研究生: |
蔡品祥 Tsai, Pin-Hsiang |
---|---|
論文名稱: |
應用擴散式生成對抗網路於複雜光線條件下的影像曝光修正 Applying Diffusion-GAN for Image Exposure Correction under Complex Lighting Conditions |
指導教授: |
葉梅珍
Yeh, Mei-Chen |
口試委員: |
彭彥璁
Peng, Yan-Tsung 方瓊瑤 Fang, Chiung-Yao 葉梅珍 Yeh, Mei-Chen |
口試日期: | 2024/01/30 |
學位類別: |
碩士 Master |
系所名稱: |
資訊工程學系 Department of Computer Science and Information Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 29 |
中文關鍵詞: | 生成式對抗網路 、風格轉換 、曝光修正 、擴散模型 |
英文關鍵詞: | Generative Adversarial Network, Style Transfer, Exposure Correction, Diffusion Model |
研究方法: | 實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202400218 |
論文種類: | 學術論文 |
相關次數: | 點閱:60 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
曝光修正的任務是將一張存在過度曝光或曝光不足的影像修正,使畫面中物件能夠清晰可見。過去的工作偏向處理整體畫面為過度曝光或是曝光不足的現象,例如,低光增強。但在不同光線存在的情況下,一張影像經常會有同時有局部過度曝光及局部曝光不足的情況。過去的工作無法用來解決兩種問題同時存在的情況,但在實際應用中,影像中常常同時存在過度曝光以及曝光不足這兩種情況。
為了解決一張照片同時有過度曝光以及曝光不足的問題,本研究引入一個生成擴散式對抗網路的方法,透過向辨別器添加高斯雜訊使辨別器可以訓練更好,使得能夠生產更好的曝光修正模型。同時,本論文引入兩種不同的曝光修正損失,以確保生成對抗模型能夠擁有更加穩定的訓練。此外,本論文還加入基準影像與輸入影像都相同且都是曝光正確的成對影像,增加模型對於曝光正確影像的理解。
本論文的實驗結果表明,本論文提出的方法能有效應對同時擁有曝光不足及過度曝光的挑戰,並在三種不同的評估標準上有不錯的表現,並同時在曝光正常的資料集也不會產生不合理的曝光調整,未來的研究將拓展這一方法,處理更複雜多樣化的影像環境。
The task of exposure correction involves rectifying an image that suffers from either overexposure or underexposure, ensuring that objects in the scene are clear and visible. Previous approaches predominantly focused on addressing overall issues of overexposure or underexposure, such as low-light enhancement. However, in scenarios with varying lighting conditions, an image often exhibits both localized overexposure and underexposure simultaneously. Past methods were insufficient for handling situations where both problems coexisted. In practical applications, images frequently exhibit both overexposure and underexposure concurrently.
To address the challenge of simultaneously dealing with overexposure and underexposure in a single photograph, we introduce a generative adversarial network (GAN) approach. We incorporate Gaussian noise into the discriminator to enhance discriminator’s training, enabling the generation of superior exposure correction models. Simultaneously, we introduce two distinct exposure correction losses to ensure the stability of training in the generative adversarial model. Additionally, we include pairs of reference images and input images that are both correctly exposed, enhancing the model's understanding of correctly exposed images.
Our experimental results demonstrate the effectiveness of our proposed method in tackling the challenges of simultaneous underexposure and overexposure. The approach performs well across three different evaluation standards and does not produce unreasonable exposure adjustments in datasets with normal exposure. Future research will expand on this method to address more complex and diverse image environments.
Ma, Long, et al. "Toward fast, flexible, and robust low-light image enhancement." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
Wei, Chen, et al. "Deep retinex decomposition for low-light enhancement." arXiv preprint arXiv:1808.04560 (2018).
Xu, Xiaogang, et al. "SNR-aware low-light image enhancement." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
Guo, Xiaojie, Yu Li, and Haibin Ling. "LIME: Low-light image enhancement via illumination map estimation." IEEE Transactions on Image Processing 26.2 (2016): 982-993.
