簡易檢索 / 詳目顯示

研究生: 陳信益
Chen, Hsin-Yi
論文名稱: 探討具有保護正常細胞免於順鉑毒殺作用的中草藥
Screening of the herb extracts with cisplatin-protection effects on normal cells
指導教授: 賴韻如
Lai, Yun-Ju
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 148
中文關鍵詞: 肝癌卵巢癌順鉑化學治療藥物神經毒性中草藥
英文關鍵詞: adjuvant therapy, supportive therapy, herbal medicine chemotherapy
DOI URL: http://doi.org/10.6345/NTNU201900049
論文種類: 學術論文
相關次數: 點閱:141下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 順鉑為最常用於治療癌症的化學治療藥物,但具有腎臟毒性和神經毒性。因此,找到能夠與順鉑協同抑制癌細胞生長,又能降低順鉑對正常細胞毒性(特別是神經細胞)的藥物是很重要的。中草藥在中國已被廣泛使用數千年,其藥效相較於西藥來得溫和,現今也有研究指稱它具有保護正常細胞免於化療藥物的毒殺效果。因此,我們以肝癌細胞株Hep3B和卵巢癌細胞株SKOV3建立癌症模型,並使用神經瘤細胞株SH-SY5Y建立神經細胞平台,以篩選可保護神經細胞免於順鉑毒殺作用的中草藥萃取物。初步篩選後,茯苓及天麻兩種中草藥萃取物能夠抑制Hep3B和SKOV3的生長,並且對於經維生素A酸刺激分化過的神經母細胞瘤SH-SY5Y細胞沒有毒性。根據以上實驗結果,茯苓及天麻可望成為與順鉑一起作用的複方,並期許其未來可應用於臨床治療。

    Cisplatin is one of the most often used chemotherapeutics in clinical. However, it often induces renal and neural toxicity. Therefore, it is important to establish an adjuvant therapy that reduces the cytotoxicity of cisplatin to normal cells, especially neuron, but does not affect its inhibitory effects on cancer cells. Herbal medicine has been widely used for thousand years in Asia and presents relatively moderate side-effects compared to western medicine. Recent studies show that it has potential to protect cells against cytotoxicity caused by drugs. Here we used hepatocellular carcinoma (HCC) Hep3B cell line and ovarian neoplasms SKOV3 cell line as cancer model, and neurocytoma SH-SY5Y as a neuron cell platform to screen the Chinese herbal extracts which act synergistically with cisplatin to inhibit survival of cancer cells, but weaken the cytotoxicity of cisplatin to neuron. Our results found that two Chinese herbal extracts, Wolfiporia extensa and Gastrodia elata, that can inhibit the growth of Hep3B and SKOV3 cells but do not have cytotoxicity to retinoic acid-differentiated SH-SY5Y neuroblastoma cells. From these results, Wolfiporia extensa and Gastrodia elata extracts may serve as an adjuvant treatment for cisplatin clinically in the future.

    縮寫表 I ABSTRACT IV 摘要 V 1. 緒論 1 1.1. 癌症特徵 1 1.2. 肝癌 (LIVER CANCER) 2 1.3. 卵巢與卵巢癌 10 1.4. 神經細胞實驗模式 13 1.5. 癌症與化學治療法 14 1.6. 順鉑 14 1.7. 中草藥 ( CHINESE HERBAL MEDICINE ) 18 1.7.1. 茯苓 18 1.7.2. 天麻 21 1.8. MTT ASSAY作用原理 24 1.9. 細胞凋亡 25 1.10. ERK訊息傳遞途徑 30 1.11. PI3K/AKT 訊息傳遞途徑 31 1.12. 實驗動機 34 1.13. 實驗目的與假說 34 2. 研究材料與方法 36 2.1. CISPLATIN藥物原液 36 2.2. 中草藥萃取物 36 2.1.1. 水萃取中草藥 36 2.1.2. 酒精萃取中草藥 36 2.2. 細胞培養與繼代 36 2.2.1. 人類肝癌細胞株Hep3B 36 2.2.2. 卵巢癌細胞株SKOV3 37 2.2.3. 神經瘤細胞株SH-SY5Y 37 2.3. 神經細胞分化 37 2.4. 細胞計數 38 2.5. 免疫螢光細胞染色 38 2.6. 藥物處理 39 2.6.1. 人類肝癌細胞株Hep3B 39 2.6.2. 卵巢癌細胞株SKOV3 39 2.6.3. 未分化神經瘤細胞株SH-SY5Y 39 2.6.4. 分化後神經瘤細胞株SH-SY5Y 40 2.7. MTT ASSAY 40 2.8. 半抑制濃度定義與計算方式 40 2.9. 西方墨點法 41 2.9.1. 蛋白質萃取 41 2.9.2. 蛋白質濃度測定與樣品製備 41 2.9.3. 聚丙烯醯胺膠體之製備 42 2.9.4. 