簡易檢索 / 詳目顯示

研究生: 郭柏伶
Kuo, Po-Ling
論文名稱: 咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質醣類代謝之研究
Effect of Caffeic Acid on Carbohydrate Metabolism in Hippocampus and Cortex of High Fat Diet-Induced Hyperinsulinemic Rats
指導教授: 沈賜川
Shen, Szu-Chuan
吳瑞碧
Wu, JamesSwi-Bea
學位類別: 碩士
Master
系所名稱: 人類發展與家庭學系
Department of Human Development and Family Studies
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 147
中文關鍵詞: 高胰島素血症神經細胞胰島素阻抗失智咖啡酸
英文關鍵詞: hyperinsulinemia, neuronal insulin resistance, dementia, caffeic acid
論文種類: 學術論文
相關次數: 點閱:278下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

根據行政院衛生署統計,糖尿病 (diabetes mellitus; DM)為2012年國人十大死因第五位,其中又以第2型糖尿病 (Type 2 diabetes mellitus, Type 2 DM)為主,主因是胰島素阻抗 (insulin resistance)所造成的高胰島素血症 (hyperinsulinemia)。台灣逐漸步入高齡化社會,國人平均餘命逐漸增加,老人失智症愈趨受到重視。失智症 (dementia)以阿茲海默症 (alzheimer’s disease)佔最多數,研究指出高胰島素血症為阿茲海默症的重要影響因子。已有許多研究證實酚酸 (phenolic acids) 具有降血糖及保護神經細胞之生理活性。本研究先進行小鼠神經母瘤Neuro 2a細胞之細胞存活率 (cell viability) 試驗,結果顯示酚酸之最高安全使用劑量為2.5 μM,接著以胰島素阻抗細胞模式為平台篩選具改善胰島素阻抗潛力之酚酸樣品,選擇出改善胰島素阻抗細胞葡萄糖攝入能力最佳的咖啡酸 (caffeic acid),之後進一步進行動物實驗,探討咖啡酸對高脂飼料誘導胰島素阻抗大鼠大腦海馬迴及皮質中胰島素阻抗與醣類代謝之影響。
動物試驗結果顯示,雄性SD大鼠以高脂飼料餵食同時每日餵食咖啡酸 (30mg/kg body weight) 30週後可顯著改善大鼠葡萄糖耐受能力、高內臟脂肪之效果。西方墨點法分析結果顯示,在醣類代謝部分,咖啡酸可以增加糖解作用相關酵素,包括 Hexokinase、 Phosphofructokinase與 Aldolase之蛋白質表現量。在胰島素訊息傳遞部分,咖啡酸可以增加海馬迴及皮質之胰島素受器 (insulin receptor, IR)、磷酸肌醇3激酶 (Phosphatidylinositol-3 kinase, PI3K)、 AKT/蛋白激酶B (AKT/Protein kinase B, AKT/PKB)、葡萄糖轉運蛋白-3 (glucose transporter-3, GLUT3) 及胰島素降解酵素 (insulin degrading enzyme, IDE)等蛋白質之表現量。另外也發現可增進瘦體素訊息傳遞蛋白瘦體素受器 (leptin receptor, LEPR)及pJAK2Tyr813/JAK2的表現量。被動迴避試驗結果也發現,咖啡酸具有顯著改善高脂飲食誘導之認知能力缺損的情況。
根據上述結果推測,咖啡酸可透過改善腦部醣類代謝、胰島素訊息傳遞及瘦體素訊息傳遞作用,因而具有保護高脂飼料餵食大鼠認知功能受損之效果。

According the statistics report of Department of Health in Taiwan, diabetes mellitus (DM) is the fifth among the top ten leading causes of death. Among them, 95% of diabetes patients are Type 2 DM, which is characterized by hyperinsulinemia resulted from insulin resistance. Taiwan is becoming to be an aging society and the life expectancy of people is increasing year by year. Thus, the dementia in elderly has been attached great importance to society country. Most dementia is Alzheimer’s disease (AD). The growing evidences indicate that high fat diet is the major risk factor of AD. Furthermore, the protective effect of phenolic acids on hypoglycermia and neuronal has been reported.
The result from cell viability test revealed that the maxium safe dosage of phenolic acids is 12.5 μM on neuroblastoma Neuro 2a cells. The insulin resistant cell model was used as a platform for screening the anti-insulin resistance potential phenolic acids. Among the tested samples, caffeic acid exhibited the highest glucose uptake enhancing activity in insulin resistant cells. Then effect of caffeic acid on ameliorating carbohydrate metabolism, insulin resistance and memory impairment and learning ability in high fat diet (HFD)-induced hyperinsulinemic rats were investigated.
The results show that orally administered with caffeic acid once a day at a dosage of 30mg/kg B.W. for 30 weeks significantly improved the glucose tolerance and abdominal fat in high-fat diet (HFD) fed male SD rats. The Western blot analysis reveals that caffeic acid increases the expression of glycolysis-associated enzymes, including hexokinase, phosphofructokinase and aldolase in hippocampus and cortex of HFD rats. Moreover, caffeic acid increases the protein expression of insulin signaling-associated proteins, including insulin receptor (IR), phosphatidylinositol-3-kinase (PI3K), AKT/Protein kinase B (AKT/ PKB), glucose transporter-3 (GLUT-3) and insulin degrading enzyme (IDE) in hippocampus and cortex of HFD rats. Additionally, caffeic acid increases the protein expression of leptin signaling-associated proteins, including leptin receptor (LEPR), pJAK2Tyr813/JAK2. The results from passive avoidance test also revealed that caffeic acid significantly improved the memory impairment in HFD rats.
Above investigation elucidates that caffeic acid may alleviate brain insulin resistance and improve glucose metabolism thus ameliorate memory impairment and lraening ability in HFD rats.

第一章 前言 1 第二章 文獻回顧 4 第一節 糖尿病 4 一、糖尿病流行病學 4 二、糖尿病之定義 4 三、糖尿病分類 7 第二節 胰島素 11 一、胰島素簡介 11 二、胰島素之生理作用 11 三、胰島素於細胞層次之作用 12 四、胰島素訊息傳遞路徑 13 五、胰島素與三大營養素代謝之作用 20 第三節、胰島素阻抗 22 一、胰島素阻抗 22 二、高脂飲食與胰島素阻抗 22 三、腦部胰島素阻抗 26 第四節 抗糖尿病物質 27 一、常見之抗糖尿藥物 27 第五節 失智症 32 一、失智症流行病學 32 二、失智症定義 32 三、失智症分類 33 四、阿茲海默症病程 35 五、失智症治療 37 第六節 第二型糖尿病與阿茲海默症 39 一、第二型糖尿病與阿茲海默症相關研究 39 二、連結阿茲海默症與第二型糖尿病的可能機制 39 三、高脂飲食及糖尿病對於阿茲海默症的影響 44 第七節Caffeic acid 46 一、天然酚酸 46 二、咖啡酸 (Caffeic acid) 46 第三章 研究動機與目的及實驗架構 47 第一節 研究動機與目的 47 第二節 實驗架構 48 第四章 實驗材料與方法 49 第一節 實驗材料 49 一、胰島素阻抗細胞模式 49 二、胰島素阻抗動物模式 50 第二節 細胞實驗步驟和方法 53 一、實驗樣品配製 53 二、實驗藥品配製 53 三、小鼠神經母瘤細胞 Neuro 2a 之保存與培養 53 四、試驗方法 54 五、儀器設備 55 六、統計分析 56 第三節 動物實驗步驟和方法 57 一、實驗樣品配製 57 二、實驗藥品配置 57 三、實驗動物飼養 58 四、實驗動物誘導及分組 58 五、試驗方法 58 六、儀器設備 64 七、統計分析 65 第五章 結果 66 第一節 不同天然酚酸對Neuro 2a細胞存活率、葡萄糖攝入之影響 66 一、不同濃度天然酚酸對Neuro 2a細胞生長存活率的影響 66 二、Neuro 2a 細胞對2-NBDG染劑攝入之結果 66 第二節 咖啡酸對高脂飼料誘導高胰島素血症大鼠生理、生化值之影響 70 一、咖啡酸對高脂飼料誘導胰島素阻抗大鼠攝食量、飲水量及熱量攝取之影響 70 二、咖啡酸對高脂飼料誘導胰島素阻抗大鼠體重之影響 70 三、咖啡酸對高脂飼料誘導胰島素阻抗大鼠空腹血糖濃度之影響 74 四、咖啡酸對高脂飼料誘導胰島素阻抗大鼠口服葡萄糖耐受性 (OGTT)與其曲線下面積之影響之影響 74 五、咖啡酸對高脂飼料誘導胰島素阻抗大鼠空腹胰島素濃度之影響 79 六、咖啡酸對高脂飼料誘導胰島素阻抗大鼠HOMA-IR Index之影響 79 七、咖啡酸對高脂飼料誘導胰島素阻抗大鼠組織重量之影響 82 八、咖啡酸對高脂飼料誘導胰島素阻抗大鼠血液生化數值之影響 82 九、咖啡酸對高脂飼料誘導胰島素阻抗大鼠血清瘦體素之影響 85 十、咖啡酸對高脂飼料誘導胰島素阻抗大鼠血清脂聯素之影響 85 十一、咖啡酸對高脂飼料誘導胰島素阻抗大鼠被動迴避試驗之影響 85 第三節 咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質醣類代謝、胰島素訊息傳遞、瘦體素訊息傳遞之影響 89 一、咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質醣類代謝酵素的影響 89 二、咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質胰島素訊息傳遞蛋白質表現的影響 93 三、咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質瘦體素訊息傳遞蛋白質表現的影響 101 第六章 討論 104 第一節 不同天然酚酸對Neuro 2a細胞存活率、葡萄糖攝入之影響 104 一、不同濃度天然酚酸對Neuro 2a細胞生長存活率的影響 104 二、Neuro 2a 細胞對2-NBDG染劑攝入之結果 105 第二節 咖啡酸對高脂飼料誘導高胰島素血症大鼠生理、生化之影響 107 一、咖啡酸對高脂飼料誘導胰島素阻抗大鼠生理之影響 107 二、咖啡酸對高脂飼料誘導胰島素阻抗大鼠空腹血糖濃度及其相關生化數值之影響 (胰島素、HOMA-Index、口服葡萄糖耐受性及口服葡萄糖耐受試驗曲線下面積) 109 三、咖啡酸對高脂飼料誘導胰島素阻抗大鼠血液生化數值之影響 111 四、咖啡酸對高脂飼料誘導胰島素阻抗大鼠血清脂肪激素之影響 (瘦體素、脂聯素) 112 五、咖啡酸對高脂飼料誘導胰島素阻抗大鼠被動迴避試驗之影響 113 第三節 咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質醣類代謝、胰島素訊息傳遞、瘦體素訊息傳遞之影響 115 一、咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質醣類代謝之影響 115 二、咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質胰島素訊息傳遞之影響 117 三、咖啡酸對高脂飼料誘導高胰島素血症大鼠海馬迴及皮質瘦體素訊息傳遞之影響 120 第七章 結論 121 第八章 參考文獻 124

2013 Alzheimer's disease facts and figures. (2013). Alzheimer's & Dementia, 9(2), 208-245. doi: 10.1016/j.jalz.2013.02.003
ADA. (2012). Diagnosis and Classification of Diabetes Mellitus. DIABETES CARE, 35(SUPPLEMENT 1), 564-571. doi: 10.2337/dc12-s064
Adisakwattana, S., Roengsamran, S., Hsu, W. H., & Yibchok-anun, S. (2005). Mechanisms of antihyperglycemic effect of p-methoxycinnamic acid in normal and streptozotocin-induced diabetic rats. Life Sci, 78(4), 406-412. doi: 10.1016/j.lfs.2005.04.073
American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4 ed.). Washington, DC.
Anwar, J., Spanevello, R. M., Thome, G., Stefanello, N., Schmatz, R., Gutierres, J., . . . Schetinger, M. R. (2012). Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. [Research Support, Non-U.S. Gov't]. Pharmacol Biochem Behav, 103(2), 386-394. doi: 10.1016/j.pbb.2012.09.006
Arivarasu, N. A., Priyamvada, S., & Mahmood, R. (2012). Caffeic Acid Inhibits Chromium(VI)-Induced Oxidative Stress and Changes in Brush Border Membrane Enzymes in Rat Intestine. Biol Trace Elem Res, 148(2), 209-215. doi: 10.1007/s12011-012-9349-1
Asterholm, I. W., & Scherer, P. E. (2010). Enhanced Metabolic Flexibility Associated with Elevated Adiponectin Levels. Am J Pathol, 176(3), 1364-1376.
Avram, M. M., Avram, A. S., & James, W. D. (2005). Subcutaneous fat in normal and diseased states: 1. Introduction. Journal of the American Academy of Dermatology, 53(4), 663-670. doi: 10.1016/j.jaad.2005.05.014
Bahorun, T., Luximon-Ramma, A., Crozier, A., & Aruoma, O. I. (2004). Total phenol, flavonoid, proanthocyanidin and vitamin C levels and antioxidant activities of Mauritian vegetables. Journal of the Science of Food and Agriculture, 84(12), 1553-1561. doi: 10.1002/jsfa.1820
Bailey, C. J., & Turner, R. C. (1996). Metformin. New England Journal of Medicine, 334(9), 574-579. doi: doi:10.1056/NEJM199602293340906
Balasubashini, M. S., Rukkumani, R., Viswanathan, P., & Menon, V. P. (2004). Ferulic acid alleviates lipid peroxidation in diabetic rats. Phytotherapy Research, 18(4), 310-314. doi: 10.1002/ptr.1440
Baldwin, S. A. (1993). Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1154(1), 17-49. doi: 10.1016/0304-4157(93)90015-G
Banks, W. A. (2004). The source of cerebral insulin. Eur J Pharmacol, 490(1–3), 5-12. doi: 10.1016/j.ejphar.2004.02.040
Barberà, A., Rodríguez-Gil, J. E., & Guinovart, J. J. (1994). Insulin-like actions of tungstate in diabetic rats. Normalization of hepatic glucose metabolism. Journal of Biological Chemistry, 269(31), 20047-20053.
Battu, C. E., Rieger, D., Loureiro, S., Furtado, G. V., Bock, H., Saraiva-Pereira, M. L., . . . Perry, M. L. (2012). Alterations of PI3K and Akt signaling pathways in the hippocampus and hypothalamus of Wistar rats treated with highly palatable food. [Research Support, Non-U.S. Gov't]. Nutr Neurosci, 15(1), 10-17. doi: 10.1179/1476830511Y.0000000030
Bell, G. I., Kayano, T., Buse, J. B., Burant, C. F., Takeda, J., Lin, D., . . . Seino, S. (1990). Molecular Biology of Mammalian Glucose Transporters. Diabetes Care, 13(3), 198-208. doi: 10.2337/diacare.13.3.198
Bellacosa, A., Testa, Staal, S., & Tsichlis, P. (1991). A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science, 254(5029), 274-277. doi: 10.1126/science.1833819
Bergman, R. N., & Ader, M. (2000). Free fatty acids and pathogenesis of type 2 diabetes mellitus. Trends in Endocrinology & Metabolism, 11(9), 351-356. doi: 10.1016/S1043-2760(00)00323-4
Biessels, G. J., Bravenboer, B., & Gispen, W. H. (2004). Glucose, insulin and the brain: modulation of cognition and synaptic plasticity in health and disease: a preface. Eur J Pharmacol, 490(1–3), 1-4. doi: 10.1016/j.ejphar.2004.02.057
Bjørbæk, C., El-Haschimi, K., Frantz, J. D., & Flier, J. S. (1999). The Role of SOCS-3 in Leptin Signaling and Leptin Resistance. Journal of Biological Chemistry, 274(42), 30059-30065. doi: 10.1074/jbc.274.42.30059
Bjørbæk, C., Elmquist, J. K., Michl, P., Ahima, R. S., van Bueren, A., McCall, A. L., & Flier, J. S. (1998). Expression of Leptin Receptor Isoforms in Rat Brain Microvessels. Endocrinology, 139(8), 3485-3491. doi: 10.1210/en.139.8.3485
Björk, B. F., Katzov, H., Kehoe, P., Fratiglioni, L., Winblad, B., Prince, J. A., & Graff, C. (2007). Positive association between risk for late-onset Alzheimer disease and genetic variation in IDE. Neurobiol Aging, 28(9), 1374-1380.
Björnholm, M., & Zierath, J. (2005). Insulin signal transduction in human skeletal muscle: identifying the defects in Type II diabetes. Biochem Soc Trans, 33, 354-357.
