簡易檢索 / 詳目顯示

研究生: 洪修翊
Hung, Hsiu-Yi
論文名稱: 以大鼠模式探討青少年頭部外傷造成其成年行為異常之機轉
Using Rodent Model to Study Juvenile Traumatic Brain Injury-Induced Behavioral Abnormality in Adulthood
指導教授: 呂國棟
Lu, Kwok-Tung
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 93
中文關鍵詞: 青少年期頭部外傷類憂鬱行為杏仁核海馬迴中央前額葉皮質伏隔核
英文關鍵詞: Juvenile, Traumatic brain injury, Depression-like behavior, Amygdala, Hippocampus, Medial prefrontal cortex, Nucleus Accumbens
DOI URL: http://doi.org/10.6345/THE.NTNU.SLS.011.2019.D01
論文種類: 學術論文
相關次數: 點閱:98下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頭部外傷(traumatic brain injury, TBI) 為全世界青壯年人口中,發生率(morbidity)及死亡率(mortality)雙高的意外傷害,患者在創傷後常併發癱瘓(paralysis)、癲癇(epilepsy)、重度憂鬱(major depression)以及焦慮症(anxiety disorder)等一系列後遺症(sequelae),使得患者在其最具生產力的人生階段,必須接受長期的醫療照護及藥物治療。
    頭部外傷的病理變化可簡分為初始傷害(primary injury)及繼發性傷害(secondary injury)兩大類。初始傷害發生在受傷當時,而繼發性傷害如:血腫(hematoma)、腦缺血(ischemia)、腦缺氧(hypoxia)及腦水腫(brain edema),前人研究多專注於成年期的頭部外傷,缺乏青少年期的研究。本研究將利用動物模式,探討青少年期頭部外傷處理後(juvenile TBI treatment, TBI-J)導致成年期情感異常之病理變化及神經機轉。
    主要採用的行為實驗方法包括強迫游泳實驗(forced swimming test, FST)、糖水偏好實驗(sucrose preference test, SPT),FST和SPT為測量類憂鬱行為(depression-like behavior);測量類焦慮行為(anxiety -like behavior)的方法,則包括高架十字迷宮(elevated plus maze, EPM)和恐懼所促進的驚跳反應(fear-potentiated startle, FPS);而開放空間實驗(open field test, OFT)和平衡桿(rotarod)則用以測量自發性運動(locomotor activity)及運動能力。部分動物被犧牲取腦,並以即時聚合酶連鎖反應分析(real-time PCR, qPCR)或西方墨點法(western blot, WB)分析杏仁核(amygdala)、中央前額葉皮質(medial prefrontal cortex, mPFC)及伏隔核(nucleus accumbens, NAcc)中特定基因之表現,以作為分析憂鬱症的分子生物學依據。同時將會有另一平行組別(parallel group),用於離體胞外電生理(in vitro extracellular recording)實驗,觀察TBI-J大鼠海馬迴(hippocampus)及杏仁核中,經高頻率電刺激(high-frequency stimulation, HFS)誘發之長期增益效應(long-term potentiation, LTP)之變化。
    實驗結果顯示,於青少年期(六週齡)曾接受頭部外傷處理的大鼠(TBI-J rats),於成年後(十週齡)類憂鬱行為明顯增加,在FST實驗中,其不掙扎時間(immobility)明顯較少;在SPT實驗中,糖水之攝取量(sucrose intake) 明顯較低,但其自發性運動和運動功能並沒有明顯改變。此外,在FPS結果顯示,TBI-J組的基礎驚跳反應(basal startle)明顯增加,但促進的驚跳反應百分比(percent potentiated startle)則無顯著變化,合併EPM的數據,推估TBI-J組的類焦慮行為無明顯改變。在手術恢復期投予新興抗藥物7,8-DHF,對TBI-J組成年期類憂鬱行為亦無改善。西方墨點法分析杏仁核表現之磷酸化p42-ERK以及TrKA 明顯下降,而BDNF 則在兩組之中表現無差異。以即時聚合酶連鎖反應分析中央前額葉皮質BDNF的RNA表現量明顯下降,伏隔核中的CRH及Slc6a4有明顯上升的趨勢。最後,電生理結果顯示,杏仁核中HFS-LTP明顯增強,而海馬迴中HFS-LTP無顯著變化。此結果與先前觀察到的基礎驚跳值增加相互契合,顯示TBI-J的處理會影響到杏仁核的功能。
    本研究之結果顯示青少年期頭部外傷,會增加成年期的類憂鬱行為,而對類焦慮行為則無明顯影響,電生理的實驗結果也與行為實驗結果相符合。但是意外地在機轉上,卻與大多數研究者認定的BDNF表現量減少,引發類憂鬱行為的機制不甚相同,且7,8-DHF的投藥也無法改善TBI-J組的類憂鬱行為,此結果暗示成年期與青少年期頭部外傷引發行為異常之神經機轉可能不盡相同,故在採用相關治療藥物時需做進一步的思考。總結本研究之結果,對於青少年期頭部外傷引發行為異常之機轉進行初步的探討,希望能對相關藥物治療的開發提供所需的方向及基礎。

