研究生: |
林延壕 Lin, Yen-Hao |
---|---|
論文名稱: |
單核錳金屬超氧錯合物:合成、鑑定及其反應性 Mononuclear Manganese(III) Superoxo Complexes: Synthesis, Characterization and Reactivity |
指導教授: |
李位仁
Lee, Way-Zen |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 144 |
中文關鍵詞: | 氧氣活化 、金屬超氧化合物反應性 、三價錳超氧化物 、三價錳金屬過氧氫化物 、四價錳金屬過氧氫化物 |
英文關鍵詞: | oxygen activation, metal-superoxo reactivity, MnIII-superoxo, MnIII-hydroperoxo, MnIV-hydroperoxo |
DOI URL: | http://doi.org/10.6345/NTNU202000745 |
論文種類: | 學術論文 |
相關次數: | 點閱:123 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
相較於含鐵金屬仿生錯合物,以含錳金屬仿生錯合物進行氧氣活化的反應是較少被科學家拿來進行探討。本研究使用三氮二氧配位基 (H2BDPP和H2BDPBrP)。與二價錳金屬離子進行錯合反應,分別形成MnII(BDPP) (1) 和MnII(BDPBrP) (2)。在−80 °C下加入氧氣會分別形成MnIII(BDPP)(O2•) (3) 和MnIII(BDPP)(O2•) (4),以UV-Vis、rRaman和EPR光譜,可鑑定其為錳超氧錯合物,且其自旋組態為S = 3/2。錯合物3和4也可以與TEMPO-H進行氫原子轉移反應生成MnIII(BDPP)(OOH) (5)和MnIII(BDPBrP)(OOH) (6),由EPR光譜可以得知其自旋組態為S = 2。除此之外,錯合物 [MnIII(BDPP)(H2O)](OTf) (7)和 [MnIII(BDPP)(H2O)](OTf) (8)加入H2O2/TEA (2:1)也可形成錯合物5和6。錯合物4與2-phenylpropinaldehyde (2-PPA) 進行親核反應,可以生成產物acetophenone。錯合物4在−120 °C與一當量的trifluoroacetic acid (TFA) 反應會形成 [MnIV(BDPBrP)(OOH)]+ (9),可以UV-Vis、rRaman和EPR光譜鑑定。錯合物9也可以加入一當量的TEA或DBU進行去質子化轉變回錯合物 (4)。由MnIII(BDPBrP)(OOH) (6) 低溫循環伏安法實驗可以得到quasi-reversible的訊號,其還原電位為0.19 V (v.s. Fc/Fc+),並且可以藉由氧化劑magic blue氧化生成錯合物9,錯合物9也可以藉由還原劑decamethylferrcene還原為錯合物6。由錯合物6的還原電位0.19 V和錯合物9的pKa = 12.5 ~ 11.1求出錯合物6中OO-H的鍵能為85.6 ~ 87.5 kcal/mol。將路易酸的金屬離子Sc(OTf)3和Zn(OTf)2加入錯合物4會進行metal-coupled electron-transfer反應形成 [MnIVBDPBrP(OO)(Sc(OTf)n)](3−n)+ (10) 和[MnIVBDPBrP(OO)(Zn(OTf)n)](2−n)+ (11)。但加入較弱的路易酸金屬離子Ca(OTf)2卻不會進行metal-coupled electron-transfer。藉由以上的探討,可以更進一步的了解三價錳超氧化物的反應特性。
Comparing to biomimetic Fe-containing complexes, the biomimetic Mn-containing complexes invented for dioxygen activation is much less explored. In this study, two ligands, H2BDPP and H2BDPBrP were employed to react with MnII ion for the preparation of MnII(BDPP) (1) and MnII(BDPBrP) (2). Both MnII complexes were reacted with O2 at −80 °C to form MnIII–superoxo intermediates MnIII(BDPP)(O2•) (3) and MnIII(BDPBrP)(O2•) (4) characterized by UV-Vis, rRaman and EPR spectroscopy. The spin state of 3 and 4 was 3/2 with a high-spin MnIII center (SMn = 2) antiferromagnetically coupled with a superoxo radical ligand (SOO• = 1/2). Complexes 3 and 4 could perform hydrogen atom abstraction towards TEMPOH at −90 °C to form MnIII(BDPP)(OOH) (5) and MnIII(BDPBrP)(OOH) (6) characracterized by UV-Vis and EPR spectroscopy. The spin state (S = 2) of 5 and 6 is comfirmed by parallel-mode EPR spectroscopy. Besides, Complexes 5 and 6 can also be synthesized by the