Boileau, P., Mrejen, C., Girard, J., & Mouzon, S. H.-d. (1995). Overexpression of GLUT3 Placental Glucose Transporter in Diabetic Rats. Journal of Clinical Investigation, 96, 309-317. doi: 10.1172/JCI118036
Bonora, E., Targher, G., Alberiche, M., Bonadonna, R. C., Saggiani, F., Zenere, M. B., . . . Muggeo, M. (2000). Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care, 23(1), 57-63. doi: 10.2337/diacare.23.1.57
Brady, M. J., Nairn, A. C., & Saltiel, A. R. (1997). The regulation of glycogen synthase by protein phosphatase 1 in 3T3-L1 adipocytes. Evidence for a potential role for DARPP-32 in insulin action. Journal of Biological Chemistry, 272, 29698-29703. doi: 10.1074/jbc.272.47.29698
Brands, A. M. A., Kessels, R. P. C., de Haan, E. H. F., Kappelle, L. J., & Biessels, G. J. (2004). Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur J Pharmacol, 490(1–3), 159-168. doi: 10.1016/j.ejphar.2004.02.053
Buettner, R., Scholmerich, J., & Bollheimer, L. C. (2007). High-fat Diets: Modeling the Metabolic Disorders of Human Obesity in Rodents. Obesity, 15(4), 798-808. doi: 10.1038/oby.2007.608
Butle, A. A., & LeRoith, D. (2001). Minireview: tissue-specific versus generalized gene targeting of the igf1 and igf1r genes and their roles in insulin-like growth factor physiology. Endocrinology, 142(5), 1685-1688. doi: 10.1210/en.142.5.1685
Caro, J. F., Kolaczynski, J. W., Nyce, M. R., Ohannesian, J. P., Opentanova, I., Goldman, W. H., . . . Considine, R. V. (1996). Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. The Lancet, 348(9021), 159-161.
Chan, K. M., Rajab, N. F., Ishak, M. H. A., Ali, A. M., Yusoff, K., Din, L. B., & Inayat-Hussain, S. H. (2006). Goniothalamin induces apoptosis in vascular smooth muscle cells. Chemico-Biological Interactions, 159(2), 129-140. doi: 10.1016/j.cbi.2005.10.107
Chang, W. C., & Shen, S. C. (2013). Effect of water extracts from edible Myrtaceae plants on uptake of 2-(n-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose in TNF-alpha-treated FL83B mouse hepatocytes. [Research Support, Non-U.S. Gov't]. Phytother Res, 27(2), 236-243. doi: 10.1002/ptr.4681
Chao, C.-y., Mong, M.-c., Chan, K.-c., & Yin, M.-c. (2010). Anti-glycative and anti-inflammatory effects of caffeic acid and ellagic acid in kidney of diabetic mice. Mol. Nutr. Food Res., 54, 388-395. doi: 10.1002/mnfr.200900087
Chao, L., Marcus-Samuels, B., Mason, M. M., Moitra, J., Vinson, C., Arioglu, E., . . . Reitman, M. L. (2000). Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest., 106, 1221-1228.
Chung, T. W., Moon, S. K., Chang, Y. C., Ko, J. H., Lee, Y. C., Cho, G., . . . Kim, C. H. (2004). Novel and therapeutic effect of caffeic acid and caffeic acid phenyl ester on hepatocarcinoma cells: complete regression of hepatoma growth and metastasis by dual mechanism. The FASEB Journal, 18(14), 1670-1681. doi: 10.1096/fj.04-2126com
Chung, Y. H., Shin, C. M., Joo, K. M., Kim, M. J., & Cha, C. I. (2002). Region-specific alterations in insulin-like growth factor receptor type I in the cerebral cortex and hippocampus of aged rats. Brain Res, 946(2), 307-313. doi: 10.1016/S0006-8993(02)03041-X
Cichy, S. B., Uddin, S., Danilkovich, A., Guo, S., Klippel, A., & Unterman, T. G. (1998). Protein Kinase B/Akt Mediates Effects of Insulin on Hepatic Insulin-like Growth Factor-binding Protein-1 Gene Expression through a Conserved Insulin Response Sequence. Journal of Biological Chemistry, 273(11), 6482-6487. doi: 10.1074/jbc.273.11.6482
Clark, A., Wells, C. A., Buley, I. D., Cruickshank, J. K., Vanhegan, R. I., Matthews, D. R., . . . Turner, R. C. (1988). Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes research (Edinburgh, Scotland), 9(4), 151-159.
Clarke, W., Larner, J., & Pohn, S. (1986). Methods in diabetes research (Vol. 2, pp. 39-86). New York: John Wiley and Sous, ENC.
Cross, D. A. E., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789. doi: 10.1038/378785a0
Dandona, P., Aljada, A., Chaudhuri, A., Mohanty, P., & Garg, R. (2005). Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation, 111, 1448-1454. doi: 10.1161/01.CIR.0000158483.13093.9D
Dandona, P., Aljada, A., Mohanty, P., Ghanim, H., Hamouda, W., Assian, E., & Ahmad, S. (2001). Insulin Inhibits Intranuclear Nuclear Factor κB and Stimulates IκB in Mononuclear Cells in Obese Subjects: Evidence for an Anti-inflammatory Effect? . The Journal of Clinical Endocrinology & Metabolism, 86(7), 3257-3265. doi: 10.1210/jc.86.7.3257
Davis, J. D., Perez, M. C., & Kung, T. M. (1994). Conditioned control of ingestive behavior by acarbose-induced inhibition of sucrose ingestion in the rat. Physiol Behav, 55(3), 511-518. doi: 10.1016/0031-9384(94)90109-0
de Ferranti, S., & Mozaffarian, D. (2008). The perfect storm: obesity, adipocyte dysfunction, and metabolic consequences. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Review]. Clin Chem, 54(6), 945-955. doi: 10.1373/clinchem.2007.100156
de la Monte, S. M. (2012). Brain insulin resistance and deficiency as therapeutic targets in Alzheimer's disease. Current Alzheimer Research, 9, 35-66.
de la Monte, S. M. (2012). Contributions of Brain Insulin Resistance and Deficiency in Amyloid-Related Neurodegeneration in Alzheimer's Disease. Drugs, 72(1), 49-66.
de la Monte, S. M., Longato, L., Tong, M., & Wands, J. R. (2009). Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. Curr Opin Investig Drugs, 10(10), 1049-1060.
de la Monte, S. M., & Wands, J. R. (2005). Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central bervous system relevance to AD. Journal of Alzheimer's Disease, 7, 45-61.
de la Monte, S. M., & Wands, J. R. (2006). Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer's disease. Journal of Alzheimer's Disease, 9(2), 167-181.
Doble, B. W., & Woodgett, J. R. (2007). Role of Glycogen Synthase Kinase-3 in Cell Fate and Epithelial-Mesenchymal Transitions. Cells Tissues Organs, 185(1-3), 73-84.
Duan, C., Li, M., & Rui, L. (2004). SH2-B promotes insulin receptor substrate 1 (IRS1)- and IRS2-mediated activation of the phosphatidylinositol 3-kinase pathway in response to leptin. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.]. J Biol Chem, 279(42), 43684-43691. doi: 10.1074/jbc.M408495200
Duelli, R., & Kuschinsky, W. (2001). Brain Glucose Transporters: Relationship to Local Energy Demand. Physiology, 16(2), 71-76.
Farrell, T. L., Ellam, S. L., Forrelli, T., & Williamson, G. (2013). Attenuation of glucose transport across Caco-2 cell monolayers by a polyphenol-rich herbal extract: Interactions with SGLT1 and GLUT2 transporters. BioFactors, 39(4), 448-456. doi: 10.1002/biof.1090
Fawcett, J., & Duckworth, W. C. (2009). Hyperglycaemia and hyperinsulinaemia: is insulin-degrading enzyme the missing link? Diabetologia, 52(8), 1457-1460. doi: 10.1007/s00125-009-1414-8
Ferrannini, E. (1998). Insulin Resistance versus Insulin Deficiency in Non-Insulin-Dependent Diabetes Mellitus: Problems and Prospects Endocrine Reviews, 19(4), 477-490. doi: 10.1210/er.19.4.477
Frölich, L., Blum-Degen, D., Bernstein, H.-G., Engelsberger, S., Humrich, J., Laufer, S., . . . Riederer, P. (1998). Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease. Journal of Neural Transmission, 105, 423-438.
Frederich, R. C., Hamann, A., Anderson, S., Löllmann, B., Lowell, B. B., & Flier, J. S. (1995). Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nature Medicine, 1, 1311-1314. doi: 10.1038/nm1295-1311
Gasparini, L., & Xu, H. (2003). Potential roles of insulin and IGF-1 in Alzheimer's disease. Trends in neurosciences, 26(8), 404-406.
Giovannone, B., Lucia Scaldaferri, M., Federici, M., Porzio, O., Lauro, D., Fusco, A., . . . Sesti, G. (2000). Insulin receptor substrate (IRS) transduction system: distinct and overlapping signaling potential. Diabetes/Metabolism Research and Reviews, 16(6), 434-441. doi: 10.1002/1520-7560(2000)9999:9999<::aid-dmrr159>3.0.co;2-8
Gispen, W. H., & Biessels, G.-J. (2000). Cognition and synaptic plasticity in diabetes mellitus. Trends in neurosciences, 23(11), 542-549.