蛋白質電泳 43 2.9.5. 轉漬及Blocking 43 2.10. 統計分析 44 2.11. 實驗設計 44 3. 結果 49 3.1. 探討順鉑對於癌細胞株的影響 49 3.1.1. 順鉑溶於DMSO對於肝癌細胞株Hep3B的殺傷效果 49 3.1.2. 順鉑溶於PBS對於肝癌細胞株Hep3B的殺傷效果 49 3.1.3. 順鉑溶於PBS對於卵巢癌細胞株SKOV3的殺傷效果 50 3.2. 探討順鉑對於神經細胞株的影響 50 3.2.1. 順鉑溶於PBS對於未分化神經瘤細胞株SH-SY5Y的殺傷效果 50 3.2.2. 順鉑溶於PBS對於已分化神經瘤細胞株SH-SY5Y的殺傷效果 51 3.3. 探討中草藥水萃液對於癌細胞株的影響 51 3.3.1. 中草藥水萃液對於肝癌細胞株Hep3B的殺傷效果 51 3.3.2. 茯苓/天麻水萃液對於卵巢癌細胞株SKOV3的殺傷效果 53 3.4. 探討中草藥水萃液對於神經細胞株的影響 54 3.4.1. 茯苓水萃液對於未分化神經瘤細胞株SH-SY5Y的影響 54 3.4.2. 茯苓水萃液對於已分化神經瘤細胞株SH-SY5Y的影響 54 3.4.3. 天麻水萃液對於未分化神經瘤細胞株SH-SY5Y的影響 55 3.4.4. 天麻水萃液對於已分化神經瘤細胞株SH-SY5Y的影響 55 3.5. 探討順鉑及中草藥水萃液共同給藥對於肝癌細胞株的影響 56 3.5.1. 順鉑及茯苓共同給藥對於Hep3B的影響 56 3.5.1.1. 順鉑及茯苓共同給藥對於Hep3B生長的影響 56 3.5.1.2. 順鉑及茯苓共同給藥對於Hep3B蛋白質表現的影響 57 3.5.2. 順鉑及天麻共同給藥對於Hep3B的影響 58 3.5.2.1. 順鉑及天麻共同給藥對於Hep3B生長的影響 58 3.5.2.2. 順鉑及天麻共同給藥對於Hep3B蛋白質表現的影響 60 3.6. 探討順鉑及中草藥水萃液共同給藥對於卵巢癌細胞株的影響 60 3.6.1. 順鉑及茯苓共同給藥對於SKOV3的影響 60 3.6.1.1. 順鉑及茯苓共同給藥對於SKOV3生長的影響 60 3.6.1.2. 順鉑及茯苓共同給藥對於SKOV3蛋白質表現的影響 62 3.6.2. 順鉑及天麻共同給藥對於SKOV3的影響 63 3.6.2.1. 順鉑及天麻共同給藥對於SKOV3生長的影響 63 3.6.2.2. 順鉑及天麻共同給藥對於SKOV3蛋白質表現的影響 64 3.7. 探討順鉑及中草藥水萃液共同給藥對於已分化神經瘤細胞株的影響 65 3.7.1. 順鉑及茯苓共同給藥對於已分化SH-SY5Y的影響 65 3.7.1.1. 順鉑及茯苓共同給藥對於已分化SH-SY5Y生長的影響 65 3.7.1.2. 順鉑及茯苓共同給藥對於已分化SH-SY5Y蛋白質表現的影響。 67 3.7.2. 順鉑及天麻共同給藥對於已分化SH-SY5Y的影響 69 3.7.2.1. 順鉑及天麻共同給藥對於已分化SH-SY5Y生長的影響 69 3.7.2.2. 順鉑及天麻共同給藥對於已分化SH-SY5Y蛋白質表現的影響。 71 4. 討論 73 5. 參考文獻 85 6. 圖表 104 6.1. 表格 104 表 3. 順鉑溶於DMSO對於肝癌細胞株Hep3B的殺傷效果。 104 表 4. 順鉑溶於PBS對於肝癌細胞株Hep3B的殺傷效果。 104 表 5. 中草藥水萃液對於肝癌細胞株Hep3B的殺傷效果。 105 表 6. 各中草藥對於Hep3B細胞株之半抑制濃度。 106 表 7. 順鉑、茯苓、天麻對於卵巢癌細胞株SKOV3的影響。 106 表 8. 順鉑、茯苓、天麻對於未分化神經瘤細胞株SH-SY5Y的影響。 107 表 9. 順鉑、茯苓、天麻對於已分化神經瘤細胞株SH-SY5Y的影響。 107 表 10. 順鉑及茯苓共同處理對於Hep3B細胞株的影響。 108 表 11. 順鉑及天麻共同處理對於Hep3B細胞株的影響。 108 表 12. 順鉑及茯苓共同處理對於SKOV3細胞株的影響。 109 表 13. 順鉑及天麻共同處理對於SKOV3細胞株的影響。 109 表 14. 順鉑及茯苓共同處理對於已分化神經瘤細胞株SH-SY5Y的影響。 110 表 15. 順鉑及天麻共同處理對於已分化神經瘤細胞株SH-SY5Y的影響。 110 6.2. 圖片 111 圖 1. 順鉑溶於DMSO對於肝癌細胞株Hep3B的殺傷效果。 112 圖 2. 順鉑溶於PBS對於肝癌細胞株Hep3B的殺傷效果。 113 圖 3. 順鉑溶於PBS對於卵巢癌細胞株SKOV3的殺傷效果。 114 圖 4. 順鉑溶於PBS對於未分化神經瘤細胞株SH-SY5Y的殺傷效果。 115 圖 5. 順鉑溶於PBS對於已分化神經瘤細胞株SH-SY5Y的殺傷效果。 116 圖 6. 各中草藥水萃液對於肝癌細胞株Hep3B的殺傷效果。 118 圖 7. 各中草藥水萃液對於卵巢癌細胞株SKOV3的殺傷效果。 119 圖 8. 茯苓水萃液對於未分化神經瘤細胞株SH-SY5Y的影響。 120 圖 9. 茯苓水萃液對於已分化神經瘤細胞株SH-SY5Y的影響。 121 圖 10. 天麻水萃液對於未分化神經瘤細胞株SH-SY5Y的影響。 122 圖 11. 天麻水萃液對於已分化神經瘤細胞株SH-SY5Y的影響。 123 圖 12. 順鉑及茯苓共同處理對於Hep3B細胞株生長的影響。 125 圖 13. 順鉑及茯苓共同給藥對於Hep3B蛋白質表現的影響。 127 圖 14. 順鉑及天麻共同處理對於Hep3B細胞株生長的影響。 129 圖 15. 順鉑及天麻共同給藥對於Hep3B蛋白質表現的影響。 131 圖 16. 順鉑及茯苓共同給藥對於SKOV3生長的影響。 133 圖 17. 順鉑及茯苓共同給藥對於SKOV3蛋白質表現的影響。 135 圖 18. 順鉑及天麻共同給藥對於SKOV3生長的影響。 137 圖 19. 順鉑及天麻共同給藥對於SKOV3蛋白質表現的影響。 139 圖 20. 順鉑及茯苓共同給藥對於已分化神經瘤細胞株SH-SY5Y生長的影響。 141 圖 21. 順鉑及茯苓共同給藥對於已分化神經瘤細胞株SH-SY5Y蛋白質表現的影響。 143 圖 22. 順鉑及天麻共同給藥對於已分化神經瘤細胞株SH-SY5Y生長的影響。 145 圖 23. 順鉑及天麻共同給藥對於已分化神經瘤細胞株SH-SY5Y蛋白質表現的影響。 147 圖 24. Retinoic acid誘導SH-SY5Y細胞株分化之免疫螢光染色。 148