reactions of [MnIII(BDPP)(H2O)]OTf (7) and [MnIII(BDPBrP)(H2O)]OTf (8) with H2O2/TEA (2:1). Noteworthily, complex 4 is capable of reacting with 2-PPA at −80 °C to produce acetophenone. Intrestingly, complex 4 treated with trifluoroacetic acid at −120 °C generated [MnIVBDPBrP(OOH)]+ (9), which can be deprotonated by 1 equiv. of TEA or DBU to reproduce complex 4. Also, reaction of 4 reacted with Sc(OTf)3 or Zn(OTf)2 induced metal-coupled electron-transfer to form dinuclear MnIV/ScIII and MnIV/ZnII briged peroxo complexes [MnIVBDPBrP(OO)(Sc(OTf)n)](3−n)+ (10) and [MnIVBDPBrP(OO)(Zn(OTf)n)](2−n)+ (11). However, complex 4 did not react with the weaker Lewis acid Ca(OTf)2. In addition, cyclic votalmetry of MnIII(BDPBrP)(OOH) (6) was performed to obtain E1/2 = 0.19 V (v.s. Fc/Fc+) at −80 °C. From E1/2 of 6 and pKa of 9 (12.5 ~ 11.1), we can estimated the bond dissociation freee energy of the OO-H bond in 6 was around 85.6 ~ 87.5 kcal/mol. In conclusion, these results can in-depth understand the reactivity of MnIII-superoxo complexes.
(1) Bertini, I.; Gray, H. B.; Lippard, S. J.; Valentine, J. S. Dioxygen Reactions. In Bioinorganic Chemistry; University Science Books: Mill Valley, CA, 1994; pp 253−313.
(2) Wang, Y.; Li, J.; Liu, A. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics. J. Biol. Inorg. Chem. 2017, 22, 395-405.
(3) Sahu, S.; Goldberg, D. P. Activation of Dioxygen by Iron and Manganese Complexes: A Heme and Nonheme Perspective. J. Am. Chem. Soc. 2016, 138, 11410-11428.
(4) Williams, P. A.; Cosme, J.; Vinković, D. M.; Ward, A.; Angove, H. C.; Day, P. J.; Vonrhein, C.; Tickle, I. J.; Jhoti, H. Crystal Structures of Human Cytochrome P450 3A4 Bound to Metyrapone and Progesterone. Science 2004, 305, 683.
(5) Roach, P. L.; Clifton, I. J.; Fülöp, V.; Harlos, K.; Barton, G. J.; Hajdu, J.; Andersson, I.; Schofield, C. J.; Baldwin, J. E. Crystal structure of isopenicillin N synthase is the first from a new structural family of enzymes. Nature 1995, 375, 700-704.
(6) McEvoy, J. P.; Brudvig, G. W. Water-Splitting Chemistry of Photosystem II. Chem. Rev. 2006, 106, 4455-4483.
(7) Ray, K.; Pfaff, F. F.; Wang, B.; Nam, W. Status of Reactive Non-Heme metal-Oxygen Intermediates in Chemical and Enzymatic Reactions. J. Am. Chem. Soc. 2014, 136, 13942-13958.
(8) Fukuzumi, S.; Lee, Y. M.; Nam, W. Structure and Reactivity of the First-Row D-Block Metal-Superoxo Complexes. Dalton Trans 2019, 48, 9469-9489.
(9) Lohmann, W.; Karst, U. Biomimetic modeling of oxidative drug metabolism : Strategies, advantages and limitations. Anal Bioanal Chem 2008, 391, 79-96.