    Traumatic brain injury (TBI) is a leading cause of mortality and morbidity among global youth and commonly results in paralysis, epilepsy, and/or a host of mental disorders. In such cases, long-term hospitalization and medication become necessities for those who should otherwise be living active, productive lives. TBI can also lead to secondary injury such as hematoma, ischemia, hypoxia, cerebral edema, or other conditions that resemble mental illnesses like anxiety and depression. While previous studies mainly focus on TBI as it occurs in adults, this thesis explores the long-term effects of TBI in adolescents.
    In the present study, I employ a juvenile traumatic brain injury animal model (TBI-J) that involves subjecting juvenile rats to head injury that mimics TBI. Once reaching adulthood, rats underwent behavioral, biochemical, and electrophysiological experimentation. The forced swimming test (FST) and sucrose preference test (SPT) were used to measure depression-like behavior, while anxiety-like behavior was measured using the elevated plus maze (EPM) and fear-potentiated startle (FPS) tests. An open field test (OFT) and rotarod test were additionally used to evaluate the non-specific effects of juvenile TBI. Adult rat hippocampus, amygdala, medial prefrontal cortex (mPFC), and nucleus accumbens (NAcc) were later dissected for Western blot (WB) and real-time PCR (qPCR) analysis to screen for expression of genes associated with depression. Finally, hippocampus and amygdala brain slices were tested using in vitro extracellular recording to reveal long-term potentiation (LTP) induced by high frequency stimulation (HFS).
    Results revealed an increase in depression-like behavior among adult TBI-J rats. FST revealed a decrease in mobility, SPT revealed a decrease in sucrose consumption, and no differences were seen between TBI and control groups for total distance traveled during either the locomotion or rotarod test. Basal startle response, but not percent potentiated startle, was found to be elevated in TBI-J rats, which is consistent with EPM data. We therefore concluded no significant difference in anxiety-like behavior between TBI-J and sham control rats. Furthermore, we found no significant therapeutic benefit with 7,8-DHF, a novel antidepressant, for TBI-J rats exhibiting depression-like behavior. Extracellular recording revealed elevated HFS-LTP in the amygdala but not the hippocampus, which supports our hypothesis that juvenile TBI induces elevated basal startle response in adults. Amygdaloid p42-ERK phosphorylation and TrKA were significantly reduced, but BDNF activity did not vary greatly between groups. Finally, RT-PCR revealed a low brain-derived neurotrophic factor (BDNF) expression in the mPFC and high CRH and Slc6a4 expression in the NAcc.
    Overall, we found that juvenile TBI rats exhibited long-term depression–like but not anxiety-like behavior. Administration of 7,8-DHF, a TrkB agonist, does not appear to lessen depression-like symptoms in adulthood.. It is widely accepted that BDNF plays an essential role on the pathogenesis of major depression, and BDNF receptor quantity/activation state are also central to depression pathology. In summary, these results suggest a difference in the mechanism of TBI-induced behavioral abnormalities among adult and juvenile animals. Further research is required to elucidate specific disease mechanisms as well as to devise new therapies for depression resulting from juvenile TBI.