Goda, T., Yamada, K., Sugiyama, M., Moriuchi, S., & Hosoya, N. (1982). Effect of Sucrose and Acarbose Feeding on the Development of Streptozotocin-Induced Diabetes in the Rat. Journal of Nutritional Science and Vitaminology, 28(1), 41-56.
Gould, G. W., & Holman, G. D. (1993). The glucose transporter family: structure, function and tissue-specific expression. Biochem J, 295, 329-341.
Greco, S. J., Sarkar, S., Johnston, J. M., & Tezapsidis, N. (2009). Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem Biophys Res Commun, 380(1), 98-104. doi: 10.1016/j.bbrc.2009.01.041
Greenwood, C. E., & Winocur, G. (2005). High-fat diets, insulin resistance and declining cognitive function. [Research Support, Non-U.S. Gov't
Review]. Neurobiol Aging, 26 Suppl 1, 42-45. doi: 10.1016/j.neurobiolaging.2005.08.017
Grover, J. K., Vats, V., & Rathi, S. S. (2000). Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. Journal of Ethnopharmacology, 73(3), 461-470. doi: 10.1016/S0378-8741(00)00319-6
Gupta, A., Bisht, B., & Dey, C. S. (2011). Peripheral insulin-sensitizer drug metformin ameliorates neuronal insulin resistance and Alzheimer's-like changes. [Research Support, Non-U.S. Gov't]. Neuropharmacology, 60(6), 910-920. doi: 10.1016/j.neuropharm.2011.01.033
Hölscher, C. (2005). Development of Beta-Amyloid-induced Neurodegeneration in Alzheimer's Disease and Novel Neuroprotective Strategies. Reviews in the Neurosciences, 16(3), 181-276. doi: 10.1515/REVNEURO.2005.16.3.181
Haan, M. N. (2006). Therapy Insight: type 2 diabetes mellitus and the risk of late-onset Alzheimer's disease. [10.1038/ncpneuro0124]. Nat Clin Pract Neuro, 2(3), 159-166.
Hallakou, S., Doare, L., Foufelle, F., Kergoat, M., Guerre-Millo, M., Berthault, M.-F., . . . Ferre, P. (1997). Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes, 46(9), 1393-1399.
Harbeby, E., Jouin, M., Alessandri, J.-M., Lallemand, M.-S., Linard, A., Lavialle, M., . . . Guesnet, P. (2012). n-3 PUFA status affects expression of genes involved in neuroenergetics differently in the fronto-parietal cortex compared to the CA1 area of the hippocampus: Effect of rest and neuronal activation in the rat. Prostaglandins, Leukotrienes and Essential Fatty Acids, 86(6), 211-220. doi: 10.1016/j.plefa.2012.04.008
Havrankova, J., Schmechel, D., Roth, J., & Brownstein, M. (1978). Identification of insulin in rat brain. Proc Natl Acad Sci U S A, 75(11), 5737-5741.
Hendrie, H. (1998). Epidemiology of dementia and Alzheimer's disease. Am J Geriatr Psychiatry, 6(2 Suppl 1), S3-18.
Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose Expression of Tumor Necrosis Factor-α: Direct Role in Obesity-Linked Insulin Resistance. science, 259, 87-91.
Hoyer, S. (1998). Risk factors for Alzheimer's disease during aging. Impacts of glucose/energy metabolism. Journal of neural transmission. Supplementum, 54, 187-194.
Hoyer, S. (2002). The brain insulin signal transduction system and sporadic (type II) Alzheimer disease: an update. Journal of Neural Transmission 109(3), 341-360. doi: 10.1007/s007020200028
Hoyer, S. (2004). Glucose metabolism and insulin receptor signal transduction in Alzheimer disease. [Review]. Eur J Pharmacol, 490(1-3), 115-125. doi: 10.1016/j.ejphar.2004.02.049
Hoyer, S., & Lannert, H. (2008). Long-term effects of corticosterone on behavior, oxidative and energy metabolism of parietotemporal cerebral cortex and hippocampus of rats: comparison to intracerebroventricular streptozotocin. Journal of Neural Transmission, 115(9), 1241-1249. doi: 10.1007/s00702-008-0079-7
Huang, D. W., Shen, S. C., & Wu, J. S. (2009). Effects of caffeic acid and cinnamic acid on glucose uptake in insulin-resistant mouse hepatocytes. J Agric Food Chem, 57(17), 7687-7692. doi: 10.1021/jf901376x
Hummel, K. P., Dickie, M. M., & Coleman, D. L. (1966). Diabetes, a new mutation in the mouse. Science, 153(3740), 1127-1128. doi: 10.1126/science.153.3740.1127
Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., . . . Montine, T. J. (2012). National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimer's & Dementia, 8(1), 1-13. doi: 10.1016/j.jalz.2011.10.007
Ingalls, A. M., Dickie, M. M., & Snell, G. D. (1950). Obese, a new mutation in the house mouse. Journal of Heredity, 41(12), 317-318.
Ingram, T. E., Pinder, A. G., Milsom, A. B., Rogers, S. C., Thomas, D. E., & James, P. E. (2009). Blood vessel specific vaso-activity to nitrite under normoxic and hypoxic conditions. Adv Exp Med Biol, 645, 21-25. doi: 10.1007/978-0-387-85998-9_4
Jéquier, E. (2002). Pathways to obesity. International Journal of Obesity, 26(Suppl 2), S12-S17. doi: 10.1038/sj.ijo.0802123
Janson, J., Laedtke, T., Parisi, J. E., O’Brien, P., Petersen, R. C., & Butler, P. C. (2004). Increased Risk of Type 2 Diabetes in Alzheimer Disease. Diabetes, 53(2), 474-481. doi: 10.2337/diabetes.53.2.474
Janson, J., Soeller, W. C., Roche, P. C., Nelson, R. T., Torchia, A. J., Kreutter, D. K., & Butler, P. C. (1996). Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proceedings of the National Academy of Sciences, 93(14), 7283-7288.
Jellinger, K. A., & Attems, J. (2007). Neuropathological evaluation of mixed dementia. Journal of the neurological sciences, 257(1-2), 80-87.