(10) Baldwin, J. E.; Bradley, M. Isopenicillin N synthase: mechanistic studies. Chem. Rev. 1990, 90, 1079-1088.
(11) Roach, P. L.; Clifton, I. J.; Hensgens, C. M. H.; Shibata, N.; Schofield, C. J.; Hajdu, J.; Baldwin, J. E. Structure of isopenicillinN synthase complexed with substrate and the mechanism ofpenicillin formation. Nature 1997, 387, 827-830.
(12) Tamanaha, E.; Zhang, B.; Guo, Y.; Chang, W. C.; Barr, E. W.; Xing, G.; St Clair, J.; Ye, S.; Neese, F.; Bollinger, J. M., Jr.; Krebs, C. Spectroscopic Evidence for the Two C-H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase. J. Am. Chem. Soc. 2016, 138, 8862-8874.
(13) Seto, H.; Kuzuyama, T. Bioactive natural products with carbon–phosphorus bonds and their biosynthesis. Natural Product Reports 1999, 16, 589-596.
(14) Cicchillo, R. M.; Zhang, H.; Blodgett, J. A. V.; Whitteck, J. T.; Li, G.; Nair, S. K.; van der Donk, W. A.; Metcalf, W. W. An unusual carbon–carbon bond cleavage reaction during phosphinothricin biosynthesis. Nature 2009, 459, 871-874.
(15) Miller, M. A.; Lipscomb, J. D. Homoprotocatechuate 2,3-Dioxygenase from Brevibacterium fuscum: A DIOXYGENASE WITH CATALASE ACTIVITY. J. Biol. Chem. 1996, 271, 5524-5535.
(16) Christian, G. J.; Ye, S.; Neese, F. Oxygen activation in extradiol catecholate dioxygenases – a density functional study. Chemical Science 2012, 3, 1600-1611.
(17) Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55-60.
(18) McEvoy, J. P.; Gascon, J. A.; Batista, V. S.; Brudvig, G. W. The mechanism of photosynthetic water splitting. Photochemical & Photobiological Sciences 2005, 4, 940-949.
(19) Dau, H.; Iuzzolino, L.; Dittmer, J. The tetra-manganese complex of photosystem II during its redox cycle – X-ray absorption results and mechanistic implications. Biochim. Biophys. Acta 2001, 1503, 24-39.
(20) Whiting, A. K.; Boldt, Y. R.; Hendrich, M. P.; Wackett, L. P.; Que, L. Manganese(II)-Dependent Extradiol-Cleaving Catechol Dioxygenase from Arthrobacter globiformis CM-2. Biochemistry 1996, 35, 160-170.
(21) Emerson, J. P.; Kovaleva, E. G.; Farquhar, E. R.; Lipscomb, J. D.; Que, L. Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 7347.
(22) Gunderson, W. A.; Zatsman, A. I.; Emerson, J. P.; Farquhar, E. R.; Que, L.; Lipscomb, J. D.; Hendrich, M. P. Electron Paramagnetic Resonance Detection of Intermediates in the Enzymatic Cycle of an Extradiol Dioxygenase. J. Am. Chem. Soc. 2008, 130, 14465-14467.
(23) Hong, S.; Sutherlin, K. D.; Park, J.; Kwon, E.; Siegler, M. A.; Solomon, E. I.; Nam, W. Crystallographic and spectroscopic characterization and reactivities of a mononuclear non-haem iron(III)-superoxo complex. Nature Communications 2014, 5, 5440.
(24) Chiang, C. W.; Kleespies, S. T.; Stout, H. D.; Meier, K. K.; Li, P. Y.; Bominaar, E. L.; Que, L., Jr.; Munck, E.; Lee, W. Z. Characterization of a Paramagnetic Mononuclear Nonheme Iron-Superoxo Complex. J. Am. Chem. Soc. 2014, 136, 10846-10849.
(25) Stout, H. D.; Kleespies, S. T.; Chiang, C.-W.; Lee, W.-Z.; Que, L.; Münck, E.; Bominaar, E. L. Spectroscopic and Theoretical Study of Spin-Dependent Electron Transfer in an Iron(III) Superoxo Complex. Inorg. Chem. 2016, 55, 5215-5226.