    Table of Contents ...... 1 Abstract in Chinese .... 3 Abstract in English .... 6 Chapter 1: Introduction ..... 9 1.1 Traumatic Brain Injury .... 9 1.2 TBI and Neurological Damage ..... 10 1.3 TBI and Mental Illness ..... 12 1.4 Aim and Significance ..... 16 Chapter 2: Materials and methods .... 17 2.1 Animals ...... 17 2.2 Juvenile Traumatic Brain Injury Model ..... 17 2.3 Mobility Tests ..... 17 2.3.1 Rotarod Test....18 2.3.2 Locomotor Activity Test.....18 2.4 Depression-Like Behavioral Tests .... 18 2.4.1 Sucrose Preference Test....18 2.4.2 Forced Swim Test.....19 2.5 Anxiety-Like Behavioral Tests .... 19 2.5.1 Fear-Potentiated Startle Test.....19 2.5.2 Elevated Plus Maze Test.....20 2.5.3 Open Field Test....21 2.6 Laboratory Tests ..... 22 2.6.1 In Vitro Extracellular Recording....22 2.6.2 Western Blot....24 2.6.3 Real Time Polymerase Chain Reaction....25 Chapter 3: Results .... 28 3.1 Elevated Depression-Like Behavior ...... 28 3.2 Elevated Basal and Fear-Potentiated Startle Response ...... 29 3.3 Similar Anxiety-Like Behavior Between Groups ...... 30 3.4 Increased Amygdaloid Long-Term Potentiation ..... 32 3.5 No Dose-Dependent Effect of 7,8-DHF was found in TBI-J animals....... 33 3.6 Gene Expression in the mPFC and NAcc ...... 34 3.7 Amygdaloid MAPK Pathway Activation ..... 35 3.8 Amygdaloid BDNF-TrKB Pathway Activation ....... 36 Chapter 4: Discussion ..... 38 4.1 Discussion.... 38 4.2 Conclusion....45 Figures ..... 47 Abbreviations ..... 75 References .... 77

    Agrawal, R., Noble, E., Tyagi, E., Zhuang, Y., Ying, Z. & Gomez-Pinilla, F. (2015) Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta, 1852, 862-872.

    Andero, R., Heldt, S.A., Ye, K., Liu, X., Armario, A. & Ressler, K.J. (2011) Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning. Am J Psychiatry, 168, 163-172.

    Andrade, P., Banuelos-Cabrera, I., Lapinlampi, N., Paananen, T., Ciszek, R., Ndode-Ekane, X.E. & Pitkanen, A. (2018) Acute non-convulsive status epilepticus after experimental traumatic brain injury in rats. J Neurotrauma.

    Angelucci, F., Aloe, L., Vasquez, P.J. & Mathe, A.A. (2000) Mapping the differences in the brain concentration of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in an animal model of depression. Neuroreport, 11, 1369-1373.

    Balu, D.T., Hoshaw, B.A., Malberg, J.E., Rosenzweig-Lipson, S., Schechter, L.E. & Lucki, I. (2008) Differential regulation of central BDNF protein levels by antidepressant and non-antidepressant drug treatments. Brain Res, 1211, 37-43.

    Bayer, S.A. (1982) Changes in the total number of dentate granule cells in juvenile and adult rats: a correlated volumetric and 3H-thymidine autoradiographic study. Exp Brain Res, 46, 315-323.

    Bayir, A., Kafali, M.E., Ak, A., Sahin, M., Karagozoglu, E., Gul, M. & Karabulut, K. (2003) Effects of hypertonic saline, HAES and dimethylsulphoxide on free oxygen radicals in haemorrhagic shock oxygen radicals in haemorrhagic shock. Ulus Travma Acil Cerrahi Derg, 9, 154-159.

    Begum, G., Yan, H.Q., Li, L., Singh, A., Dixon, C.E. & Sun, D. (2014) Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury. J Neurosci, 34, 3743-3755.

    Blakey, S.M., Wagner, H.R., Naylor, J., Brancu, M., Lane, I., Sallee, M., Kimbrel, N.A., Workgroup, V.A.M.-A.M. & Elbogen, E.B. (2018) Chronic Pain, TBI, and PTSD in Military Veterans: A Link to Suicidal Ideation and Violent Impulses? J Pain, 19, 797-806.

    Blumbergs, P.C., Scott, G., Manavis, J., Wainwright, H., Simpson, D.A. & McLean, A.J. (1994) Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344, 1055-1056.

    Brahmachari, G. (8th June 2017) Discovery and Development of Neuroprotective Agents from Natural Products. Elsevier.

    Brenes Saenz, J.C., Villagra, O.R. & Fornaguera Trias, J. (2006) Factor analysis of Forced Swimming test, Sucrose Preference test and Open Field test on enriched, social and isolated reared rats. Behav Brain Res, 169, 57-65.

    Brenner, L.A. (2011) Neuropsychological and neuroimaging findings in traumatic brain injury and post-traumatic stress disorder. Dialogues Clin Neurosci, 13, 311-323.

    Bryant, R. (2011) Post-traumatic stress disorder vs traumatic brain injury. Dialogues Clin Neurosci, 13, 251-262.