Jensen, M. D., Haymond, M. W., Rizza, R. A., Cryer, P. E., & Miles, J. M. (1989). Influence of body fat distribution on free fatty acid metabolism in obesity. Journal of Clinical Investigation, 83(4), 1168-1173. doi: 10.1172/JCI113997
Jeon, B. T., Jeong, E. A., Shin, H. J., Lee, Y., Lee, D. H., Kim, H. J., . . . Roh, G. S. (2012). Resveratrol attenuates obesity-associated peripheral and central inflammation and improves memory deficit in mice fed a high-fat diet. [Research Support, Non-U.S. Gov't]. Diabetes, 61(6), 1444-1454. doi: 10.2337/db11-1498
Jin, N., Qian, W., Yin, X., Zhang, L., Iqbal, K., Grundke-Iqbal, I., . . . Liu, F. (2013). CREB regulates the expression of neuronal glucose transporter 3: a possible mechanism related to impaired brain glucose uptake in Alzheimer’s disease. Nucleic Acids Research, 41(5), 3240-3256. doi: 10.1093/nar/gks1227
Johnson, A. B., Webster, J. M., Sum, C. F., Heseltine, L., Argyraki, M., Cooper, B. G., & Taylor, R. (1993). The impact of metformin therapy on hepatic glucose production and skeletal muscle glycogen synthase activity in overweight type II diabetic patients. Metabolism, 42(9), 1217-1222. doi: 10.1016/0026-0495(93)90284-U
Jolivalt, C. G., Lee, C. A., Beiswenger, K. K., Smith, J. L., Orlov, M., Torrance, M. A., & Masliah, E. (2008). Defective insulin signaling pathway and increased glycogen synthase kinase-3 activity in the brain of diabetic mice: parallels with Alzheimer's disease and correction by insulin. [Research Support, Non-U.S. Gov't]. J Neurosci Res, 86(15), 3265-3274. doi: 10.1002/jnr.21787
Jones, J. I., & Clemmons, D. R. (1995). Insulin-Like Growth Factors and Their Binding Proteins: Biological Actions. Endocrine Reviews, 16(1), 3-34. doi: 10.1210/edrv-16-1-3
Joost, H.-G., Bell, G. I., Best, J. D., Birnbaum, M. J., Charron, M. J., Chen, Y. T., . . . Thorens, B. (2002). Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. American Journal of Physiology - Endocrinology And Metabolism, 282(4), E974-E976. doi: 10.1152/ajpendo.00407.2001
Jung, U. J., Lee, M.-K., Park, Y. B., Jeon, S.-M., & Choi, M.-S. (2006). Antihyperglycemic and Antioxidant Properties of Caffeic Acid in db/db Mice. J Pharmacol Exp Ther., 318(2), 476-483. doi: 10.1124/jpet.106.105163
Kadowaki, T., & Yamauchi, T. (2005). Adiponectin and adiponectin receptors. [Research Support, Non-U.S. Gov't Review]. Endocr Rev, 26(3), 439-451. doi: 10.1210/er.2005-0005
Kalmijn, S., Boxtel, M. P. J. v., Ocké, M., Verschuren, W. M. M., Kromhout, D., & Launer, L. J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. NEUROLOGY, 62(2), 275-280. doi: 10.1212/01.WNL.0000103860.75218.A5
Kampa, M., Alexaki, V. I., Notas, G., Nifli, A. P., Nistikaki, A., Hatzoglou, A., . . . Castanas, E. (2004). Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res, 6(2), R63-74. doi: 10.1186/bcr752
Karamohamed, S., Demissie, S., Volcjak, J., Liu, C., Heard-Costa, N., Liu, J., . . . Herbert, A. (2003). Polymorphisms in the Insulin-Degrading Enzyme Gene Are Associated With Type 2 Diabetes in Men From the NHLBI Framingham Heart Study. Diabetes, 52(6), 1562-1567. doi: 10.2337/diabetes.52.6.1562
Kaszubska, W., Falls, H. D., Schaefer, V. G., Haasch, D., Frost, L., Hessler, P., . . . Trevillyan, J. M. (2002). Protein tyrosine phosphatase 1B negatively regulates leptin signaling in a hypothalamic cell line. Mol Cell Endocrinol, 195(1–2), 109-118. doi: http://dx.doi.org/10.1016/S0303-7207(02)00178-8
Kawaia, T., Hirosea, H., Setob, Y., Fujitab, H., Fujitab, H., Ukedab, K., & Saruta, T. (2002). Troglitazone ameliorates lipotoxicity in the beta cell line INS-1 expressing PPAR gamma Diabetes Research and Clinical Practice, 56(2), 83-92. doi: 10.1016/S0168-8227(01)00367-9
Keilson, L., Mather, S., Walter, Y. H., Subramanian, S., & McLeod, J. F. (2000). Synergistic Effects of Nateglinide and Meal Administration on Insulin Secretion in Patients with Type 2 Diabetes Mellitus. Journal of Clinical Endocrinology & Metabolism, 85(3), 1081-1086. doi: 10.1210/jc.85.3.1081
Khan, J. Y., Rajakumar, R. A., Devaskar, U. P., Weissfeld, L. A., & Devaskar, S. U. (1999). Effect of Primary Congenital Hypothyroidism upon Expression of Genes Mediating Murine Brain Glucose Uptake. [Regular Article]. Pediatr Res, 45(S5), 718-725. doi: 10.1203/00006450-199905010-00019
Kido, Y., Burks, D. J., Withers, D., Bruning, J. C., Kahn, C. R., White, M. F., & Accili, D. (2000). Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. The Journal of Clinical Investigation, 105(2), 199-205. doi: 10.1172/jci7917
Kosari, S., Badoer, E., Nguyen, J. C., Killcross, A. S., & Jenkins, T. A. (2012). Effect of western and high fat diets on memory and cholinergic measures in the rat. [Research Support, Non-U.S. Gov't]. Behav Brain Res, 235(1), 98-103. doi: 10.1016/j.bbr.2012.07.017
Laffel, L. (1999). Ketone Bodies: a Review of Physiology, Pathophysiology and Application of Monitoring to Diabetes. Diabetes/Metabolism Research and Reviews, 15(6), 412-426. doi: 10.1002/(SICI)1520-7560
Latha, M., & Pari, L. (2003). Antihyperglycaemic effect of Cassia auriculata in experimental diabetes and its effects on key metabolic enzymes involved in carbohydrate metabolism. Clinical and Experimental Pharmacology and Physiology, 30(1-2), 38-43. doi: 10.1046/j.1440-1681.2003.03785.x
Le Marchand-Brustel, Y., Gual, P., Grémeaux, T., Gonzalez, T., Barrès, R., & Tanti, J. (2003). Fatty acid-induced insulin resistance: role of insulin receptor substrate 1 serine phosphorylation in the retroregulation of insulin signalling. Biochem Soc Trans, 31(Pt 6), 1152-1156.
Ledesma, M. D., Bonay, P., Colaço, C., & Avila, J. (1994). Analysis of microtubule-associated protein tau glycation in paired helical filaments. Journal of Biological Chemistry, 269(34), 21614-21619.
Lester-Coll, N., Rivera, E. J., Soscia, S. J., Doiron, K., Wands, J. R., & de la Monte, S. M. (2006). Intracerebral streptozotocin model of type 3 diabetes: Relevance to sporadic Alzheimer's disease. Journal of Alzheimer's Disease, 9(1), 13-33.
Li, J., Ma, W., & Wang, S. (2011). Slower gastric emptying in high-fat diet induced obese rats is associated with attenuated plasma ghrelin and elevated plasma leptin and cholecystokinin concentrations. Regulatory Peptides, 171(1-3), 53-57. doi: 10.1016/j.regpep.2011.07.004
Li, L., & Hölscher, C. (2007). Common pathological processes in Alzheimer disease and type 2 diabetes: A review. Brain Research Reviews, 56(2), 384-402. doi: 10.1016/j.brainresrev.2007.09.001
Li, M., Ren, D., Iseki, M., Takaki, S., & Rui, L. (2006). Differential Role of SH2-B and APS in Regulating Energy and Glucose Homeostasis. Endocrinology, 147(5), 2163-2170. doi: 10.1210/en.2005-1313
Li, Z., Zhou, Y., Carter-Su, C., Myers, M. G., Jr., & Rui, L. (2007). SH2B1 enhances leptin signaling by both Janus kinase 2 Tyr813 phosphorylation-dependent and -independent mechanisms. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Mol Endocrinol, 21(9), 2270-2281. doi: 10.1210/me.2007-0111
Lichtenstein, A. H., & Schwab, U. S. (2000). Relationship of dietary fat to glucose metabolism. Atherosclerosis 150(2), 227-243. doi: 10.1016/S0021-9150(99)00504-3
Lietzke, S. E., Bose, S., Cronin, T., Klarlund, J., Chawla, A., Czech, M. P., & Lambright, D. G. (2000). Structural Basis of 3-Phosphoinositide Recognition by Pleckstrin Homology Domains. Molecular cell, 6(2), 385-394.
Liu, I. M., Hsu, F.-L., Chen, C.-F., & Cheng, J.-T. (2000). Antihyperglycemic action of isoferulic acid in streptozotocin-induced diabetic rats. British Journal of Pharmacology, 129(4), 631-636. doi: 10.1038/sj.bjp.0703082
Longato, L., Tong, M., Wands, J. R., & de la Monte, S. M. (2012). High fat diet induced hepatic steatosis and insulin resistance: Role of dysregulated ceramide metabolism. Hepatol Res, 42(4), 412-427. doi: 10.1111/j.1872-034X.2011.00934.x
Luximon-Ramma, A., Bahorun, T., & Crozier, A. (2003). Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. Journal of the Science of Food and Agriculture, 83(5), 496-502. doi: 10.1002/jsfa.1365
Lyn-Cook, L. E., Jr., Lawton, M., Tong, M., Silbermann, E., Longato, L., Jiao, P., . . . de la Monte, S. M. (2009). Hepatic ceramide may mediate brain insulin resistance and neurodegeneration in type 2 diabetes and non-alcoholic steatohepatitis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. J Alzheimers Dis, 16(4), 715-729. doi: 10.3233/JAD-2009-0984
Marks, J. L., Porte, D., Stahl, W. L., & Baskin, D. G. (1990). Localization of insulin receptor mRNA in rat brain by in situ hybridization. Endocrinology, 127(6), 3234-3236. doi: 10.1210/endo-127-6-3234
Matthews, D. R., Hosker, J. R., Rudenski, A. S., Naylor, B. A., Treacher, D. F., & Turner, R. C. (1985). Homeostasis model assessment insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 28, 8.
Mayer, C. M., & Belsham, D. D. (2010). Central insulin signaling is attenuated by long-term insulin exposure via insulin receptor substrate-1 serine phosphorylation, proteasomal degradation, and lysosomal insulin receptor degradation. [Research Support, Non-U.S. Gov't]. Endocrinology, 151(1), 75-84. doi: 10.1210/en.2009-0838
McEvoy, G. (2000). AHFS Drug Information 2000 (Vol. 28): American Society of Health-System Pharmacists.