    1. Gross, A., J.M. McDonnell, and S.J. Korsmeyer, BCL-2 family members and the mitochondria in apoptosis. Genes Dev, 1999. 13(15): p. 1899-911.
    2. Bertram, J.S., L.N. Kolonel, and F.L. Meyskens, Jr., Rationale and strategies for chemoprevention of cancer in humans. Cancer Res, 1987. 47(11): p. 3012-31.
    3. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
    4. Stetler-Stevenson, W.G., S. Aznavoorian, and L.A. Liotta, Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu Rev Cell Biol, 1993. 9: p. 541-73.
    5. Rubin, E., Essential Pathology. 2001: Lippincott Williams & Wilkins.
    6. Galuppo, R., A. McCall, and R. Gedaly, The Role of Bridging Therapy in Hepatocellular Carcinoma. International Journal of Hepatology, 2013. 2013: p. 419302.
    7. !!! INVALID CITATION !!! [7, 8].
    8. Hai, T., et al., One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Research, 2014. 24: p. 372.
    9. Parkin, D.M., et al., Estimating the world cancer burden: Globocan 2000. Int J Cancer, 2001. 94(2): p. 153-6.
    10. Etzel, R.A., Mycotoxins. JAMA, 2002. 287(4): p. 425-427.
    11. Chen, Z.M., et al., Smoking and liver cancer in China: case-control comparison of 36,000 liver cancer deaths vs. 17,000 cirrhosis deaths. Int J Cancer, 2003. 107(1): p. 106-12.
    12. Wang, L.Y., et al., Risk of hepatocellular carcinoma and habits of alcohol drinking, betel quid chewing and cigarette smoking: a cohort of 2416 HBsAg-seropositive and 9421 HBsAg-seronegative male residents in Taiwan. Cancer Causes Control, 2003. 14(3): p. 241-50.
    13. Okuda, K., Hepatocellular carcinoma. J Hepatol, 2000. 32(1 Suppl): p. 225-37.
    14. Ganem, D. and H.E. Varmus, THE MOLECULAR BIOLOGY OF THE HEPATITIS B VIRUSES. Annual Review of Biochemistry, 1987. 56(1): p. 651-693.
    15. Lok, A.S. and B.J. McMahon, Chronic hepatitis B. Hepatology, 2001. 34(6): p. 1225-41.
    16. Wong, C.-H., et al., The molecular diagnosis of hepatitis B virus-associated hepatocellular carcinoma. Critical reviews in clinical laboratory sciences, 2006. 43(1): p. 69-101.
    17. Kuo, G., et al., An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science, 1989. 244(4902): p. 362-4.
    18. Ruggieri, A., et al., Cell cycle perturbation in a human hepatoblastoma cell line constitutively expressing Hepatitis C virus core protein. Arch Virol, 2004. 149(1): p. 61-74.
    19. Giannini, C. and C. Brechot, Hepatitis C virus biology. Cell Death Differ, 2003. 10 Suppl 1: p. S27-38.
    20. Lee, J., Cyclophilin A as a New Therapeutic Target for Hepatitis C Virus-induced Hepatocellular Carcinoma. Korean J Physiol Pharmacol, 2013. 17(5): p. 375-383.
    21. Stickel, F., et al., Cocarcinogenic effects of alcohol in hepatocarcinogenesis. Gut, 2002. 51(1): p. 132-9.
    22. Morgan, T.R., S. Mandayam, and M.M. Jamal, Alcohol and hepatocellular carcinoma. Gastroenterology, 2004. 127(5 Suppl 1): p. S87-96.