    Bushnik, T., Englander, J. & Wright, J. (2008) Patterns of fatigue and its correlates over the first 2 years after traumatic brain injury. J Head Trauma Rehabil, 23, 25-32.

    Cai, Y.-J. (1991) A study on the effectiveness of prevention of head injuries by helmet among motorcycle riders in Taipei.

    Carlson, K.F., Nelson, D., Orazem, R.J., Nugent, S., Cifu, D.X. & Sayer, N.A. (2010) Psychiatric diagnoses among Iraq and Afghanistan war veterans screened for deployment-related traumatic brain injury. J Trauma Stress, 23, 17-24.

    Carola, V., D'Olimpio, F., Brunamonti, E., Mangia, F. & Renzi, P. (2002) Evaluation of the elevated plus-maze and open-field tests for the assessment of anxiety-related behaviour in inbred mice. Behav Brain Res, 134, 49-57.

    Cernak, I. (2005) Animal models of head trauma. NeuroRx, 2, 410-422.

    Cetin, A. & Deveci, E. (2018) Evaluation of PECAM-1 and p38 MAPK expressions in cerebellum tissue of rats treated with caffeic acid phenethyl ester: A biochemical and immunohistochemical study. Folia Morphol (Warsz).

    Chamelian, L. & Feinstein, A. (2004) Outcome after mild to moderate traumatic brain injury: the role of dizziness. Arch Phys Med Rehabil, 85, 1662-1666.

    Cherian, L., Hlatky, R. & Robertson, C.S. (2004) Nitric oxide in traumatic brain injury. Brain Pathol, 14, 195-201.

    Chiu, H.-F., Chan, M.W.Y., Cheng, C.-Y., Chou, J.-L., Lin, J.M.-J., Yang, Y.-L. & Lu, K.-T. (2018) Neonatal Dexamethasone Treatment Suppresses Hippocampal Estrogen Receptor α Expression in Adolescent Female Rats. Molecular Neurobiology.

    Cho, S.J., Kang, K.A., Piao, M.J., Ryu, Y.S., Fernando, P., Zhen, A.X., Hyun, Y.J., Ahn, M.J., Kang, H.K. & Hyun, J.W. (2018) 7,8-Dihydroxyflavone Protects High Glucose-Damaged Neuronal Cells against Oxidative Stress. Biomol Ther (Seoul).

    Coronado, V.G., Xu, L., Basavaraju, S.V., McGuire, L.C., Wald, M.M., Faul, M.D., Guzman, B.R., Hemphill, J.D., Centers for Disease, C. & Prevention (2011) Surveillance for traumatic brain injury-related deaths--United States, 1997-2007. MMWR Surveill Summ, 60, 1-32.

    Daskalakis, N.P., De Kloet, E.R., Yehuda, R., Malaspina, D. & Kranz, T.M. (2015) Early Life Stress Effects on Glucocorticoid-BDNF Interplay in the Hippocampus. Front Mol Neurosci, 8, 68.

    Dong, C., Wong, M.L. & Licinio, J. (2009) Sequence variations of ABCB1, SLC6A2, SLC6A3, SLC6A4, CREB1, CRHR1 and NTRK2: association with major depression and antidepressant response in Mexican-Americans. Mol Psychiatry, 14, 1105-1118.

    Duman, J.W.K.R.S. (2007) IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress.

    Fann, J.R., Bombardier, C.H., Vannoy, S., Dyer, J., Ludman, E., Dikmen, S., Marshall, K., Barber, J. & Temkin, N. (2015) Telephone and in-person cognitive behavioral therapy for major depression after traumatic brain injury: a randomized controlled trial. J Neurotrauma, 32, 45-57.

    Ferenczi, E.A., Zalocusky, K.A., Liston, C., Grosenick, L., Warden, M.R., Amatya, D., Katovich, K., Mehta, H., Patenaude, B., Ramakrishnan, C., Kalanithi, P., Etkin, A., Knutson, B., Glover, G.H. & Deisseroth, K. (2016) Prefrontal cortical regulation of brainwide circuit dynamics and reward-related behavior. Science, 351, aac9698.

    Finck, A.D., Samaniego, E. & Ngai, S.H. (1995) Nitrous oxide selectively releases Met5-enkephalin and Met5-enkephalin-Arg6-Phe7 into canine third ventricular cerebrospinal fluid. Anesth Analg, 80, 664-670.

    Gao, Y.J. & Ji, R.R. (2009) c-Fos and pERK, which is a better marker for neuronal activation and central sensitization after noxious stimulation and tissue injury? Open Pain J, 2, 11-17.