McNeilly, A. D., Williamson, R., Balfour, D. J., Stewart, C. A., & Sutherland, C. (2012). A high-fat-diet-induced cognitive deficit in rats that is not prevented by improving insulin sensitivity with metformin. Diabetologia, 55(11), 3061-3070. doi: 10.1007/s00125-012-2686-y
McNeilly, A. D., Williamson, R., Sutherland, C., Balfour, D. J., & Stewart, C. A. (2011). High fat feeding promotes simultaneous decline in insulin sensitivity and cognitive performance in a delayed matching and non-matching to position task. [Research Support, Non-U.S. Gov't]. Behav Brain Res, 217(1), 134-141. doi: 10.1016/j.bbr.2010.10.017
Mittelman, S. D., Fu, Y. Y., Rebrin, K., Steil, G., & Bergman, R. N. (1997). Indirect effect of insulin to suppress endogenous glucose production is dominant, even with hyperglucagonemia. The Journal of Clinical Investigation, 100(12), 3121-3130. doi: 10.1172/JCI119867
Moore, M. C., Kimura, K., Shibata, H., Honjoh, T., Saito, M., Everett, C. A., . . . Cherrington, A. D. (2005). Portal 5-hydroxytryptophan infusion enhances glucose disposal in conscious dogs. American Journal of Physiology - Endocrinology And Metabolism, 289(2), E225-E231. doi: 10.1152/ajpendo.00614.2004
Morris, D. L., & Rui, L. (2009). Recent advances in understanding leptin signaling and leptin resistance. Am J Physiol Endocrinol Metab, 297, E1247–E1259. doi: 10.1152/ajpendo.00274.2009.-The
Morrison, C. D., White, C. L., Wang, Z., Lee, S.-Y., Lawrence, D. S., Cefalu, W. T., . . . Gettys, T. W. (2007). Increased Hypothalamic Protein Tyrosine Phosphatase 1B Contributes to Leptin Resistance with Age. Endocrinology, 148(1), 433-440. doi: 10.1210/en.2006-0672
Mueckler, M. (1994). Facilitative glucose transporters. European Journal of Biochemistry, 219(3), 713-725. doi: 10.1111/j.1432-1033.1994.tb18550.x
Mullen, E., & Ohlendieck, K. (2011). Proteomic analysis of the mitochondria-enriched fraction from diabetic rat skeletal muscle. JOURNAL OF INTEGRATED OMICS, 1(1), 108-114. doi: 10.5584/jiomics.v1i1.42
Nagamatsu, S., Kornhauser, J. M., Burant, C. F., Seino, S., Mayo, K. E., & Bell, G. I. (1992). Glucose transporter expression in brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose transporter isoform, and identification of sites of expression by in situ hybridization. Journal of Biological Chemistry, 267(1), 467-472.
Oboh, G., Agunloye, O., Akinyemi, A., Ademiluyi, A., & Adefegha, S. (2013). Comparative Study on the Inhibitory Effect of Caffeic and Chlorogenic Acids on Key Enzymes Linked to Alzheimer’s Disease and Some Pro-oxidant Induced Oxidative Stress in Rats’ Brain-In Vitro. Neurochemical Research, 38(2), 413-419. doi: 10.1007/s11064-012-0935-6
Ohnishi, M., Matuo, T., Tsuno, T., Hosoda, A., Nomura, E., Taniguchi, H., . . . Morishita, H. (2004). Antioxidant activity and hypoglycemic effect of ferulic acid in STZ-induced diabetic mice and KK-Ay mice. BioFactors, 21(1-4), 315-319. doi: 10.1002/biof.552210161
Okada, T., Kawano, Y., Sakakibara, T., Hazeki, O., & Ui, M. (1994). Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. The Journal of Biological Chemistry, 269, 3568-3573.
Okutan, H., Ozcelik, N., Yilmaz, H. R., & Uz, E. (2005). Effects of caffeic acid phenethyl ester on lipid peroxidation and antioxidant enzymes in diabetic rat heart. Clinical Biochemistry, 38(2), 191-196. doi: 10.1016/j.clinbiochem.2004.10.003
Olson, A. L., & Pessin, J. E. (1996). Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annual Review of Nutrition, 16(235-56). doi: 10.1146/annurev.nu.16.070196.001315
Pancani, T., Anderson, K. L., Brewer, L. D., Kadish, I., Demoll, C., Landfield, P. W., . . . Thibault, O. (2013). Effect of high-fat diet on metabolic indices, cognition, and neuronal physiology in aging F344 rats. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2013.02.019
Panneerselvam, R. S., & Govindaswamy, S. (2002). Effect of sodium molybdate on carbohydrate metabolizing enzymes in alloxan-induced diabetic rats. The Journal of Nutritional Biochemistry, 13(1), 21-26. doi: 10.1016/S0955-2863(01)00190-5
Panunti, B., Jawa, A. A., & Fonseca, V. A. (2004). Mechanisms and therapeutic targets in type 2 diabetes mellitus. Drug Discovery Today: Disease Mechanisms, 1(2), 151-157. doi: 10.1016/j.ddmec.2004.09.011
Park, S. H., & Min, T. S. (2006). Caffeic acid phenethyl ester ameliorates changes in IGFs secretion and gene expression in streptozotocin-induced diabetic rats. Life Sciences, 78(15), 1741-1747. doi: 10.1016/j.lfs.2005.08.011
Peeyush Kumar, T., Antony, S., Soman, S., Kuruvilla, K. P., George, N., & Paulose, C. S. (2011). Role of curcumin in the prevention of cholinergic mediated cortical dysfunctions in streptozotocin-induced diabetic rats. Mol Cell Endocrinol, 331(1), 1-10. doi: 10.1016/j.mce.2010.07.004
Pellerin, L., & Magistretti, P. J. (2003). Food for Thought: Challenging the Dogmas. J Cereb Blood Flow Metab, 23(11), 1282-1286.
Pessin, J. E., & Saltiel, A. R. (2000). Signaling pathways in insulin action: molecular targets of insulin resistance. The Journal of Clinical Investigation, 106(2), 165-169. doi: 10.1172/jci10582
Petersen, K. F., & Shulman, G. I. (2006). Etiology of Insulin Resistance. The American Journal of Medicine, 119(5, Supplement 1), S10-S16. doi: 10.1016/j.amjmed.2006.01.009
Pintana, H., Apaijai, N., Pratchayasakul, W., Chattipakorn, N., & Chattipakorn, S. C. (2012). Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. [Research Support, Non-U.S. Gov't]. Life Sci, 91(11-12), 409-414. doi: 10.1016/j.lfs.2012.08.017
Pipatpiboon, N., Pintana, H., Pratchayasakul, W., Chattipakorn, N., & Chattipakorn, S. C. (2013). DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption. European Journal of Neuroscience, 37(5), 839-849. doi: 10.1111/ejn.12088
Pivovarova, O., Gögebakan, Ö., Pfeiffer, A. F. H., & Rudovich, N. (2009). Glucose inhibits the insulin-induced activation of the insulin-degrading enzyme in HepG2 cells. Diabetologia, 52(8), 1656-1664. doi: 10.1007/s00125-009-1350-7
Pratchayasakul, W., Kerdphoo, S., Petsophonsakul, P., Pongchaidecha, A., Chattipakorn, N., & Chattipakorn, S. C. (2011). Effects of high-fat diet on insulin receptor function in rat hippocampus and the level of neuronal corticosterone. Life Sci, 88(13–14), 619-627. doi: http://dx.doi.org/10.1016/j.lfs.2011.02.003
Prato, S. D., Leonetti, F., Simonson, D. C., Sheehan, P., Matsuda, M., & DeFronzo, R. A. (1994). Effect of sustained physiologic hyperinsulinaemia and hyperglycaemia on insulin secretion and insulin sensitivity in man. Diabetologia 37(10), 1025-1035. doi: 10.1007/BF00400466
Punithavathi, V. R., Prince, P. S. M., Kumar, M. R., & Selvakumari, C. J. (2011). Protective effects of gallic acid on hepatic lipid peroxide metabolism, glycoprotein components and lipids in streptozotocin-induced type II diabetic wistar rats. Journal of Biochemical and Molecular Toxicology, 25(2), 68-76. doi: 10.1002/jbt.20360
Qatanani, M., & Lazar, M. A. (2007). Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes & Development, 21(12), 1443-1455. doi: 10.1101/gad.1550907
Rabe, K., Lehrke, M., Parhofer, K. G., & Broedl, U. C. (2008). Adipokines and insulin resistance. [Research Support, Non-U.S. Gov't Review]. Mol Med, 14(11-12), 741-751. doi: 10.2119/2008-00058.Rabe
Rangwala, S. M., & Lazar, M. A. (2004). Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends in Pharmacological Sciences, 25(6), 331-336. doi: 10.1016/j.tips.2004.03.012
Rayner, D. V., Thomas, M. E. A., & Trayhurn, P. (1994). Glucose transporters (GLUTs 1–4) and their mRNAs in regions of the rat brain: insulin-sensitive transporter expression in the cerebellum. Canadian Journal of Physiology and Pharmacology, 72(5), 476-479. doi: 10.1139/y94-069
Reaven, G. M. (1988). Role of insulin resistance in human disease. Diabetes, 37(12), 1595-1607. doi: 10.2337/diab.37.12.1595
Ren, D., Zhou, Y., Morris, D., Li, M., Li, Z., & Rui, L. (2007). Neuronal SH2B1 is essential for controlling energy and glucose homeostasis. The Journal of Clinical Investigation, 117(2), 397-406. doi: 10.1172/jci29417
Riccardi, G., Giacco, R., & Rivellese, A. A. (2004). Dietary fat, insulin sensitivity and the metabolic syndrome. [Review]. Clin Nutr, 23(4), 447-456. doi: 10.1016/j.clnu.2004.02.006
Ristow, M. (2004). Neurodegenerative disorders associated with diabetes mellitus. Journal of Molecular Medicine, 82(8), 510-529. doi: 10.1007/s00109-004-0552-1
Robertson, R. P., Olson, L. K., & Zhang, H.-J. (1994). Differentiating Glucose Toxicity From Glucose Desensitization: A New Message From the Insulin Gene. Diabetes, 43(9), 1085-1089.
