” Opt. Lett., vol. 26, no. 5, pp. 280-282, 2001.
    [73] H. Nakamura, T. Saiki, H. Kambe, and K. Sawada, “FDTD simulation of tapered structure of near-field fiber probe,” Computer Phys. Communications, vol. 142, no. 1-3, pp. 464-467, 2001.
    [74] C. P. Yu and H. C. Chan, “Yee-Mesh-Based Finite Difference Eigenmode Solver with PML Absorbing Boundary Conditions for Optical Waveguides and Photonic Crystal Fibers,” Opt. Express, vol. 12, no. 25, pp. 6165-6177, 2004.
    [75] S. Lou, Z. Wang, G. Ren, and S. Jian, “An efficient algorithm for modeling photonic crystal fibers,” Opt. Fiber Technol., vol. 11, no. 1, pp. 34-45, 2005.
    [76] W. Sun, N. G. Loeb, S. Tanev, and G. Videen, “Finite-difference time-domain solution of light scattering by an infinite dielectric column immersed in an absorbing medium,” Appl. Opt., vol. 44, no. 10, 1977-1983, 2005.
    [77] J. D. Joannapolous, R. D. Meade and J. N. Winn, Photonic Crystals-Molding the Flow of Light, New Jersey, Princeton University Press, 1995.
    [78] K. Sakoda, Optical Properties of Photonic Crystals, Japan, Hokkaido University Press, 2001.
    [79] S. Guo and S. Albin, “Simple plane wave implementation for photonic crystal calculations,” Opt. Express, vol. 11, no. 2, pp. 167-175, 2003.
    [80] S. Shi, C. Chen, and D. W. Prather, “Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers,” J. Opt. Soc. Am. A, vol. 21, no. 9, pp. 1769-1775, 2004.
    [81] M. Kaneko, Y. Sabi, I. Ichimura, and S. i. Hashimoto, “Magneto-optical recording on Pt/Co and GdFeCo/TbFeCo disks using a green laser,” IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 3766-3771, 1993.
    [82] H. Sukeda, H. Saga, H. Nemoto, Y. Itou, C. Haginoya, and T. Matsumoto, “Thermally assisted magnetic recording on flux-detectable RE-TM media,” IEEE Transactions on Magnetics, vol. 37, no. 4, pp. 1234-1238, 2001.
    [83] L. Krusin-Elbaum, T. Shibauchi, B. Argyle, L. Gignac, and D. Weller, “Stable ultrahigh-density magneto-optical recordings using introduced linear defects,” Nature, vol. 410, pp. 444-446, 2001.
    [84] B. M. Chen, B. W. Yang, W. K. Kwang, T. E. Shieh, and H. P. Shieh, “Carrier-to-noise ratio improvement with pulsed-laser readout on magnetically induced superresolution by center aperture detection disks,” IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 4368-4371, 1999.
    [85] A. Takahashi, J. Nakajima, Y. Murakami, K. Ohta, and T. Ishikawa, “Improvement of readout resolution with an in-plane magnetization film for a magneto-optical disk,” IEEE Transactions on Magnetics, vol. 30, no. 2, pp. 232-236, 1994.
    [86] H. Fuji, T. Okumura, S. Maeda, Y. Murakami, J. Akiyama, and H. Sato, "Cross-recording reduction by trial recording on a magneto-optical disk,” IEEE Transactions on Magnetics, vol. 36, no. 3, pp. 591-596, 2000.
    [87] N. Bui, M.K. Sundareshan, and H.S. Tharp, “Seek reliability enhancement in optical and magneto-optical disk data storage devices,” IEEE Transactions on Magnetics, vol. 29, no. 6, pp. 3802-3804, 1993.
    [88] M. Kaneko, K. Aratani, A. Fukumoto, and S. Miyaoka, “IRISTER- Magneto-Optical disk for magnetically induced SuperResolution,” Proc. IEEE, vol. 82, no. 4, pp. 544-553, 1994.
    [89] T. Tokunaga, Y. Fujii,and K. Yamada, “Light intensity modulation direct overwrite MO disks with magnetically induced super resolution readout function,” IEEE Optical Data Storage Conference, pp. 16-17, 1997.
    [90] Y. Tanaka, M. Kurebayashi, T. Maeda, K. Torazawa, A. Takahashi, N. Ohta, and S. Yonezawa, “High density magneto-optical disk technologies,” IEEE Transactions on Consumer Electron., vol. 43, no.3, pp. 475-482, 1997.
    [91] R. Katayama, S. Meguro, Y. Komatsu, and Y. Yamanaka, “Radial tilt detection using 3-beam optical head,” IEEE Optical Data Storage Conference, pp. 203-205, 2000.
    [92] K. Manoh, H. Yoshida, T. Kobayashi, M. Takase, K. Yamauchi, S. Fujiwara, T. Ohno, N. Nishi, M. Ozawa, M. Ikeda, T. Tojyo, and T. Taniguchi, “Small integrated optical head device using a blue-violet laser diode for Blue-ray Disc system,” IEEE Optical Memory and Optical Data Storage Topical Meeting, pp. 386-388, 2002.
    [93] W. Odajima, F. Tawa, N. Aoyama, M. Hokari, M. Shibano, and S. Hasegawa, “High optical efficient integrated head for use in magneto-optical disk drive,” IEEE Optical Memory and Optical Data Storage Topical Meeting, pp. 389-391, 2002.
    [94] K. Ueyanagi, Y. Adachi, T. Suzuki, K. Wakabayashi, “Fabrication and optical characteristics of a hemi-paraboloidal solid immersion mirror and designing of an optical head with the mirror,” IEEE Optical Memory and Optical Data Storage Topical Meeting, pp. 401-403, 2002.
    [95] B. D. Terris, H. J. Mamin, and D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett., vol. 68, no. 2, pp. 141-143,1996.
    [96] K. Ito, H. Saga, H. Nemoto, and H. Sukeda, “Advanced recording method using a near-field optics and the GMR head,” IEEE Optical Data Storage Conference, pp. 30-32, 2000.
    [97] K. Kato, S. Ichihara, H. Maeda, M. Oumi, T. Niwa, Y. Mitsuoka, K. Nakajima, T. Ohkubo, and K. Itao, “High-speed readout using small near-field optical head module with horizontal light introduction through optical fiber,” IEEE Optical Memory and Optical Data Storage Topical Meeting, pp. 198-200, 2002.
    [98] K. Shimazaki, S. Ohnuki, H. Terasaki, Y. Suzuki, Y. Nakajima, and Y. Yoda, “High capacity MO media for digital still cameras “iD photo,” IEEE Optical Data Storage Conference, pp. 167-169, 2000.

    QR CODE