    Grundy, P.L., Harbuz, M.S., Jessop, D.S., Lightman, S.L. & Sharples, P.M. (2001) The hypothalamo-pituitary-adrenal axis response to experimental traumatic brain injury. J Neurotrauma, 18, 1373-1381.

    Hall, E.D., Vaishnav, R.A. & Mustafa, A.G. (2010) Antioxidant therapies for traumatic brain injury. Neurotherapeutics, 7, 51-61.

    Hoffman, A.N., Paode, P.R., May, H.G., Ortiz, J.B., Kemmou, S., Lifshitz, J., Conrad, C.D. & Currier Thomas, T. (2017) Early and Persistent Dendritic Hypertrophy in the Basolateral Amygdala following Experimental Diffuse Traumatic Brain Injury. J Neurotrauma, 34, 213-219.

    Hsu, I.L., Li, C.Y., Chu, D.C. & Chien, L.C. (2018) An Epidemiological Analysis of Head Injuries in Taiwan. Int J Environ Res Public Health, 15.

    Huan-Ting Chi, W.-T.C., Dar-Yu Yang, Shin-Han Tsai (2007) The Epidemiology and Utilization of Medical Resources on Mild Head Injury in Taipei City. 中華民國急救加護醫學會雜誌, 18, 61-70.

    Irving, E.A. & Bamford, M. (2002) Role of mitogen- and stress-activated kinases in ischemic injury. J Cereb Blood Flow Metab, 22, 631-647.

    Jang, S.W., Liu, X., Yepes, M., Shepherd, K.R., Miller, G.W., Liu, Y., Wilson, W.D., Xiao, G., Blanchi, B., Sun, Y.E. & Ye, K. (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc Natl Acad Sci U S A, 107, 2687-2692.

    Johnstone, M.R., Sun, M., Taylor, C.J., Brady, R.D., Grills, B.L., Church, J.E., Shultz, S.R. & McDonald, S.J. (2018) Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Inj, 32, 257-268.

    Ko, M.C., Hung, Y.H., Ho, P.Y., Yang, Y.L. & Lu, K.T. (2014) Neonatal glucocorticoid treatment increased depression-like behaviour in adult rats. Int J Neuropsychopharmacol, 17, 1995-2004.

    Ko, M.C., Lee, M.C., Tang, T.H., Amstislavskaya, T.G., Tikhonova, M.A., Yang, Y.L. & Lu, K.T. (2018) Bumetanide blocks the acquisition of conditioned fear in adult rats. Br J Pharmacol, 175, 1580-1589.

    Lee, B.H. & Kim, Y.K. (2010) The roles of BDNF in the pathophysiology of major depression and in antidepressant treatment. Psychiatry Investig, 7, 231-235.

    Leonardo Santana Novaesa, N.B.d.S., Juliano Genaro Perfettoa, Ki Ann Goosensb, Carolina Demarchi Munhoz (2018) Environmental enrichment prevents acute restraint stress-induced anxiety-related behavior but not changes in basolateral amygdala spine density.

    Leung, L.Y., Cardiff, K., Yang, X., Srambical Wilfred, B., Gilsdorf, J. & Shear, D. (2018) Selective Brain Cooling Reduces Motor Deficits Induced by Combined Traumatic Brain Injury, Hypoxemia and Hemorrhagic Shock. Front Neurol, 9, 612.

    Lipton, S.A., Choi, Y.B., Pan, Z.H., Lei, S.Z., Chen, H.S., Sucher, N.J., Loscalzo, J., Singel, D.J. & Stamler, J.S. (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature, 364, 626-632.

    Lu, K.T., Cheng, N.C., Wu, C.Y. & Yang, Y.L. (2008) NKCC1-mediated traumatic brain injury-induced brain edema and neuron death via Raf/MEK/MAPK cascade. Crit Care Med, 36, 917-922.

    Lu, K.T., Wang, Y.W., Wo, Y.Y. & Yang, Y.L. (2005a) Extracellular signal-regulated kinase-mediated IL-1-induced cortical neuron damage during traumatic brain injury. Neurosci Lett, 386, 40-45.

    Lu, K.T., Wang, Y.W., Yang, J.T., Yang, Y.L. & Chen, H.I. (2005b) Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma, 22, 885-895.