    23. Lin, M.H., et al., Hospice palliative care for patients with hepatocellular carcinoma in Taiwan. Palliat Med, 2004. 18(2): p. 93-9.
    24. Hoffmann, D., I. Hoffmann, and K. El-Bayoumy, The less harmful cigarette: a controversial issue. a tribute to Ernst L. Wynder. Chem Res Toxicol, 2001. 14(7): p. 767-90.
    25. El-Zayadi, A.R., Heavy smoking and liver. World J Gastroenterol, 2006. 12(38): p. 6098-101.
    26. Shen, H.M. and C.N. Ong, Mutations of the p53 tumor suppressor gene and ras oncogenes in aflatoxin hepatocarcinogenesis. Mutat Res, 1996. 366(1): p. 23-44.
    27. Kaplowitz, N., Mechanisms of liver cell injury. Journal of Hepatology, 2000. 32: p. 39-47.
    28. Groopman, J.D. and T.W. Kensler, Role of metabolism and viruses in aflatoxin-induced liver cancer. Toxicol Appl Pharmacol, 2005. 206(2): p. 131-7.
    29. Singla, S., S.N. Hochwald, and B. Kuvshinoff, Evolving Ablative Therapies for Hepatic Malignancy. BioMed Research International, 2014. 2014: p. 16.
    30. 胡志棠, 肝癌的治療(下). 當代醫學, 2002(342): p. 331-336.
    31. Treiber, G., Systemic Treatment of Hepatocellular Carcinoma. Digestive Diseases, 2001. 19(4): p. 311-323.
    32. Schmidt-Wolf, G.D. and I.G.H. Schmidt-Wolf, Cytokines and gene therapy. I mM unology Today, 1995. 16(4): p. 173-175.
    33. Gilboa, E., I mM unotherapy of cancer with genetically modified tumor vaccines. Seminars in oncology, 1996. 23(1): p. 101-107.
    34. Boon, T., P.G. Coulie, and B. Van den Eynde, Tumor antigens recognized by T cells. I mM unol Today, 1997. 18(6): p. 267-8.
    35. Nielsen, L.L. and D.C. Maneval, P53 tumor suppressor gene therapy for cancer. Cancer Gene Ther, 1998. 5(1): p. 52-63.
    36. Rzepka-Gorska, I., et al., Premature menopause in patients with BRCA1 gene mutation. Breast Cancer Res Treat, 2006. 100(1): p. 59-63.
    37. Webb, P.M. and S.J. Jordan, Epidemiology of epithelial ovarian cancer. Best Practice & Research Clinical Obstetrics & Gynaecology, 2017. 41: p. 3-14.
    38. Permuth-Wey, J. and T.A. Sellers, Epidemiology of ovarian cancer. Methods Mol Biol, 2009. 472: p. 413-37.
    39. Prat, J., Staging classification for cancer of the ovary, fallopian tube, and peritoneum. Int J Gynaecol Obstet, 2014. 124(1): p. 1-5.
    40. Chiang, Y.-C., et al., Trends in incidence and survival outcome of epithelial ovarian cancer: 30-year national population-based registry in Taiwan. Journal of Gynecologic Oncology, 2013. 24(4): p. 342-351.
    41. Fitzpatrick, F.L., Unilateral and Bilateral Ovaries in Raptorial Birds. The Wilson Bulletin, 1934. 46(1): p. 19-22.
    42. Doubeni, C.A., A.R. Doubeni, and A.E. Myers, Diagnosis and Management of Ovarian Cancer. Am Fam Physician, 2016. 93(11): p. 937-44.
    43. 李耀泰, et al., 卵巢癌的篩檢. 中華民國婦癌醫學雜誌, 2011(2011年2): p. 26-38.
    44. Holschneider, C.H. and J.S. Berek, Ovarian cancer: epidemiology, biology, and prognostic factors. Semin Surg Oncol, 2000. 19(1): p. 3-10.
    45. Colombo, N., et al., Ovarian cancer. Crit Rev Oncol Hematol, 2006. 60(2): p. 159-79.
    46. Komiyama, S., et al., Japan Society of Gynecologic Oncology guidelines 2015 for the treatment of ovarian cancer including primary peritoneal cancer and fallopian tube cancer. International Journal of Clinical Oncology, 2016. 21(3): p. 435-446.
    47. 李耀泰, 陳福民, and 郭宗正, 卵巢顆粒細胞瘤的治療. 中華民國婦癌醫學雜誌, 2014(2014年2): p. 25-32.
    48. McTiernan, A., et al., Presence of chemotherapy-induced toxicity predicts improved survival in patients with localised extremity osteosarcoma treated with doxorubicin and cisplatin: a report from the European Osteosarcoma Intergroup. European journal of cancer (Oxford, England : 1990), 2012. 48(5): p. 703-712.
    49. Arunkumar, P.A., et al., Science behind cisplatin-induced nephrotoxicity in humans: A clinical study. Asian Pacific Journal of Tropical Biomedicine, 2012. 2(8): p. 640-644.
    50. Pinto, A.L. and S.J. Lippard, Binding of the antitumor drug cis-dia mM inedichloroplatinum(II) (cisplatin) to DNA. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1985. 780(3): p. 167-180.