Rodríguez, J. J., Noristani, H. N., & Verkhratsky, A. (2012). The serotonergic system in ageing and Alzheimer's disease. Prog Neurobiol, 99(1), 15-41. doi: 10.1016/j.pneurobio.2012.06.010
Rosen, O. M. (1987). After insulin binds. Science, 237(4281), 1452-1458.
Rothwell, N., & Stock, M. (1984). The development of obesity in animals – the role of dietary factors. Clin Endocrinol Metab, 13(3), 437-449.
Saad, M. F., Knowler, W. C., Pettitt, D. J., Nelson, R. G., Mott, D. M., & Bennett, P. H. (1988). The Natural History of Impaired Glucose Tolerance in the Pima Indians. New England Journal of Medicine, 319(23), 1500-1506. doi: doi:10.1056/NEJM198812083192302
Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. NATURE, 414, 8.
Saltiel, A. R., & Pessin, J. E. (2002). Insulin signaling pathways in time and space. Trends in cell biology, 12(2), 65-71.
Sargent, J. M. (2003). The Use of the MTT Assay to Study Drug Resistance in Fresh Tumour Samples. Recent Results Cancer Res., 161, 13-25.
Sayegh, H. A., & Jarrett, R. J. (1979). Oral glucose-tolerance tests and the diagnosis of diabetes: results of a prospective study based on the Whitehall survey. The Lancet, 314(8140), 431-433. doi: 10.1016/S0140-6736(79)91489-2
Scalbert, A., Johnson, I. T., & Saltmarsh, M. (2005). Polyphenols: antioxidants and beyond. The American Journal of Clinical Nutrition, 81(1), 215S-217S.
Scalbert, A., Manach, C., Morand, C., Rémésy, C., & Jiménez, L. (2005). Dietary Polyphenols and the Prevention of Diseases. Critical Reviews in Food Science and Nutrition, 45, 287-306. doi: 10.1080/1040869059096
Scheepers, A., Joost, H., & Schurmann, A. (2004). The glucose transporter families SGLT and GLUT: molecular basis of normal and aberrant function. Journal of Parenteral and Enteral Nutrition, 28(5), 364-371. doi: 10.1177/0148607104028005364
Schneider, J. A., Arvanitakis, Z., Bang, W., & Bennett, D. A. (2007). Mixed brain pathologies account for most dementia cases in community-dwelling older persons. NEUROLOGY, 69(24), 2197-2204. doi: 10.1212/01.wnl.0000271090.28148.24
Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A. M., Heyman, R. A., Briggs, M., Deeb, S., . . . Auwerx, J. (1996). PPARalpha and PPARgamma activators direct a distinct tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. The EMBO journal, 15(19), 5336-5348.
Schubert, M., Gautam, D., Surjo, D., Ueki, K., Baudler, S., Schubert, D., . . . Brüning, J. C. (2004). Role for neuronal insulin resistance in neurodegenerative diseases. Proc Natl Acad Sci U S A, 101(9), 3100-3105. doi: 10.1073/pnas.0308724101
Searcy, J. L., Phelps, J. T., Pancani, T., Kadish, I., Popovic, J., Anderson, K. L., . . . Thibault, O. (2012). Long-term pioglitazone treatment improves learning and attenuates pathological markers in a mouse model of Alzheimer's disease. [Research Support, N.I.H., Extramural]. J Alzheimers Dis, 30(4), 943-961. doi: 10.3233/JAD-2012-111661
Shahidi, S., Komaki, A., Mahmoodi, M., Atrvash, N., & Ghodrati, M. (2008). Ascorbic acid supplementation could affect passive avoidance learning and memory in rat. Brain Research Bulletin, 76(1–2), 109-113. doi: 10.1016/j.brainresbull.2008.01.003
Sharma, A. M., & Staels, B. (2007). Peroxisome Proliferator-Activated Receptor γ and Adipose Tissue—Understanding Obesity-Related Changes in Regulation of Lipid and Glucose Metabolism. Journal of Clinical Endocrinology & Metabolism, 92(2), 386-395. doi: 10.1210/jc.2006-1268
Shen, S.-C., Chang, W.-C., & Chang, C.-L. (2013). An Extract from Wax Apple (Syzygium samarangense (Blume) Merrill and Perry) Effects Glycogenesis and Glycolysis Pathways in Tumor Necrosis Factor-α-Treated FL83B Mouse Hepatocytes. Nutrients, 5(2), 455-467.
Shepherd, P. R., & Kahn, B. B. (1999). Glucose Transporters and Insulin Action — Implications for Insulin Resistance and Diabetes Mellitus. New England Journal of Medicine, 341(4), 248-257. doi: 10.1056/NEJM199907223410406
Simpson, I. A., Carruthers, A., & Vannucci, S. J. (2007). Supply and Demand in Cerebral Energy Metabolism: The Role of Nutrient Transporters J Cereb Blood Flow Metab., 27(11), 1766-1791.
Simpson, I. A., Chundu, K. R., Davies-Hill, T., Honer, W. G., & Davies, P. (1994). Decreased Concentrations of GLUT1 and GLUT3 Glucose Transporters in the Brains of Patients with Alzheimer's Disease Ann Neurol, 35, 6.
Small, D. H., Mok, S. S., & Bornstein, J. C. (2001). Alzheimer's disease and A[beta] toxicity: from top to bottom. Nat Rev Neurosci, 2(8), 595-598. doi: 10.1038/35086072
Sorisky, A. (1999). From Preadipocyte to Adipocyte: Differentiation-Directed Signals of Insulin from the Cell Surface to the Nucleus. Critical Reviews in Clinical Laboratory Sciences, 36(1), 1-34. doi: doi:10.1080/10408369991239169
Sparks, J. D., Sparks, C. E., & Adeli, K. (2012). Selective hepatic insulin resistance, VLDL overproduction, and hypertriglyceridemia. [Review]. Arterioscler Thromb Vasc Biol, 32(9), 2104-2112. doi: 10.1161/ATVBAHA.111.241463
Steen, E., Terry, B. M., Rivera, E. J., Cannon, J. L., Neely, T. R., Tavares, R., . . . Monte, S. M. d. l. (2005). Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimers disease--is this type 3 diabetes. Journal of Alzheimer's Disease, 7, 63-80.
Takeuchi, M., & Yamagishi, S. (2004a). Alternative routes for the formation of glyceraldehyde-derived AGEs (TAGE) in vivo. Medical Hypotheses, 63(3), 453-455. doi: 10.1016/j.mehy.2004.03.005
Takeuchi, M., & Yamagishi, S. (2004b). TAGE (toxic AGEs) hypothesis in various chronic diseases. Medical Hypotheses, 63(3), 449-452. doi: 10.1016/j.mehy.2004.02.042
Towler, M. C., & Hardie, D. G. (2007). AMP-Activated Protein Kinase in Metabolic Control and Insulin Signaling. Circulation Research, 100(3), 328-341. doi: 10.1161/01.res.0000256090.42690.05
Trout, D. L., Conway, E. S., & Putney, J. D. (1977). Dietary Influences on Gastric Emptying of Carbohydrate versus Fat in the Rat. J. Nutr., 107(1), 104-111.