(26) Luo, Y.-R.: Handbook of bond dissociation energies in organic compounds; CRC press, 2002.
(27) Oddon, F.; Chiba, Y.; Nakazawa, J.; Ohta, T.; Ogura, T.; Hikichi, S. Characterization of Mononuclear Non-heme Iron(III)-Superoxo Complex with a Five-Azole Ligand Set. Angew. Chem. Int. Ed. 2015, 54, 7336-7339.
(28) Blakely, M. N.; Dedushko, M. A.; Yan Poon, P. C.; Villar-Acevedo, G.; Kovacs, J. A. Formation of a Reactive, Alkyl Thiolate-Ligated FeIII-Superoxo Intermediate Derived from Dioxygen. J. Am. Chem. Soc. 2019, 141, 1867-1870.
(29) Liu, L.-L.; Li, H.-X.; Wan, L.-M.; Ren, Z.-G.; Wang, H.-F.; Lang, J.-P. A Mn(iii)–Superoxo Complex of a Zwitterionic Calix[4]arene with an Unprecedented Linear End-On Mn(iii)–O2 Arrangement and Good Catalytic Performance for Alkene Epoxidation. Chem. Commun. 2011, 47, 11146-11148.
(30) Coggins, M. K.; Sun, X.; Kwak, Y.; Solomon, E. I.; Rybak-Akimova, E.; Kovacs, J. A. Characterization of Metastable Intermediates Formed in the Reaction between a Mn(II) Complex and Dioxygen, Including a Crystallographic Structure of a Binuclear Mn(III)–Peroxo Species. J. Am. Chem. Soc. 2013, 135, 5631-5640.
(31) Shook, R. L.; Gunderson, W. A.; Greaves, J.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S. A Monomeric MnIII−Peroxo Complex Derived Directly from Dioxygen. J. Am. Chem. Soc. 2008, 130, 8888-8889.
(32) Blakely, M. N.; Dedushko, M. A.; Yan Poon, P. C.; Villar-Acevedo, G.; Kovacs, J. A. Formation of a Reactive, Alkyl Thiolate-Ligated Fe(III)-Superoxo Intermediate Derived from Dioxygen. J. Am. Chem. Soc. 2019, 141, 1867-1870.
(33) Kunishita, A.; Kubo, M.; Sugimoto, H.; Ogura, T.; Sato, K.; Takui, T.; Itoh, S. Mononuclear Copper(II)−Superoxo Complexes that Mimic the Structure and Reactivity of the Active Centers of PHM and DβM. J. Am. Chem. Soc. 2009, 131, 2788-2789.
(34) Peterson, R. L.; Himes, R. A.; Kotani, H.; Suenobu, T.; Tian, L.; Siegler, M. A.; Solomon, E. I.; Fukuzumi, S.; Karlin, K. D. Cupric Superoxo-Mediated Intermolecular C−H Activation Chemistry. J. Am. Chem. Soc. 2011, 133, 1702-1705.
(35) Tano, T.; Okubo, Y.; Kunishita, A.; Kubo, M.; Sugimoto, H.; Fujieda, N.; Ogura, T.; Itoh, S. Redox Properties of a Mononuclear Copper(II)-Superoxide Complex. Inorg. Chem. 2013, 52, 10431-10437.
(36) Cho, J.; Woo, J.; Nam, W. A Chromium(III)–Superoxo Complex in Oxygen Atom Transfer Reactions as a Chemical Model of Cysteine Dioxygenase. J. Am. Chem. Soc. 2012, 134, 11112-11115.
(37) Pirovano, P.; Magherusan, A. M.; McGlynn, C.; Ure, A.; Lynes, A.; McDonald, A. R. Nucleophilic Reactivity of a Copper(II)–Superoxide Complex. Angew. Chem. Int. Ed. 2014, 126, 6056-6060.
(38) Bailey, W. D.; Gagnon, N. L.; Elwell, C. E.; Cramblitt, A. C.; Bouchey, C. J.; Tolman, W. B. Revisiting the Synthesis and Nucleophilic Reactivity of an Anionic Copper Superoxide Complex. Inorg. Chem. 2019, 58, 4706-4711.