    51. Miller, R.P., et al., Mechanisms of Cisplatin Nephrotoxicity. Toxins, 2010. 2(11): p. 2490-2518.
    52. K., B., et al., Cisplatin: a review of toxicities and therapeutic applications. Veterinary and Comparative Oncology, 2008. 6(1): p. 1-18.
    53. Rybak, L.P. and V. Ramkumar, Ototoxicity. Kidney Int, 2007. 72(8): p. 931-5.
    54. Thomas, A.J., et al., Functional mechanotransduction is required for cisplatin-induced hair cell death in the zebrafish lateral line. J Neurosci, 2013. 33(10): p. 4405-14.
    55. Sahu, B.D., et al., Carnosic acid attenuates renal injury in an experimental model of rat cisplatin-induced nephrotoxicity. Food Chem Toxicol, 2011. 49(12): p. 3090-7.
    56. Wu, X., et al., Chinese Herbal Medicine for Improving Quality of Life Among Nonsmall Cell Lung Cancer Patients: Overview of Systematic Reviews and Network Meta-Analysis. Medicine, 2016. 95(1): p. e2410.
    57. Zheng, Y.M., et al., Anti-oxidant and anti-cancer activities of Angelica dahurica extract via induction of apoptosis in colon cancer cells. Phytomedicine, 2016. 23(11): p. 1267-1274.
    58. Aung, W., et al., Anticancer effect of dihydroartemisinin (DHA) in a pancreatic tumor model evaluated by conventional methods and optical imaging. Anticancer Res, 2011. 31(5): p. 1549-58.
    59. Liu, P., et al., Preventive Effects of the Chinese Herbal Medicine Prescription Tangkuei Decoction for Frigid Extremities on Sciatic Neuropathy in Streptozotocin-Induced Diabetic Rats. Evidence-Based Complementary and Alternative Medicine, 2016. 2016: p. 11.
    60. Ahn, S.H., et al., Bogijetong decoction and its active herbal components protect the peripheral nerve from damage caused by taxol or nerve crush. BMC Complementary and Alternative Medicine, 2016. 16: p. 402.
    61. Baek, S.Y., et al., Protective effect of a novel herbmedicine, Hepad, on apoptosis of SH-SY5Y cells and a rat model of Parkinson’s disease. Molecular & Cellular Toxicology, 2015. 11(2): p. 223-230.
    62. Choi, Y.H., Induction of apoptosis by an ethanol extract of Poria cocos Wolf. in human leukemia U937 cells. Oncol Rep, 2015. 34(5): p. 2533-40.
    63. Jeong, J.W., et al., Ethanol extract of Poria cocos reduces the production of infla mM atory mediators by suppressing the NF-kappaB signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC Complement Altern Med, 2014. 14: p. 101.
    64. Wang, Y., et al., Hepatoprotective and Antioxidant Effects of Total
    Triterpenoids from Poria cocos. European Journal of Medicinal Plants 2017. 21(2).
    65. Cheng, S., et al., Triterpenes from Poria cocos suppress growth and invasiveness of pancreatic cancer cells through the downregulation of MM P-7. Int J Oncol, 2013. 42(6): p. 1869-74.
    66. Chen, Y.Y. and H.M. Chang, Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells. Food Chem Toxicol, 2004. 42(5): p. 759-69.
    67. 宋一洋, 茯苓化學成分及藥理活性之研究(Ⅱ), in 藥學研究所. 2004, 國防醫學院: 台北市. p. 95.
    68. 陳宏慧, 液態培養環境對茯苓(Wolfiporiacocos)菌絲體生長及其多醣體成分之影響, in 食品科學系. 2005, 東海大學: 台中市. p. 104.
    69. Kim, B.J., et al., A water-extract of the Korean traditional formulation Geiji-Bokryung-Hwan reduces atherosclerosis and hypercholesteremia in cholesterol-fed rabbits. Int I mM unopharmacol, 2003. 3(5): p. 723-34.
    70. Park, W.H., et al., The antiplatelet activity of Danggijakyaksan by inhibition of phospholipase C. I mM unopharmacol I mM unotoxicol, 2003. 25(4): p. 561-71.
    71. Giner-Larza, E.M., et al., On the anti-infla mM atory and anti-phospholipase A2 activity of extracts from lanostane-rich species. Journal of Ethnopharmacology, 2000. 73(1): p. 61-69.
    72. Sekiya, N., et al., Inhibitory effects of triterpenes isolated from Hoelen on free radical-induced lysis of red blood cells. Phytother Res, 2003. 17(2): p. 160-2.
    73. Schinella, G.R., et al., Antioxidant activity of anti-infla mM atory plant extracts. Life Sci, 2002. 70(9): p. 1023-33.
    74. Hattori, T., et al., Studies on antinephritic effects of plant components (3): Effect of pachyman, a main component of Poria cocos Wolf on original-type anti-GBM nephritis in rats and its mechanisms. Jpn J Pharmacol, 1992. 59(1): p. 89-96.
    75. Ukiya, M., et al., Inhibition of tumor-promoting effects by poricoic acids G and H and other lanostane-type triterpenes and cytotoxic activity of poricoic acids A and G from Poria cocos. J Nat Prod, 2002. 65(4): p. 462-5.
    76. Mizushina, Y., et al., A novel DNA topoisomerase inhibitor: dehydroebriconic acid, one of the lanostane-type triterpene acids from Poria cocos. Cancer Sci, 2004. 95(4): p. 354-60.