Tsuda, S., Egawa, T., Ma, X., Oshima, R., Kurogi, E., & Hayashi, T. (2012). Coffee polyphenol caffeic acid but not chlorogenic acid increases 5′AMP-activated protein kinase and insulin-independent glucose transport in rat skeletal muscle. The Journal of Nutritional Biochemistry, 23(11), 1403-1409. doi: 10.1016/j.jnutbio.2011.09.001
Unger, J. W., Livingston, J. N., & Moss, A. M. (1991). Insulin receptors in the central nervous system: Localization, signalling mechanisms and functional aspects. Prog Neurobiol, 36(5), 343-362. doi: 10.1016/0301-0082(91)90015-S
Van Der Heide, L. P., Hoekman, M. F., Biessels, G. J., & Gispen, W. H. (2004). Insulin inhibits extracellular regulated kinase 1/2 phosphorylation in a phosphatidylinositol 3-kinase (PI3) kinase-dependent manner in Neuro2a cells. J Neurochem, 86(1), 86-91. doi: 10.1046/j.1471-4159.2003.01828.x
Vannucci, S. J., Clark, R. R., Koehler-Stec, E., Li, K., Smith, C. B., Davies, P., . . . Simpson, I. A. (1998). Glucose transporter expression in brain: relationship to cerebral glucose utilization. Dev Neurosci, 20, 368-379. doi: 10.1159/000017333
Walsh, D. M., & Selkoe, D. J. (2004). Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease. Neuron, 44(1), 181-193.
Ward, W. K., LaCav, E. C., Paquette, T. L., Beard, J. C., Wallum, B. J., & Porter, D. (1987). Disproportionate elevation of immunoreactive proinsulin in Type 2 (non-insulin-dependent) diabetes mellitus and in experimental insulin resistance Diabetologia, 30(9), 698-702.
Warwick, Z. S., & Schiffman, S. S. (1992). Role of Dietary Fat in Calorie Intake and Weight Gain. Neuroscience and Biobehavioral Reviews, 16(4), 585-596.
Watson, G. S., & Craft, S. (2004). Modulation of memory by insulin and glucose: neuropsychological observations in Alzheimer's disease. Eur J Pharmacol, 490(1–3), 97-113. doi: 10.1016/j.ejphar.2004.02.048
WHO. (1999), from http://www.who.int/diabetes/en/
WHO, & IDF. (2006). Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia (pp. 3).
Willis, L. M., Shukitt-Hale, B., & Joseph, J. A. (2009). Recent advances in berry supplementation and age-related cognitive decline. Current Opinion in Clinical Nutrition & Metabolic Care, 12(1), 91-94. doi: 10.1097/MCO.0b013e32831b9c6e
Winocur, G., & Greenwood, C. E. (1999). The effects of high fat diets and environmental influences on cognitive performance in rats. Behavioural Brain Research, 101, 153-161.
Winocur, G., & Greenwood, C. E. (2005). Studies of the effects of high fat diets on cognitive function in a rat model. Neurobiol Aging, 26(1, Supplement), 46-49. doi: 10.1016/j.neurobiolaging.2005.09.003
Woods, S. C., Seeley, R. J., Baskin, D. G., & Schwartz, M. W. (2003). Insulin and the blood-brain barrier. Current Pharmaceutical Design, 9(10), 795-800. doi: 10.2174/1381612033455323
Wu, N., Sarna, L. K., Hwang, S.-Y., Zhu, Q., Wang, P., Siow, Y. L., & O, K. Activation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase during high fat diet feeding. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease(0). doi: 10.1016/j.bbadis.2013.04.024
Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., . . . Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. Journal of Clinical Investigation, 112(12), 1821-1830. doi: 10.1172/jci200319451
Yamagishi, S.-i., Amano, S., Inagaki, Y., Okamoto, T., Koga, K., Sasaki, N., . . . Makita, Z. (2002). Advanced Glycation End Products-Induced Apoptosis and Overexpression of Vascular Endothelial Growth Factor in Bovine Retinal Pericytes. Biochem Biophys Res Commun, 290(3), 973-978. doi: 10.1006/bbrc.2001.6312
Yamagishi, S., Takeuchi, M., Inagaki, Y., Nakamura, K., & Imaizumi, T. (2003). Role of advanced glycation end products (AGEs) and their receptor (RAGE) in the pathogenesis of diabetic microangiopathy. International journal of clinical pharmacology research, 23(4), 129-134.
Yamauchi, T., Hara, K., Kubota, N., Terauchi, Y., Tobe, K., Froguel, P., . . . Kadowaki, T. (2003). Dual roles of adiponectin/Acrp30 in vivo as an anti-diabetic and anti-atherogenic adipokine. Immune, Endocrine & Metabolic Disorders, 3(4), 243-254.
Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., . . . Kadowaki, T. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med, 8(11), 1288-1295. doi: 10.1038/nm788
Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., . . . Kadowaki, T. (2001). The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med, 7(8), 941-946. doi: 10.1038/90984
Yoshida, Y., Hayakawa, M., & Niki, E. (2008). Evaluation of the Antioxidant Effects of Coffee and Its Components Using the Biomarkers Hydroxyoctadecadienoic Acid and Isoprostane. Journal of Oleo Science, 57(12), 691-697.
Yoshinaga, T. (1968). [A morphological study on the mechanism of insulin-release, using sulfonylurea, l-leucine, and alpha-ketocarboxylic acids] (Vol. 44).
Yoshioka, K., Saito, M., Oh, K.-B., Nemoto, Y., Matsuoka, H., Natsume, M., & Abe, H. (1996). Intracellular Fate of 2-NBDG, a Fluorescent Probe for Glucose Uptake Activity, in Escherichia coli Cells. Bioscience, Biotechnology, and Biochemistry, 60(11), 1899-1901. doi: dx.doi.org/10.1271/bbb.60.1899
Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., Haj, F., Wang, Y., Minokoshi, Y., . . . Neel, B. G. (2002). PTP1B Regulates Leptin Signal Transduction In Vivo. Developmental cell, 2(4), 489-495.
Zechner, R., Strauss, J. G., Haemmerle, G., Lass, A., & Zimmermann, R. (2005). Lipolysis: pathway under construction. Current Opinion in Lipidology, 16(3), 333-340.
Zhao, W.-Q., & Alkon, D. L. (2001). Role of insulin and insulin receptor in learning and memory. Mol Cell Endocrinol, 177(1–2), 125-134. doi: 10.1016/S0303-7207(01)00455-5
Zhao, W.-Q., Chen, H., Quon, M. J., & Alkon, D. L. (2004). Insulin and the insulin receptor in experimental models of learning and memory. Eur J Pharmacol, 490(1–3), 71-81. doi: 10.1016/j.ejphar.2004.02.045
Zierath, J. R., Livingston, J. N., Thörne, A., Bolinder, J., Reynisdottir, S., Lönnqvist, F., & Arner, P. (1998). Regional difference in insulin inhibition of non-esterified fatty acid release from human adipocytes: relation to insulin receptor phosphorylation and intracellular signalling through the insulin receptor substrate-1 pathway. Diabetologia, 41(11), 1343-1354. doi: 10.1007/s001250051075
台灣失智者協會. (2012). 失智症如何治療, 2012, from http://www.tada2002.org.tw/tada_know_02.html#07
行政院衛生署, D. o. H., Exeutive Yuan, Taiwan, R.O.C. (2013). 中華民國一○一年死因統計. 行政院衛生署.
何橈通. (1986). 糖尿病與公共衛生. 臨床醫學, 17, 300-317.
沈德昌, & 顏兆熊. (2008). 第二型糖尿病藥物治療新知. 台灣醫界, 51(11), 22-27.
林進丁. (1986). 胰島素. 藥學雜誌, 2, 57-63.
邱銘章, & 湯麗玉. (2009). 失智症照護指南: 原水文化.
施瑞雯. (2012). 蓮霧幼果分離物-Vescalagin與Gallic Acid對高果糖飼料誘導糖尿病前期大鼠之影響. 碩士論文, 國立臺灣師範大學.
傅中玲. (2008). 台灣失智症現況. 台灣老年醫學暨老年學雜誌, 3(3), 169-181.
黃大維. (2010). 咖啡酸及肉桂酸減輕小鼠肝臟細胞(FL83B)胰島素阻抗及改善碳水化合物代謝之研究. 博士論文, 國立臺灣大學.
行政院經濟建設委員會. (2012). 中華民國2012年至2060年人口推計: 行政院經濟建設委員會.

下載圖示
QR CODE