(39) Cao, R.; Elrod, L. T.; Lehane, R. L.; Kim, E.; Karlin, K. D. A Peroxynitrite Dicopper Complex: Formation via Cu-NO and Cu-O2 Intermediates and Reactivity via O-O Cleavage Chemistry. J. Am. Chem. Soc. 2016, 138, 16148-16158.
(40) Sharma, S. K.; Schaefer, A. W.; Lim, H.; Matsumura, H.; Moënne-Loccoz, P.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Karlin, K. D. A Six-Coordinate Peroxynitrite Low-Spin Iron(III) Porphyrinate Complex—The Product of the Reaction of Nitrogen Monoxide (·NO(g)) with a Ferric-Superoxide Species. J. Am. Chem. Soc. 2017, 139, 17421-17430.
(41) Liu, J. J.; Siegler, M. A.; Karlin, K. D.; Moenne-Loccoz, P. Direct Resonance Raman Characterization of a Peroxynitrito Copper Complex Generated from O2 and NO and Mechanistic Insights into Metal-Mediated Peroxynitrite Decomposition. Angew. Chem. Int. Ed. 2019, 58, 10936-10940.
(42) Peterson, R. L.; Ginsbach, J. W.; Cowley, R. E.; Qayyum, M. F.; Himes, R. A.; Siegler, M. A.; Moore, C. D.; Hedman, B.; Hodgson, K. O.; Fukuzumi, S.; Solomon, E. I.; Karlin, K. D. Stepwise Protonation and Electron-Transfer Reduction of a Primary Copper-Dioxygen Adduct. J. Am. Chem. Soc. 2013, 135, 16454-16467.
(43) Bailey, W. D.; Dhar, D.; Cramblitt, A. C.; Tolman, W. B. Mechanistic Dichotomy in Proton-Coupled Electron-Transfer Reactions of Phenols with a Copper Superoxide Complex. J. Am. Chem. Soc. 2019, 141, 5470-5480.
(44) Devi, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Remarkable Acid Catalysis in Proton-Coupled Electron-Transfer Reactions of a Chromium(III)-Superoxo Complex. J. Am. Chem. Soc. 2018, 140, 8372-8375.
(45) Liu, Y.; Lau, T. C. Activation of Metal Oxo and Nitrido Complexes by Lewis Acids. J. Am. Chem. Soc. 2019, 141, 3755-3766.
(46) Fukuzumi, S.; Ohkubo, K.; Lee, Y. M.; Nam, W. Lewis Acid Coupled Electron Transfer of Metal-Oxygen Intermediates. Chem. Eur. J. 2015, 21, 17548-17559.
(47) Devi, T.; Lee, Y. M.; Nam, W.; Fukuzumi, S. Tuning Electron-Transfer Reactivity of a Chromium(III)-Superoxo Complex Enabled by Calcium Ion and Other Redox-Inactive Metal Ions. J. Am. Chem. Soc. 2020, 142, 365-372.
(48) Zhang, Y.-X.; Du, D.-M.; Chen, X.; Lü, S.-F.; Hua, W.-T. Enantiospecific synthesis of pyridinylmethyl pyrrolidinemethanols and catalytic asymmetric borane reduction of prochiral ketones. Tetrahedron: Asymmetry 2004, 15, 177-182.
(49) Park, J. K.; Lee, H. G.; Bolm, C.; Kim, B. M. Asymmetric diethyl- and diphenylzinc additions to aldehydes by using a fluorine-containing chiral amino alcohol: a striking temperature effect on the enantioselectivity, a minimal amino alcohol loading, and an efficient recycling of the amino alcohol. Chem. Eur. J. 2005, 11, 945-950.
(50) Mader, E. A.; Larsen, A. S.; Mayer, J. M. Hydrogen Atom Transfer from Iron(II)−Tris[2,2‘-bi(tetrahydropyrimidine)] to TEMPO: A Negative Enthalpy of Activation Predicted by the Marcus Equation. J. Am. Chem. Soc. 2004, 126, 8066-8067.