    Lu, K.T., Wu, C.Y., Cheng, N.C., Wo, Y.Y., Yang, J.T., Yen, H.H. & Yang, Y.L. (2006) Inhibition of the Na+ -K+ -2Cl- -cotransporter in choroid plexus attenuates traumatic brain injury-induced brain edema and neuronal damage. Eur J Pharmacol, 548, 99-105.

    Mehta, N.D., Haroon, E., Xu, X., Woolwine, B.J., Li, Z. & Felger, J.C. (2018) Inflammation negatively correlates with amygdala-ventromedial prefrontal functional connectivity in association with anxiety in patients with depression: Preliminary results. Brain Behav Immun, 73, 725-730.

    Menon, D.K., Schwab, K., Wright, D.W., Maas, A.I., Demographics, Clinical Assessment Working Group of the, I., Interagency Initiative toward Common Data Elements for Research on Traumatic Brain, I. & Psychological, H. (2010) Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil, 91, 1637-1640.

    Minichiello, L. (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci, 10, 850-860.

    Morgan, C.A., 3rd, Grillon, C., Southwick, S.M., Davis, M. & Charney, D.S. (1995) Fear-potentiated startle in posttraumatic stress disorder. Biol Psychiatry, 38, 378-385.

    Niogi, S.N. & Mukherjee, P. (2010) Diffusion tensor imaging of mild traumatic brain injury. J Head Trauma Rehabil, 25, 241-255.

    Ommaya, A.K. & Gennarelli, T.A. (1974) Cerebral concussion and traumatic unconsciousness. Correlation of experimental and clinical observations of blunt head injuries. Brain, 97, 633-654.

    Oppenheimer, D.R. (1968) Microscopic lesions in the brain following head injury. J Neurol Neurosurg Psychiatry, 31, 299-306.

    Papp, M., Willner, P. & Muscat, R. (1991) An animal model of anhedonia: attenuation of sucrose consumption and place preference conditioning by chronic unpredictable mild stress. Psychopharmacology (Berl), 104, 255-259.

    Park, H.Y., Park, C., Hwang, H.J., Kim, B.W., Kim, G.Y., Kim, C.M., Kim, N.D. & Choi, Y.H. (2014) 7,8-Dihydroxyflavone attenuates the release of pro-inflammatory mediators and cytokines in lipopolysaccharide-stimulated BV2 microglial cells through the suppression of the NF-kappaB and MAPK signaling pathways. Int J Mol Med, 33, 1027-1034.

    Peruzzaro, S.T., Andrews, M.M.M., Al-Gharaibeh, A., Pupiec, O., Resk, M., Story, D., Maiti, P., Rossignol, J. & Dunbar, G.L. (2019) Transplantation of mesenchymal stem cells genetically engineered to overexpress interleukin-10 promotes alternative inflammatory response in rat model of traumatic brain injury. J Neuroinflammation, 16, 2.

    Phillips, C. (2017) Brain-Derived Neurotrophic Factor, Depression, and Physical Activity: Making the Neuroplastic Connection. Neural Plast, 2017, 7260130.

    Polyakova, M., Schroeter, M.L., Elzinga, B.M., Holiga, S., Schoenknecht, P., de Kloet, E.R. & Molendijk, M.L. (2015) Brain-Derived Neurotrophic Factor and Antidepressive Effect of Electroconvulsive Therapy: Systematic Review and Meta-Analyses of the Preclinical and Clinical Literature. PLoS One, 10, e0141564.

    Rao, V. & Rollings, P. (2002) Sleep Disturbances Following Traumatic Brain Injury. Curr Treat Options Neurol, 4, 77-87.

    Razzoli, M., Domenici, E., Carboni, L., Rantamaki, T., Lindholm, J., Castren, E. & Arban, R. (2011) A role for BDNF/TrkB signaling in behavioral and physiological consequences of social defeat stress. Genes Brain Behav, 10, 424-433.

    Reeves, T.M., Lyeth, B.G. & Povlishock, J.T. (1995) Long-term potentiation deficits and excitability changes following traumatic brain injury. Exp Brain Res, 106, 248-256.

    Rezayof, A., Hosseini, S.S. & Zarrindast, M.R. (2009) Effects of morphine on rat behaviour in the elevated plus maze: the role of central amygdala dopamine receptors. Behav Brain Res, 202, 171-178.

    Riess, P., Bareyre, F.M., Saatman, K.E., Cheney, J.A., Lifshitz, J., Raghupathi, R., Grady, M.S., Neugebauer, E. & McIntosh, T.K. (2001) Effects of chronic, post-injury Cyclosporin A administration on motor and sensorimotor function following severe, experimental traumatic brain injury. Restor Neurol Neurosci, 18, 1-8.