Huang, Jie, et al. "Exposure Normalization and Compensation for Multiple-Exposure Correction." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.
Wang, Haoyuan, Ke Xu, and Rynson WH Lau. "Local color distributions prior for image enhancement." Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XVIII. Cham: Springer Nature Switzerland, 2022.
Afifi, Mahmoud, et al. "Learning multi-scale photo exposure correction." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
Cheng, Heng-Da, and X. J. Shi. "A simple and effective histogram equalization approach to image enhancement." Digital signal processing 14.2 (2004): 158-170.
Celik, Turgay, and Tardi Tjahjadi. "Contextual and variational contrast enhancement." IEEE Transactions on Image Processing 20.12 (2011): 3431-3441.
Ibrahim, Haidi, and Nicholas Sia Pik Kong. "Brightness preserving dynamic histogram equalization for image contrast enhancement." IEEE Transactions on Consumer Electronics 53.4 (2007): 1752-1758.
Rahman, Zia-ur, Daniel J. Jobson, and Glenn A. Woodell. "Retinex processing for automatic image enhancement." Journal of Electronic imaging 13.1 (2004): 100-110.
Rahman, Zia-ur, Daniel J. Jobson, and Glenn A. Woodell. "Multi-scale retinex for color image enhancement." Proceedings of IEEE International Conference on Image Processing. Vol. 3. , 1996.
Guo, Chunle, et al. "Zero-reference deep curve estimation for low-light image enhancement." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020.
Chen, Yu-Sheng, et al. "Deep photo enhancer: Unpaired learning for image enhancement from photographs with gans." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18. Springer International Publishing, 2015.
Jiang, Yifan, et al. "Enlightengan: Deep light enhancement without paired supervision." IEEE Transactions on Image Processing 30 (2021): 2340-2349.
Eyiokur, F., et al. "Exposure Correction Model to Enhance Image Quality." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshop, 2022.
Song, Yuda, Hui Qian, and Xin Du. "Starenhancer: Learning real-time and style-aware image enhancement." Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021.
Ziteng Cui, Kunchang Li. “You Only Need 90K Parameters to Adapt Light: A Light Weight Transformer for Image Enhancement and Exposure Correction” Proceedings of the British Machine Vision Conference, 2022.
Ma, Long, et al. "Practical Exposure Correction: Great Truths Are Always Simple." arXiv preprint arXiv:2212.14245 (2022).
Wang, Zhendong, et al. "Diffusion-gan: Training gans with diffusion." arXiv preprint arXiv:2206.02262 (2022).
Karras, Tero, et al. "Training generative adversarial networks with limited data." Advances in Neural Information Processing Systems 33 (2020): 12104-12114.
Wang, Ruixing, et al. "Underexposed photo enhancement using deep illumination estimation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
Wang, Ting-Chun, et al. "High-resolution image synthesis and semantic manipulation with conditional gans." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018.
Vladimir Bychkovsky et al. " Learning Photographic Global Tonal Adjustment with a Database of Input / Output Image Pairs." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2011.
Liu, Risheng, et al. "Retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021.
Wang, Ruixing, et al. "Underexposed photo enhancement using deep illumination estimation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
Gharbi, Michaël, et al. "Deep bilateral learning for real-time image enhancement." ACM Transactions on Graphics (TOG) 36.4 (2017): 1-12.
Wang, Ruixing, et al. "Underexposed photo enhancement using deep illumination estimation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
Cao, Yuhui, et al. "Over-exposure correction via exposure and scene information disentanglement." Proceedings of the Asian Conference on Computer Vision, 2020.
Fei, Ben, et al. "Generative Diffusion Prior for Unified Image Restoration and Enhancement." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.
Wu, Wenhui, et al. "Uretinex-net: Retinex-based deep unfolding network for low-light image enhancement." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.