(51) Mair, R. D.; Graupner, A. J. Determination of Organic Peroxides by Iodine Liberation Procedures. Anal. Chem. 1964, 36, 194-204.
(52) Das, D.; Lee, Y. M.; Ohkubo, K.; Nam, W.; Karlin, K. D.; Fukuzumi, S. Acid-induced mechanism change and overpotential decrease in dioxygen reduction catalysis with a dinuclear copper complex. J Am Chem Soc 2013, 135, 4018-4026.
(53) Wang, C. C.; Chang, H. C.; Lai, Y. C.; Fang, H.; Li, C. C.; Hsu, H. K.; Li, Z. Y.; Lin, T. S.; Kuo, T. S.; Neese, F.; Ye, S.; Chiang, Y. W.; Tsai, M. L.; Liaw, W. F.; Lee, W. Z. A Structurally Characterized Nonheme Cobalt-Hydroperoxo Complex Derived from Its Superoxo Intermediate via Hydrogen Atom Abstraction. J. Am. Chem. Soc. 2016, 138, 14186-14189.
(54) Duboc, C. Determination and prediction of the magnetic anisotropy of Mn ions. Chem. Soc. Rev. 2016, 45, 5834-5847.
(55) Fielding, A. J.; Lipscomb, J. D.; Que, L. J. Characterization of an O2 adduct of an active cobalt-substituted extradiol-cleaving catechol dioxygenase. J. Am. Chem. Soc. 2012, 134, 796-799.
(56) Emerson, J. P.; Kovaleva, E. G.; Farquhar, E. R.; Lipscomb, J. D.; Que, L. J. Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 7347-7352.
(57) Woertink, J. S.; Tian, L.; Maiti, D.; Lucas, H. R.; Himes, R. A.; Karlin, K. D.; Neese, F.; Würtele, C.; Holthausen, M. C.; Bill, E.; Sundermeyer, J.; Schindler, S.; Solomon, E. I. Spectroscopic and Computational Studies of an End-on Bound Superoxo-Cu(II) Complex: Geometric and Electronic Factors That Determine the Ground State. Inorg. Chem. 2010, 49, 9450-9459.
(58) Zhang, X.; Furutachi, H.; Fujinami, S.; Nagatomo, S.; Maeda, Y.; Watanabe, Y.; Kitagawa, T.; Suzuki, M. Structural and Spectroscopic Characterization of (μ-Hydroxo or μ-Oxo)(μ-peroxo)diiron(III) Complexes: Models for Peroxo Intermediates of Non-Heme Diiron Proteins. J. Am. Chem. Soc. 2005, 127, 826-827.
(59) Hong, S.; Sutherlin, K. D.; Park, J.; Kwon, E.; Siegler, M. A.; Solomon, E. I.; Nam, W. Crystallographic and Spectroscopic Characterization and Reactivities of a Mononuclear Non-Haem Iron(III)-Superoxo Complex. Nat. Commun. 2014, 5, 5440-5547.
(60) Bajdor, K.; Nakamoto, K.; Kanatomi, H.; Murase, I. Resonance raman spectra of molecular oxygen adducts of Co(salen) and its derivatives in solution. Inorg. Chim. Acta 1984, 82, 207-210.
(61) Schatz, M.; Raab, V.; Foxon, S. P.; Brehm, G.; Schneider, S.; Reiher, M.; Holthausen, M. C.; Sundermeyer, J.; Schindler, S. Combined spectroscopic and theoretical evidence for a persistent end-on copper superoxo complex. Angew. Chem. Int. Ed. 2004, 43, 4360-4363.
(62) Cho, J.; Woo, J.; Nam, W. An “End-On” Chromium(III)-Superoxo Complex: Crystallographic and Spectroscopic Characterization and Reactivity in C−H Bond Activation of Hydrocarbons. J. Am. Chem. Soc. 2010, 132, 5958-5959.
(63) Stoll, S.; Schweiger, A. EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J. Magn. Reson. 2006, 178, 42-55.