    Rogers, J.M. & Read, C.A. (2007) Psychiatric comorbidity following traumatic brain injury. Brain Inj, 21, 1321-1333.

    Schachar, R.J., Park, L.S. & Dennis, M. (2015) Mental Health Implications of Traumatic Brain Injury (TBI) in Children and Youth. J Can Acad Child Adolesc Psychiatry, 24, 100-108.

    Schafe, G.E., Swank, M.W., Rodrigues, S.M., Debiec, J. & Doyere, V. (2008) Phosphorylation of ERK/MAP kinase is required for long-term potentiation in anatomically restricted regions of the lateral amygdala in vivo. Learn Mem, 15, 55-62.

    Schwienbacher, I., Fendt, M., Richardson, R. & Schnitzler, H.U. (2004) Temporary inactivation of the nucleus accumbens disrupts acquisition and expression of fear-potentiated startle in rats. Brain Res, 1027, 87-93.

    Seel, R.T., Kreutzer, J.S., Rosenthal, M., Hammond, F.M., Corrigan, J.D. & Black, K. (2003) Depression after traumatic brain injury: a National Institute on Disability and Rehabilitation Research Model Systems multicenter investigation. Arch Phys Med Rehabil, 84, 177-184.

    Seo, M.K., Lee, J.G. & Park, S.W. (2018) Effects of escitalopram and ibuprofen on a depression-like phenotype induced by chronic stress in rats. Neurosci Lett, 696, 168-173.

    Shutter, L.A. & Narayan, R.K. (2008) Blood pressure management in traumatic brain injury. Ann Emerg Med, 51, S37-38.

    Silver, J.M., McAllister, T.W. & Yudofsky, S.C. (2005) Textbook of traumatic brain injury. American Psychiatric Pub., Washington, DC.

    Sosin, D.M., Sniezek, J.E. & Waxweiler, R.J. (1995) Trends in death associated with traumatic brain injury, 1979 through 1992. Success and failure. JAMA, 273, 1778-1780.

    Sousa, N., Madeira, M.D. & Paula-Barbosa, M.M. (1998) Effects of corticosterone treatment and rehabilitation on the hippocampal formation of neonatal and adult rats. An unbiased stereological study. Brain Res, 794, 199-210.

    Tang-Schomer, M.D., Johnson, V.E., Baas, P.W., Stewart, W. & Smith, D.H. (2012) Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury. Exp Neurol, 233, 364-372.

    Thakker, D.R., Natt, F., Husken, D., van der Putten, H., Maier, R., Hoyer, D. & Cryan, J.F. (2005) siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry, 10, 782-789, 714.

    Thomsen, G.M., Ko, A., Harada, M.Y., Ma, A., Wyss, L., Haro, P., Vit, J.P., Avalos, P., Dhillon, N.K., Cho, N., Shelest, O. & Ley, E.J. (2017) Clinical correlates to assist with chronic traumatic encephalopathy diagnosis: Insights from a novel rodent repeat concussion model. J Trauma Acute Care Surg, 82, 1039-1048.

    Todd, D.J., Lee, A.H. & Glimcher, L.H. (2008) The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol, 8, 663-674.

    Todkar, A., Granholm, L., Aljumah, M., Nilsson, K.W., Comasco, E. & Nylander, I. (2015) HPA Axis Gene Expression and DNA Methylation Profiles in Rats Exposed to Early Life Stress, Adult Voluntary Ethanol Drinking and Single Housing. Front Mol Neurosci, 8, 90.

    Tosini, G., Ye, K. & Iuvone, P.M. (2012) N-acetylserotonin: neuroprotection, neurogenesis, and the sleepy brain. Neuroscientist, 18, 645-653.

    Treadway, M.T. & Zald, D.H. (2011) Reconsidering anhedonia in depression: lessons from translational neuroscience. Neurosci Biobehav Rev, 35, 537-555.

    Uomoto, J.M. & Esselman, P.C. (1993) Traumatic brain injury and chronic pain: differential types and rates by head injury severity. Arch Phys Med Rehabil, 74, 61-64.

    Vreeburg, S.A., Hoogendijk, W.J., van Pelt, J., Derijk, R.H., Verhagen, J.C., van Dyck, R., Smit, J.H., Zitman, F.G. & Penninx, B.W. (2009) Major depressive disorder and hypothalamic-pituitary-adrenal axis activity: results from a large cohort study. Arch Gen Psychiatry, 66, 617-626.