    77. Gapter, L., et al., Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos. Biochem Biophys Res Co mM un, 2005. 332(4): p. 1153-61.
    78. Huang, Q. and L. Zhang, Solution properties of (1-->3)-alpha-D-glucan and its sulfated derivative from Poria cocos mycelia via fermentation tank. Biopolymers, 2005. 79(1): p. 28-38.
    79. Lin, Y., et al., Molecular mass and antitumor activities of sulfated derivatives of alpha-glucan from Poria cocos mycelia. Int J Biol Macromol, 2004. 34(5): p. 289-94.
    80. Zhang, M., et al., Growth-inhibitory effects of a beta-glucan from the mycelium of Poria cocos on human breast carcinoma MCF-7 cells: cell-cycle arrest and apoptosis induction. Oncol Rep, 2006. 15(3): p. 637-43.
    81. Sato, M., et al., Dehydrotrametenolic acid induces preadipocyte differentiation and sensitizes animal models of noninsulin-dependent diabetes mellitus to insulin. Biol Pharm Bull, 2002. 25(1): p. 81-6.
    82. 賴怡琪, 劉倩君, and 曾哲明, 中藥茯苓對老鼠B淋巴球功能的影響. 師大生物學報, 1993. 28: p. 53-63.
    83. 呂丹妮, 余淑絹, and 曾哲明, 茯苓對人體血液淋巴球分泌免疫球蛋白的影響. 師大生物學報, 1994. 29(1): p. 43-51.
    84. Yu, S.J. and J. Tseng, Fu-Ling, a Chinese herbal drug, modulates cytokine secretion by human peripheral blood monocytes. Int J I mM unopharmacol, 1996. 18(1): p. 37-44.
    85. Lee, K.Y., et al., Polysaccharide isolated from Poria cocos sclerotium induces NF-kappaB/Rel activation and iNOS expression through the activation of p38 kinase in murine macrophages. Int I mM unopharmacol, 2004. 4(8): p. 1029-38.
    86. Zhang, G.W., et al., Anti-rejection effect of ethanol extract of Poria cocos wolf in rats after cardiac allograft implantation. Chin Med J (Engl), 2004. 117(6): p. 932-5.
    87. Ramachandran, U., et al., Tia nma modulates proteins with various neuro-regenerative modalities in differentiated human neuronal SH-SY5Y cells. Neurochem Int, 2012. 60(8): p. 827-36.
    88. An, H., et al., Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells. J Ethnopharmacol, 2010. 130(2): p. 290-8.
    89. Lu, S.L., et al., The development of nao li shen and its clinical application. J Pharm Pharmacol, 1997. 49(11): p. 1162-4.
    90. Ojemann, L.M., et al., Tian ma, an ancient Chinese herb, offers new options for the treatment of epilepsy and other conditions. Epilepsy Behav, 2006. 8(2): p. 376-83.
    91. Chen, J.B., et al., Design and synthesis of novel dual-action compounds targeting the adenosine A(2A) receptor and adenosine transporter for neuroprotection. Che mM edChem, 2011. 6(8): p. 1390-400.
    92. Kim, H.J., et al., Ethyl ether fraction of Gastrodia elata Blume protects amyloid beta peptide-induced cell death. J Ethnopharmacol, 2003. 84(1): p. 95-8.
    93. Lee, Y.S., et al., Inhibitory effects of constituents ofGastrodia elata Bl. on glutamate-induced apoptosis in IMR-32 human neuroblastoma cells. Archives of Pharmacal Research, 1999. 22(4): p. 404-409.
    94. Hwang, S.M., et al., Anti-infla mM atory effect of Gastrodia elata rhizome in human umbilical vein endothelial cells. Am J Chin Med, 2009. 37(2): p. 395-406.
    95. An, H., et al., Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells. Journal of Ethnopharmacology, 2010. 130(2): p. 290-298.
    96. Kim, N.H., et al., Antitumor and I mM unomodulatory Effect of Gastrodia elata on Colon Cancer In Vitro and In Vivo. Am J Chin Med, 2017. 45(2): p. 319-335.
    97. Heo, J.C., et al., Anti-tumor activity of Gastrodia elata Blume is closely associated with a GTP-Ras-dependent pathway. Oncol Rep, 2007. 18(4): p. 849-53.
    98. Lee, Y.J., et al., Effect of Gastrodia elata on tumor necrosis factor-alpha-induced matrix metalloproteinase activity in endothelial cells. J Nat Med, 2009. 63(4): p. 463-7.
    99. Lee, Y.K., et al., Two new benzofurans from Gastrodia elata and their DNA topoisomerases I and II inhibitory activities. Planta Med, 2007. 73(12): p. 1287-91.
    100. Sun, X.F., et al., [Research progress of neuroprotective mechanisms of Gastrodia elata and its preparation]. Zhongguo Zhong Yao Za Zhi, 2004. 29(4): p. 292-5.
    101. Hong, Y.L., et al., [Study on extraction and purification of active parts from Da Chuan Xiong Fang for treatment of migraine]. Zhong Yao Cai, 2007. 30(6): p. 721-3.
    102. Ding, C.S., et al., [Study of a glycoprotein from Gastrodia elata: its effects of anticoagulation and antithrombosis]. Zhongguo Zhong Yao Za Zhi, 2007. 32(11): p. 1060-4.