(64) Bencini, A.; Gatteschi, D.; Springer, V.: Electron paramagnetic resonance of exchange coupled systems; Sringer-Verlag: Berlin; Heidelberg, 1990.
(65) Kindermann, N.; Gunes, C. J.; Dechert, S.; Meyer, F. Hydrogen Atom Abstraction Thermodynamics of a mu-1,2-Superoxo Dicopper(II) Complex. J. Am. Chem. Soc. 2017, 139, 9831-9834.
(66) Weyhermüller, T.; Paine, T. K.; Bothe, E.; Bill, E.; Chaudhuri, P. Complexes of an Aminebis(phenolate) [O,N,O] Donor Ligand and EPR Studies of Isoelectronic, Isostructural Cr(III) and Mn(IV) Complexes. Inorg. Chim. Acta 2002, 337, 344-356.
(67) Duboc, C.; Collomb, M.-N. Multifrequency High-Field EPR Investigation of a Mononuclear Manganese(iv) Complex. Chem. Commun. 2009, 2715-2717.
(68) Romain, S.; Baffert, C.; Duboc, C.; Leprêtre, J.-C.; Deronzier, A.; Collomb, M.-N. Mononuclear MnIII and MnIV Bis-terpyridine Complexes: Electrochemical Formation and Spectroscopic Characterizations. Inorg. Chem. 2009, 48, 3125-3131.
(69) Sawant, S. C.; Wu, X.; Cho, J.; Cho, K.-B.; Kim, S. H.; Seo, M. S.; Lee, Y.-M.; Kubo, M.; Ogura, T.; Shaik, S.; Nam, W. Water as an Oxygen Source: Synthesis, Characterization, and Reactivity Studies of a Mononuclear Nonheme Manganese(IV) Oxo complex. Angew. Chem. Int. Ed. 2010, 49, 8190-8194.
(70) Gupta, R.; Taguchi, T.; Borovik, A. S.; Hendrich, M. P. Characterization of Monomeric MnII/III/IV–Hydroxo Complexes from X- and Q-Band Dual Mode Electron Paramagnetic Resonance (EPR) Spectroscopy. Inorg. Chem. 2013, 52, 12568-12575.
(71) Dolai, M.; Amjad, A.; Debnath, M.; Tol, J. v.; Barco, E. d.; Ali, M. Water-Stable Manganese(IV) Complex of a N2O4-Donor Non-Schiff-Base Ligand: Synthesis, Structure, and Multifrequency High-Field Electron Paramagnetic Resonance Studies. Inorg. Chem. 2014, 53, 5423-5428.
(72) Gupta, R.; Taguchi, T.; Lassalle-Kaiser, B.; Bominaar, E. L.; Yano, J.; Hendrich, M. P.; Borovik, A. S. High-spin Mn–oxo complexes and their relevance to the oxygen-evolving complex within photosystem II. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 5319-5324.
(73) Zlatar, M.; Gruden, M.; Vassilyeva, O. Y.; Buvaylo, E. A.; Ponomarev, A. N.; Zvyagin, S. A.; Wosnitza, J.; Krzystek, J.; Garcia-Fernandez, P.; Duboc, C. Origin of the Zero-Field Splitting in Mononuclear Octahedral MnIV Complexes: A Combined Experimental and Theoretical Investigation. Inorg. Chem. 2016, 55, 1192-1201.
(74) Leto, D. F.; Massie, A. A.; Colmer, H. E.; Jackson, T. A. X-Band Electron Paramagnetic Resonance Comparison of Mononuclear MnIV-oxo and MnIV-hydroxo Complexes and Quantum Chemical Investigation of MnIV Zero-Field Splitting. Inorg. Chem. 2016, 55, 3272-3282.
(75) Oswald, V. F.; Weitz, A. C.; Biswas, S.; Ziller, J. W.; Hendrich, M. P.; Borovik, A. S. Manganese–Hydroxido Complexes Supported by a Urea/Phosphinic Amide Tripodal Ligand. Inorg. Chem. 2018, 57, 13341-13350.
(76) Urban, M. W.; Nakamoto, K.; Basolo, F. Infrared spectra of molecular oxygen adducts of (tetraphenylporphyrinato)manganese(II) in argon matrixes. Inorg. Chem. 1982, 21, 3406-3408.