    Wacker, J., Dillon, D.G. & Pizzagalli, D.A. (2009) The role of the nucleus accumbens and rostral anterior cingulate cortex in anhedonia: integration of resting EEG, fMRI, and volumetric techniques. Neuroimage, 46, 327-337.

    Walf, A.A. & Frye, C.A. (2007) The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nature protocols, VOL.2 NO.2, 6.

    Wang, B., Wu, N., Liang, F., Zhang, S., Ni, W., Cao, Y., Xia, D. & Xi, H. (2014) 7,8-dihydroxyflavone, a small-molecule tropomyosin-related kinase B (TrkB) agonist, attenuates cerebral ischemia and reperfusion injury in rats. J Mol Histol, 45, 129-140.

    Wang, F., Wang, X., Shapiro, L.A., Cotrina, M.L., Liu, W., Wang, E.W., Gu, S., Wang, W., He, X., Nedergaard, M. & Huang, J.H. (2017) NKCC1 up-regulation contributes to early post-traumatic seizures and increased post-traumatic seizure susceptibility. Brain Struct Funct, 222, 1543-1556.

    Wang, W., Shen, M., Sun, K., Wang, Y., Wang, X., Jin, X., Xu, J., Ding, L. & Sun, X. (2018) Aminoguanidine reverses cognitive deficits and activation of cAMP/CREB/BDNF pathway in mouse hippocampus after traumatic brain injury (TBI). Brain Inj, 1-8.

    Willner, P., Towell, A., Sampson, D., Sophokleous, S. & Muscat, R. (1987) Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology (Berl), 93, 358-364.

    Wurzelmann, M., Romeika, J. & Sun, D. (2017) Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regen Res, 12, 7-12.

    Xu, X., Yang, H., Lin, Y.F., Li, X., Cape, A., Ressler, K.J., Li, S. & Li, X.J. (2010) Neuronal Abelson helper integration site-1 (Ahi1) deficiency in mice alters TrkB signaling with a depressive phenotype. Proc Natl Acad Sci U S A, 107, 19126-19131.

    Yang, Y. & Raine, A. (2009) Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res, 174, 81-88.

    Yi, J.H., Cho, S.Y., Jeon, S.J., Jung, J.W., Park, M.S., Kim, D.H. & Ryu, J.H. (2016) Early immature neuronal death is partially involved in memory impairment induced by cerebral ischemia. Behav Brain Res, 308, 75-82.

    Yin, Y., Sun, G., Li, E., Kiselyov, K. & Sun, D. (2017) ER stress and impaired autophagy flux in neuronal degeneration and brain injury. Ageing Res Rev, 34, 3-14.

    Yuan, J. & Yankner, B.A. (2000) Apoptosis in the nervous system. Nature, 407, 802-809.

    Zhang, J.C., Yao, W., Ren, Q., Yang, C., Dong, C., Ma, M., Wu, J. & Hashimoto, K. (2016a) Depression-like phenotype by deletion of alpha7 nicotinic acetylcholine receptor: Role of BDNF-TrkB in nucleus accumbens. Sci Rep, 6, 36705.

    Zhang, M.W., Zhang, S.F., Li, Z.H. & Han, F. (2016b) 7,8-Dihydroxyflavone reverses the depressive symptoms in mouse chronic mild stress. Neurosci Lett, 635, 33-38.

    Zhang, X.J., Chen, S., Huang, K.X. & Le, W.D. (2013) Why should autophagic flux be assessed? Acta Pharmacol Sin, 34, 595-599.

    Zhang, Y., Shao, F., Wang, Q., Xie, X. & Wang, W. (2017) Neuroplastic Correlates in the mPFC Underlying the Impairment of Stress-Coping Ability and Cognitive Flexibility in Adult Rats Exposed to Chronic Mild Stress during Adolescence. Neural Plast, 2017, 9382797.

    Zhang, Z., Liu, X., Schroeder, J.P., Chan, C.B., Song, M., Yu, S.P., Weinshenker, D. & Ye, K. (2014) 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology, 39, 638-650.

    Zhou, C., Zhong, J., Zou, B., Fang, L., Chen, J., Deng, X., Zhang, L., Zhao, X., Qu, Z., Lei, Y. & Lei, T. (2017) Meta-analyses of comparative efficacy of antidepressant medications on peripheral BDNF concentration in patients with depression. PLoS One, 12, e0172270.

    下載圖示
    QR CODE