    103. Liu, Y., et al., Gastrodin interaction with human fibrinogen: anticoagulant effects and binding studies. Chemistry, 2006. 12(30): p. 7807-15.
    104. Tong, X.K., et al., WSS45, a sulfated alpha-D-glucan, strongly interferes with Dengue 2 virus infection in vitro. Acta Pharmacol Sin, 2010. 31(5): p. 585-92.
    105. Buja, L.M., M.L. Eigenbrodt, and E.H. Eigenbrodt, Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch Pathol Lab Med, 1993. 117(12): p. 1208-14.
    106. Kerr, J.F., A.H. Wyllie, and A.R. Currie, Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer, 1972. 26(4): p. 239-57.
    107. Jacobson, M.D., M. Weil, and M.C. Raff, Progra mM ed cell death in animal development. Cell, 1997. 88(3): p. 347-54.
    108. Lockshin, R.A. and J. Beaulaton, Cell death: questions for histochemists concerning the causes of the various cytological changes. Histochem J, 1981. 13(4): p. 659-66.
    109. Kerr, J.F., C.M. Winterford, and B.V. Harmon, Apoptosis. Its significance in cancer and cancer therapy. Cancer, 1994. 73(8): p. 2013-26.
    110. Kroemer, G., et al., The biochemistry of progra mM ed cell death. Faseb j, 1995. 9(13): p. 1277-87.
    111. Mullauer, L., et al., Mutations in apoptosis genes: a pathogenetic factor for human disease. Mutat Res, 2001. 488(3): p. 211-31.
    112. Ashkenazi, A. and V.M. Dixit, Death receptors: signaling and modulation. Science, 1998. 281(5381): p. 1305-8.
    113. Thorburn, A., Death receptor-induced cell killing. Cell Signal, 2004. 16(2): p. 139-44.
    114. Hsu, H., J. Xiong, and D.V. Goeddel, The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell, 1995. 81(4): p. 495-504.
    115. Hsu, H., et al., TRADD-TRAF2 and TRADD-FADD interactions define two distinct TNF receptor 1 signal transduction pathways. Cell, 1996. 84(2): p. 299-308.
    116. Chinnaiyan, A.M., et al., FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell, 1995. 81(4): p. 505-12.
    117. Nicholson, D.W. and N.A. Thornberry, Caspases: killer proteases. Trends Biochem Sci, 1997. 22(8): p. 299-306.
    118. Wang, Z.B., Y.Q. Liu, and Y.F. Cui, Pathways to caspase activation. Cell Biol Int, 2005. 29(7): p. 489-96.
    119. Nunez, G., et al., Caspases: the proteases of the apoptotic pathway. Oncogene, 1998. 17(25): p. 3237-45.
    120. Shi, Y., Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell, 2002. 9(3): p. 459-70.
    121. Lindahl, T., et al., Post-translational modification of poly(ADP-ribose) polymerase induced by DNA strand breaks. Trends Biochem Sci, 1995. 20(10): p. 405-11.
    122. Ame, J.C., C. Spenlehauer, and G. de Murcia, The PARP superfamily. Bioessays, 2004. 26(8): p. 882-93.
    123. Ti mM er, T., E.G. de Vries, and S. de Jong, Fas receptor-mediated apoptosis: a clinical application? J Pathol, 2002. 196(2): p. 125-34.
    124. Thomas, S., et al., Targeting the Bcl-2 family for cancer therapy. Expert Opin Ther Targets, 2013. 17(1): p. 61-75.
    125. Papadopoulos, K., Targeting the Bcl-2 family in cancer therapy. Semin Oncol, 2006. 33(4): p. 449-56.
    126. Green, D.R., Apoptotic pathways: ten minutes to dead. Cell, 2005. 121(5): p. 671-4.
    127. Porter, A.G. and A.G. Urbano, Does apoptosis-inducing factor (AIF) have both life and death functions in cells? Bioessays, 2006. 28(8): p. 834-43.
    128. Slee, E.A., et al., Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol, 1999. 144(2): p. 281-92.
    129. Zou, H., et al., An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem, 1999. 274(17): p. 11549-56.
    130. Acehan, D., et al., Three-Dimensional Structure of the Apoptosome: Implications for Assembly, Procaspase-9 Binding, and Activation. Molecular Cell, 2002. 9(2): p. 423-432.
    131. Schafer, Z.T. and S. Kornbluth, The apoptosome: physiological, developmental, and pathological modes of regulation. Dev Cell, 2006. 10(5): p. 549-61.
    132. Cosulich, S.C., P.J. Savory, and P.R. Clarke, Bcl-2 regulates amplification of caspase activation by cytochrome c. Curr Biol, 1999. 9(3): p. 147-50.
    133. Ou, L., et al., Conjugated linoleic acid induces apoptosis of murine ma mM ary tumor cells via Bcl-2 loss. Biochem Biophys Res Co mM un, 2007. 356(4): p. 1044-9.
    134. Widmann, C., et al., Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev, 1999. 79(1): p. 143-80.
    135. Impey, S., K. Obrietan, and D.R. Storm, Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron, 1999. 23(1): p. 11-4.
    136. Michaelidis, T.M., et al., Inactivation of bcl-2 results in progressive degeneration of motoneurons, sympathetic and sensory neurons during early postnatal development. Neuron, 1996. 17(1): p. 75-89.