(77) Lee, C. M.; Chuo, C. H.; Chen, C. H.; Hu, C. C.; Chiang, M. H.; Tseng, Y. J.; Hu, C. H.; Lee, G. H. Structural and Spectroscopic Characterization of a Monomeric Side-On Manganese(IV) Peroxo Complex. Angew. Chem. Int. Ed. 2012, 51, 5427-5430.
(78) Connelly, N. G.; Geiger, W. E. Chemical Redox Agents for Organometallic Chemistry. Chem. Rev. 1996, 96, 877-910.
(79) Kütt, A.; Selberg, S.; Kaljurand, I.; Tshepelevitsh, S.; Heering, A.; Darnell, A.; Kaupmees, K.; Piirsalu, M.; Leito, I. pKa values in organic chemistry – Making maximum use of the available data. Tetrahedron Lett. 2018, 59, 3738-3748.
(80) Kindermann, N.; Dechert, S.; Demeshko, S.; Meyer, F. Proton-Induced, Reversible Interconversion of a μ-1,2-Peroxo and a μ-1,1-Hydroperoxo Dicopper(II) Complex. J. Am. Chem. Soc. 2015, 137, 8002-8005.
(81) Kim, H.; Rogler, P. J.; Sharma, S. K.; Schaefer, A. W.; Solomon, E. I.; Karlin, K. D. Heme-Fe(III) Superoxide, Peroxide and Hydroperoxide Thermodynamic Relationships: Fe(III)-O2(*-) Complex H-Atom Abstraction Reactivity. J. Am. Chem. Soc. 2020, 142, 3104-3116.
(82) Warren, J. J.; Tronic, T. A.; Mayer, J. M. Thermochemistry of Proton-Coupled Electron Transfer Reagents and its Implications. Chem. Rev. 2010, 110, 6961-7001.
(83) Stenkamp, R. E. Dioxygen and Hemerythrin. Chem. Rev. 1994, 94, 715-726.
(84) Takano, Y.; Isobe, H.; Yamaguchi, K. Theoretical Studies on Electronic Structures and Chemical Indices of the Active Site of Oxygenated and Deoxygenated Hemerythrin. Bull. Chem. Soc. Jpn. 2008, 81, 91-102.
(85) Howard, J. B.; Rees, D. C. Perspectives on Non-Heme Iron Protein Chemistry. Adv. Protein Chem. 1991, 42, 199-280.
(86) Reem, R. C.; McCormick, J. M.; Richardson, D. E.; Devlin, F. J.; Stephens, P. J.; Musselman, R. L.; Solomon, E. I. Spectroscopic Studies of the Coupled Binuclear Ferric Active Site in Methemerythrins and Oxyhemerythrin: The Electronic Structure of Each Iron Center and the Iron-Oxo and Iron-Peroxide Bonds. J. Am. Chem. Soc. 1989, 111, 4688-4704.
(87) Nocek, J. M.; Kurtz, D. M.; Sage, J. T.; Debrunner, P. G.; Maroney, M. J.; Que, L. Nitric oxide Adduct of the Binuclear Iron Center in Deoxyhemerythrin from Phascolopsis gouldii. Analog of a Putative Intermediate in the Oxygenation Reaction. J. Am. Chem. Soc. 1985, 107, 3382-3384.
(88) Jasniewski, A. J.; Que, L., Jr. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem. Rev. 2018, 118, 2554-2592.
(89) Fukuzumi, S.; Ohkubo, K.; Lee, Y.-M.; Nam, W. Lewis Acid Coupled Electron Transfer of Metal–Oxygen Intermediates. Chem. Eur.J. 2015, 21, 17548-17559.
(90) Fukuzumi, S.; Ohkubo, K. Quantitative Evaluation of Lewis Acidity of Metal Ions Derived from the g Values of ESR Spectra of Superoxide: Metal Ion Complexes in Relation to the Promoting Effects in Electron Transfer Reactions. Chem. Eur.J. 2000, 6, 4532-4535.