    137. Bhat, N.R. and P. Zhang, Hydrogen peroxide activation of multiple mitogen-activated protein kinases in an oligodendrocyte cell line: role of extracellular signal-regulated kinase in hydrogen peroxide-induced cell death. J Neurochem, 1999. 72(1): p. 112-9.
    138. Satoh, T., et al., Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett, 2000. 288(2): p. 163-6.
    139. Stanciu, M., et al., Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem, 2000. 275(16): p. 12200-6.
    140. He mM ings, B.A. and D.F. Restuccia, PI3K-PKB/Akt pathway. Cold Spring Harbor perspectives in biology. 4(9): p. a011189-a011189.
    141. Chang, F., et al., Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia, 2003. 17(3): p. 590-603.
    142. Fayard, E., et al., Protein kinase B/Akt at a glance. Journal of Cell Science, 2005. 118(24): p. 5675-5678.
    143. Ching, C.B. and D.E. Hansel, Expanding therapeutic targets in bladder cancer: the PI3K/Akt/mTOR pathway. Lab Invest, 2010. 90(10): p. 1406-14.
    144. Georgescu, M.M., PTEN Tumor Suppressor Network in PI3K-Akt Pathway Control. Genes Cancer, 2010. 1(12): p. 1170-7.
    145. Testa, J.R. and P.N. Tsichlis, AKT signaling in normal and malignant cells. Oncogene, 2005. 24(50): p. 7391-3.
    146. Oka, N., et al., Role of phosphatidylinositol-3 kinase/Akt pathway in bladder cancer cell apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand. Cancer Sci, 2006. 97(10): p. 1093-8.
    147. Szanto, A., et al., Critical role of bad phosphorylation by Akt in cytostatic resistance of human bladder cancer cells. Anticancer Res, 2009. 29(1): p. 159-64.
    148. Li, Y., et al., Epithelial cell adhesion molecule in human hepatocellular carcinoma cell lines: a target of chemoresistence. BMC Cancer, 2016. 16: p. 228.
    149. Tai, C.J., et al., Fermented wheat germ extract induced cell death and enhanced cytotoxicity of Cisplatin and 5-Fluorouracil on human hepatocellular carcinoma cells. Evid Based Complement Alternat Med, 2013. 2013: p. 121725.
    150. Miyashita, K., et al., The cyclin-dependent kinase inhibitor flavopiridol sensitizes human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int J Mol Med, 2006. 18(2): p. 249-56.
    151. Lee, H., et al., microRNA-200a-3p increases 5-fluorouracil resistance by regulating dual specificity phosphatase 6 expression. Exp Mol Med, 2017. 49(5): p. e327.
    152. Guo, S., et al., Turning a water and oil insoluble cisplatin derivative into a nanoparticle formulation for cancer therapy. Biomaterials, 2014. 35(26): p. 7647-53.
    153. Hall, M.D., et al., Say no to DMSO: dimethylsulfoxide inactivates cisplatin, carboplatin, and other platinum complexes. Cancer Res, 2014. 74(14): p. 3913-22.
    154. Nozaki, Y., et al., Anti-infla mM atory effect of all-trans-retinoic acid in infla mM atory arthritis. Clin I mM unol, 2006. 119(3): p. 272-9.
    155. Yang, L., et al., All-trans retinoic acid protects against doxorubicin-induced cardiotoxicity by activating the ERK2 signalling pathway. Br J Pharmacol, 2016. 173(2): p. 357-71.
    156. Goldmann, E., The Growth of Malignant Disease in Man and the Lower Animals, with special reference to the Vascular System. Proceedings of the Royal Society of Medicine, 1908. 1(Surg Sect): p. 1-13.
    157. Folkman, J., Tumor angiogenesis: therapeutic implications. N Engl J Med, 1971. 285(21): p. 1182-6.
    158. Mross, K., Anti-angiogenesis therapy:concepts and importance of dosing schedules in clinical trials. Drug Resist Updat, 2000. 3(4): p. 223-235.
    159. Fayette, J., J.C. Soria, and J.P. Armand, Use of angiogenesis inhibitors in tumour treatment. Eur J Cancer, 2005. 41(8): p. 1109-16.
    160. Auerbach, W. and R. Auerbach, Angiogenesis inhibition: a review. Pharmacol Ther, 1994. 63(3): p. 265-311.
    161. Colville-Nash, P.R. and D.A. Willoughby, Growth factors in angiogenesis: current interest and therapeutic potential. Mol Med Today, 1997. 3(1): p. 14-23.
    162. Kieran, M.W. and A. Billett, Antiangiogenesis therapy. Current and future agents. Hematol Oncol Clin North Am, 2001. 15(5): p. 835-51, viii.
    163. Macpherson, G.R., et al., Antiangiogenesis therapeutic strategies in prostate cancer. Cancer Metastasis Rev, 2002. 21(1): p. 93-106.
    164. Bamias, A. and M.A. Dimopoulos, Angiogenesis in human cancer: implications in cancer therapy. European Journal of Internal Medicine, 2003. 14(8): p. 459-469.
    165. Ribatti, D., et al., Angiogenesis and anti-angiogenesis in hepatocellular carcinoma. Cancer Treat Rev, 2006. 32(6): p. 437-44.
    166. Ferrara, N. and W.J. Henzel, Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Co mM un, 1989. 161(2): p. 851-8.

    無法下載圖示 電子全文延後公開
    2024/12/31
    QR CODE